JPH03114310A - Substrate for surface acoustic wave filter and manufacture thereof - Google Patents

Substrate for surface acoustic wave filter and manufacture thereof

Info

Publication number
JPH03114310A
JPH03114310A JP25306789A JP25306789A JPH03114310A JP H03114310 A JPH03114310 A JP H03114310A JP 25306789 A JP25306789 A JP 25306789A JP 25306789 A JP25306789 A JP 25306789A JP H03114310 A JPH03114310 A JP H03114310A
Authority
JP
Japan
Prior art keywords
substrate
wafer
piezoelectric substrate
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25306789A
Other languages
Japanese (ja)
Inventor
Yuji Inoue
雄二 井上
Tadao Komi
小見 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25306789A priority Critical patent/JPH03114310A/en
Publication of JPH03114310A publication Critical patent/JPH03114310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain an excellent filter characteristic by forming a multi-branch layer to faces of a piezoelectric substrate with an interdigital electrode pattern formed thereto except the major face and making the face of the piezoelectric substrate with the multi-branch layer formed thereto not flat. CONSTITUTION:Interdigital electrodes 12, 13 are formed on one face of a piezoelectric substrate 11. Moreover, a multi-branch layer 14 having a rugged part formed by radiating a laser beam to other face of the piezoelectric substrate 11. When the multi-branch layer 14 is provided to the piezoelectric substrate 11, a wafer 26 being the piezoelectric substrate is fixed on a wafer fixing base 25 of a package 24 in water and the wafer 26 is irradiated with the laser beam scanned by a beam scanning unit 23 via a solvent 27. Thus, the reflection of an undesired wave such as a bulk wave or a Raileigh wave in the border between the multi-branch layer 14 and a single branch layer is prevented and an excellent filter characteristic is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は弾性表面波フィルター用基板およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a substrate for a surface acoustic wave filter and a method for manufacturing the same.

(従来の技術) 近年、圧電基板の表面を伝搬する弾性表面波を利用した
弾性表面波フィルターが開発されている。
(Prior Art) In recent years, surface acoustic wave filters that utilize surface acoustic waves propagating on the surface of a piezoelectric substrate have been developed.

このような弾性表面波フィルターとしては次のようなも
のがある。
Examples of such surface acoustic wave filters include the following.

第8図は従来の弾性表面波フィルターを示す図である。FIG. 8 is a diagram showing a conventional surface acoustic wave filter.

同図に示すように、このフィルターは、圧電基板1の表
面上に、櫛状電極2.3により構成される入出カドラン
スデューサ4.5において、入カドランスデューサ4に
加えられた電気信号が圧電基板1の表面を伝搬する弾性
表面波に変換され、これが出カドランスデューサ5によ
って再び電気信号に変換されるものである。
As shown in the figure, this filter has an input/output quadrature transducer 4.5 formed by a comb-shaped electrode 2.3 on the surface of a piezoelectric substrate 1, and an electrical signal applied to the input quadrature transducer 4 is This is converted into a surface acoustic wave propagating on the surface of the piezoelectric substrate 1, and this is converted back into an electric signal by the output transducer 5.

ところで、この弾性表面波フィルターは入カドランスデ
ューサ4から弾性表面波の他にも圧電基板1の中を伝わ
るバルク波も放射する。そしてこのバルク波が圧電基板
1の平な裏面で反射されることにより、再び表面におい
て入出カドランスデューサ5に到達して検出される。こ
のため、弾性表面波フィルターの特性にバルクスプリア
スを生じさせフィルター特性を悪化させていた。
Incidentally, this surface acoustic wave filter emits not only surface acoustic waves from the input quadrature transducer 4 but also bulk waves that propagate through the piezoelectric substrate 1 . Then, this bulk wave is reflected by the flat back surface of the piezoelectric substrate 1, so that it reaches the input/output quadrature transducer 5 again on the front surface and is detected. For this reason, bulk spurious occurs in the characteristics of the surface acoustic wave filter, deteriorating the filter characteristics.

そこで、これらを防止するよう第9図に示すように、圧
電基板1の櫛状電極2.3を形成した表面1aに対向す
る裏面1bに溝や穴などの凹部6を規則的に多数形成す
ることか行われている。
Therefore, in order to prevent this, as shown in FIG. 9, a large number of recesses 6 such as grooves and holes are regularly formed on the back surface 1b of the piezoelectric substrate 1, which is opposite to the surface 1a on which the comb-shaped electrodes 2.3 are formed. Something is being done.

(発明が解決しようとする課題) しかしながら、上述した従来の基板の裏面加工は、砥粒
によりランダムに粗らす方法やダイシングやホーニング
により溝加工を行なっている。
(Problems to be Solved by the Invention) However, in the conventional backside processing of the substrate described above, grooves are formed by randomly roughening the substrate using abrasive grains, or by dicing or honing.

前者はランダムな粗らしのため、厚さバラツキが生じや
すく、さらには全面の粗らしにより加工歪みが大きく、
基板が割れやすいという課題がある。
The former is prone to thickness variations due to random roughening, and furthermore, processing distortion is large due to the roughening of the entire surface.
There is a problem with the board being easy to break.

後者も一部分粗らさないところはあるが窪みが連続した
り、溝部分はどうしても弱くなりウェハプロセスやデバ
イスプロセスでの割れる原因となっている。
The latter also has some areas that are not roughened, but the depressions are continuous and the grooves are inevitably weak, causing cracks during wafer and device processes.

本発明は上述した従来の課題を解決するためのもので、
バルク波等の不要波を良好に除去することができ、しか
も基板の所定の面の平面度を向上させることのできる弾
性表面波フィルター用基板およびその製造方法を提供す
ることを目的としている。
The present invention is intended to solve the above-mentioned conventional problems,
It is an object of the present invention to provide a substrate for a surface acoustic wave filter, which can effectively remove unnecessary waves such as bulk waves, and improve the flatness of a predetermined surface of the substrate, and a method for manufacturing the same.

[発明の構成コ (課題を解決するための手段) 本発明の弾性表面波フィルター用基板は、圧電基板の主
面に櫛状電極パターンが形成され、この櫛状電極パター
ンが形成された主面を除く面に多分域層が形成されると
ともに、前記多分域層か形成される前記基板の面が非平
面とされたものである。
[Structure of the Invention (Means for Solving the Problem) The substrate for a surface acoustic wave filter of the present invention has a comb-shaped electrode pattern formed on the main surface of a piezoelectric substrate, and the main surface on which the comb-shaped electrode pattern is formed. A multi-region layer is formed on a surface other than the surface of the substrate, and the surface of the substrate on which the multi-region layer is formed is non-planar.

また本発明の弾性表面波フィルター用基板の製造方法は
、圧電基板の主面に櫛状電極パターンを形成し、この基
板を溶媒液中に浸漬し、前記基板の櫛状電極パターンを
形成した主面を除く面にレーザ光を照射して前記主面を
除く面を非平面とするとともに、厚さ20μm〜300
μ0の多分域層を形成することを特徴としている。
Further, the method for manufacturing a substrate for a surface acoustic wave filter of the present invention includes forming a comb-shaped electrode pattern on the main surface of a piezoelectric substrate, immersing this substrate in a solvent solution, and A laser beam is irradiated onto the surfaces other than the main surface to make the surfaces other than the main surface non-planar, and the thickness is 20 μm to 300 μm.
It is characterized by forming a multi-region layer of μ0.

(作 用) 本発明では、弾性表面波フィルター用基板の櫛状f−3
iffのパターン形成部分を除く箇所に適度なレーザ照
射を行うことにより、部分的に多分域層を形成し、厚み
方向のバルク波を押さえることが出来る。
(Function) In the present invention, the comb-like f-3 of the surface acoustic wave filter substrate
By applying appropriate laser irradiation to a portion other than the IF pattern forming portion, a multi-region layer can be formed partially and bulk waves in the thickness direction can be suppressed.

さらには側面や、電極面のチップの端面側周辺部をも多
分域化することにより、レーリー波の反射も防止可能と
なり、良好なフィルター特性が得られる。また、ウェハ
自体も外的な加工歪みを受けず、ウェハプロセスでの歩
留りも向上し、デバイスプロセスでの割れも減少させる
ことができる。
Furthermore, by multi-banding the side surfaces and the peripheral portion of the electrode surface on the end surface side of the chip, reflection of Rayleigh waves can also be prevented, and good filter characteristics can be obtained. Furthermore, the wafer itself is not subjected to external processing distortion, improving yield in wafer processing and reducing cracks in device processing.

(実施例) 以下、本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の弾性表面波フィルター用基
板を示す側面断面図である。
FIG. 1 is a side sectional view showing a surface acoustic wave filter substrate according to an embodiment of the present invention.

同図において、11は圧電基板を示している。In the figure, 11 indicates a piezoelectric substrate.

この圧電基板11の一方の面上には、櫛状電極12.1
3が形成されている。また、圧電基板11の他方の面に
は、レーザ光を照射することにより形成された凹凸部分
を有する多分域層14が設けられている。
On one surface of this piezoelectric substrate 11, a comb-shaped electrode 12.1 is provided.
3 is formed. Further, on the other surface of the piezoelectric substrate 11, a multi-domain layer 14 having an uneven portion formed by laser beam irradiation is provided.

次に、上述の圧電基板11に多分域層14を形成する際
に使用するレーザ加工装置について第2図を用いて説明
する。
Next, a laser processing apparatus used to form the multi-domain layer 14 on the piezoelectric substrate 11 described above will be explained using FIG. 2.

同図において、21はレーザ発振器を示している。この
レーザ発振器21からレーザ光は、反射鏡22により反
射されてビーム走査ユニット23に導入される。また、
24は水中容器を示しており、この水中容器24のウェ
ハ固定台25上には、圧電基板となるウェハ26が固定
されている。また、水中容器24内には、たとえば水、
シリコンオイルなどの溶媒27が収容されている。
In the figure, 21 indicates a laser oscillator. Laser light from this laser oscillator 21 is reflected by a reflecting mirror 22 and introduced into a beam scanning unit 23 . Also,
Reference numeral 24 indicates an underwater container, and a wafer 26 serving as a piezoelectric substrate is fixed on a wafer fixing table 25 of this underwater container 24. Moreover, in the underwater container 24, for example, water,
A solvent 27 such as silicone oil is contained.

そして、ビーム走査ユニット23により走査されるレー
ザ光は、溶媒27を介してウェハ26に照射される。
Then, the laser beam scanned by the beam scanning unit 23 is irradiated onto the wafer 26 via the solvent 27.

次に、本発明の弾性表面波フィルター用基板の製造方法
の実施例を説明する。
Next, an example of the method for manufacturing a surface acoustic wave filter substrate of the present invention will be described.

(実施例1) LiNbOz単結晶76φX  O,62mm tの 
1289Y板のスライスウェハをGCII2500の砥
粒で両面ラップ加工により厚みを0.52 mm tに
整える。このウェハを上述したレーザ加工装置の水中加
工容器に装着し、冷却装置を稼働させ水を循環させる。
(Example 1) LiNbOz single crystal 76φXO, 62mm t
A sliced wafer of 1289Y plate was lapped on both sides with GCII2500 abrasive grains to a thickness of 0.52 mm. This wafer is mounted in the underwater processing container of the laser processing apparatus described above, and the cooling device is operated to circulate water.

レーザ装置を発振させ、LOWの連続出力(CW)で安
定させる。
The laser device is oscillated and stabilized at LOW continuous output (CW).

次にQ−スイッチを5kHzで稼働させた。加工送り速
度を5mm/sにしてピッチ0.6n+luの溝状の加
工を行った。
The Q-switch was then run at 5kHz. Groove-like processing with a pitch of 0.6n+lu was performed at a processing feed rate of 5 mm/s.

結果は表面に溶融物はなかった、またこのウェハはチッ
ピングもなく、そりも3μmと良好であった。このウェ
ハを使い、鏡面側にTV用ラフイルターデバイス製作し
たところ、バルク波による反射波か効率良く除去でき、
従来の0点トラップが一45dBに対し一50dBまで
落ちて良好なSAWフィルターが得られた。また、加工
歪みも少なく割れにく(デバイスプロセス歩留りも10
%以上の向上が得られた。またこのチップの断面を鏡面
研磨して120℃にて1時間フッ硝酸でエツチングした
ところ、第3図に示すように、チップ31のフィルター
を構成する櫛状電極形成面31aを除く面にレーザ照射
により分極反転されて多分域層a1が厚さ30μmで形
成されるとともに、溝状に照射したレーザ焦点近傍が溝
状に分極反転し多分域層b1が幅600μm1厚さ 1
00μmに形成されていた。
The results showed that there was no melt on the surface, and the wafer had no chipping and warpage was as good as 3 μm. Using this wafer, we fabricated a TV rough filter device on the mirror side, and it was able to efficiently remove reflected waves from bulk waves.
A good SAW filter was obtained, with the conventional 0-point trap dropping to -50 dB compared to -45 dB. In addition, there is less processing distortion and less cracking (device process yield is also 10%).
An improvement of more than % was obtained. Furthermore, when the cross section of this chip was polished to a mirror surface and etched with hydrofluoric nitric acid at 120°C for 1 hour, the surface of the chip 31 excluding the comb-shaped electrode forming surface 31a constituting the filter was irradiated with a laser beam, as shown in FIG. The polarization is inverted to form a multi-domain layer a1 with a thickness of 30 μm, and the vicinity of the laser focal point irradiated in a groove shape is polarized in a groove-like manner, forming a multi-domain layer b1 with a width of 600 μm and a thickness of 1.
00 μm.

(実施例2) LiNb03単結晶゛76φX  O,62mm tの
 128°Y板のスライスウェハをGCII2500の
砥粒で両面ラップ加工により厚みを0.52 mm t
に整える。このウェハをレーザ加工装置の水中加工容器
に装着し、冷却装置を稼働させ水を循環させる。レーザ
加工装置を発振させ、LOWの連続出力で安定させる。
(Example 2) A sliced wafer of LiNb03 single crystal "76φXO, 62mm t, 128°Y plate was lapped on both sides with GCII 2500 abrasive grains to a thickness of 0.52mm t.
Arrange it to. This wafer is placed in an underwater processing container of a laser processing device, and the cooling device is operated to circulate water. The laser processing device is oscillated and stabilized with continuous LOW output.

次にQ−スイッチを5k)Izで稼働させた。加工送り
速度を3mff1/sにしてピッチ0.5mmの溝状の
加工を行った。
The Q-switch was then run at 5k) Iz. Grooves with a pitch of 0.5 mm were processed at a processing feed rate of 3 mff1/s.

結果は表面に溶融物はなかった。またこのウェハはチッ
ピングもなく、そりも4μIと良好であった。このウェ
ハを使い、鏡面側にTV用ラフイルターデバイス製作し
たところバルク波による反射波が効率良く除去できて従
来の0点トラップが一45dBに対し一52dBまで落
ちて良好なSAWフィルター特性が得られた。また、加
工歪みも少なく割れにく(デバイスプロセス歩留りも1
0%以上の向上が見られた。また、このチップの断面を
鏡面研磨して120℃にて1時間フッ硝酸でエツチング
したところ、第4図に示すように、チップ31のフィル
ターを構成する櫛状電極形成面31aを除く面にレーザ
照射により分極反転されて多分域層a2が厚さ40μm
で形成されるとともに、溝状に照射したレーザ焦点近傍
が溝状に分極反転し多分域層b2が幅500μm1厚さ
 150μmに形成されていた。
The result was that there was no melt on the surface. Further, this wafer had no chipping and warpage was 4 μI, which was good. When this wafer was used to fabricate a TV rough filter device on the mirror side, the reflected waves due to bulk waves were effectively removed, and the zero point trap was reduced to -52 dB compared to -45 dB for the conventional 0-point trap, resulting in good SAW filter characteristics. Ta. In addition, there is less processing distortion and less cracking (device process yield is also 1
An improvement of 0% or more was observed. Furthermore, when the cross section of this chip was mirror-polished and etched with hydrofluoric and nitric acid at 120°C for 1 hour, as shown in FIG. The polarization is inverted by irradiation and the multi-domain layer a2 has a thickness of 40 μm.
At the same time, the polarization was inverted in the vicinity of the focal point of the laser irradiated in a groove shape, and a multi-region layer b2 was formed with a width of 500 μm and a thickness of 150 μm.

(実施例3) LiTa03単結晶76φX  O,82tan tの
X板のスライスウェハをGClt 2500の砥粒で両
面ラップ加工により厚みを0.52 tnIIltに整
える。このウェハをレーザ加工装置の水中加工容器に装
着し、冷却装置を稼働させ水を循環させる。レーザ加工
装置を発振させ、20Vの連続出力で安定させる。
(Example 3) An X-plate sliced wafer of LiTa03 single crystal 76φXO, 82 tan t was lapped on both sides with GClt 2500 abrasive grains to a thickness of 0.52 tnIIlt. This wafer is placed in an underwater processing container of a laser processing device, and the cooling device is operated to circulate water. The laser processing equipment is oscillated and stabilized at a continuous output of 20V.

次に、Q−スイッチを5kHzで稼働させた。加工送り
速度を3aun/sにしてピッチ0.51の溝状の加工
を行った。
The Q-switch was then operated at 5kHz. Groove-like processing with a pitch of 0.51 was performed at a processing feed rate of 3 aun/s.

結果は表面に溶融物はなかった。またこのウェハはチッ
ピングもなく、そりも3μmと良好であった。このウェ
ハを使い、鏡面側にTV用ラフイルターデバイス製作し
たところバルク波による反射波が効率良く除去できて従
来の0点トラップか一45dBに対し一52dBまで落
ちて良好なSAWフィルター特性が得られた。また、加
工歪みも少なく割れに(くデバイスプロセス歩留りも1
0%以上の向上が見られた。また、このチップの断面を
鏡面研磨して120℃にて1時間フッ硝酸でエツチング
したところ、第4図と同様に、チップ31のフィルター
を構成する櫛状電極形成面31gを除く面にレーザ照射
により分極反転されて多分域層a2が厚さ40μmで形
成されるとともに、溝状に照射したレーザ焦点近傍が溝
状に分極反転し多分域層b2が幅500μ11厚さ 1
50μmに形成されていた。
The result was that there was no melt on the surface. Moreover, this wafer had no chipping and warpage was 3 μm, which was good. When this wafer was used to fabricate a TV rough filter device on the mirror side, the reflected waves due to bulk waves could be efficiently removed, and the drop was reduced to -52 dB compared to -45 dB for the conventional 0-point trap, resulting in good SAW filter characteristics. Ta. In addition, there is less processing distortion and less cracking (and the device process yield is 1%).
An improvement of 0% or more was observed. Furthermore, when the cross section of this chip was polished to a mirror surface and etched with hydrofluoric nitric acid at 120°C for 1 hour, the surface of the chip 31 except for the comb-shaped electrode forming surface 31g constituting the filter was irradiated with a laser, as shown in FIG. The polarization is inverted to form a multi-domain layer a2 with a thickness of 40 μm, and the polarization of the vicinity of the laser focus irradiated in a groove is inverted in a groove-like manner, forming a multi-domain layer b2 with a width of 500 μm and a thickness of 1.
It was formed to have a thickness of 50 μm.

(実施例4) LiNb03単結晶76φX  O,62mm tの1
28°Y板のスライスウェハをGC12500の砥粒で
両面ラップ加工により厚みを0.52 m+n tに整
える。このウェハをレーザ加工装置の水中加工容器に装
着し、冷却装置を稼働させ水を循環させる。レーザ加工
装置を発振させ、30Wの連続出力(CW)で安定させ
る。
(Example 4) LiNb03 single crystal 76φX O, 62mm t 1
A sliced wafer of a 28° Y plate is lapped on both sides with GC12500 abrasive grains to a thickness of 0.52 m+nt. This wafer is placed in an underwater processing container of a laser processing device, and the cooling device is operated to circulate water. The laser processing device is oscillated and stabilized at a continuous output (CW) of 30W.

次にQ−スイッチを5kllzで稼働させた。加工送り
速度をLOmm/sにしてピッチ 0.6mmの溝状の
加工を行った。
The Q-switch was then run at 5 kllz. Grooves with a pitch of 0.6 mm were processed at a processing feed rate of LO mm/s.

結果は表面に溶融物もなく、また第5図に示すように、
チップ51に対して溝状に照射したレーザ焦点近傍が幅
400μf11〜500μm(W)、深さ60μm〜1
00μll1(D)の溝52か形成され、この溝52の
内壁面に厚さ40μff1〜50μG+  (C)の多
分域層53が形成されていた。このウェハの表面を、コ
ロイダル5i02にて10μm〜20μmのポリッシン
グを行った。このウェハはチッピングの発生もなく、そ
りも10μmと良好であった。このウェハを使い、鏡面
側にTV用ラフイルターデバイス製作したところバルク
波による反射波が効率良く除去できて従来の0点トラッ
プが一45dBに対し一55dBまで落ちて良好なSA
Wフィルター特性が得られた。また、加工歪みも少なく
割れにくくデバイスプロセス歩留りも10%以上の向上
が得られた。
As a result, there was no melt on the surface, and as shown in Figure 5,
The laser beam irradiated onto the chip 51 in a groove shape has a width of 400 μm to 500 μm (W) and a depth of 60 μm to 1
A groove 52 with a thickness of 00 μll1 (D) was formed, and a multi-region layer 53 with a thickness of 40 μff1 to 50 μG+ (C) was formed on the inner wall surface of this groove 52. The surface of this wafer was polished to a thickness of 10 μm to 20 μm using Colloidal 5i02. This wafer had no occurrence of chipping and had a good warpage of 10 μm. Using this wafer, we fabricated a rough filter device for TV on the mirror side, and the reflected waves due to bulk waves could be efficiently removed, resulting in a good SA of 155 dB compared to 145 dB of the conventional 0-point trap.
W filter characteristics were obtained. Furthermore, the device process yield was improved by more than 10% due to less processing distortion and less cracking.

(実施例5) LiTaJ Qi結晶76φX Q、4’l +++a
+ tOX板のスライスウェハをGC$ 2500の砥
粒で両面ラップ加工により厚みを0.40111m t
に整える。このウェハをレーザ加工装置の水中加工容器
に装着し、冷却装置を稼働させ水を循環させる。レーザ
加工装置を発振させ、40Wの連続出力(CW)で安定
させる。
(Example 5) LiTaJ Qi crystal 76φX Q, 4'l +++a
+ A sliced wafer of tOX plate was lapped on both sides with GC$2500 abrasive grain to a thickness of 0.40111m.
Arrange it to. This wafer is placed in an underwater processing container of a laser processing device, and the cooling device is operated to circulate water. The laser processing device is oscillated and stabilized at a continuous output (CW) of 40W.

次に、Q−スイッチを5 k Hzで稼働させた。加工
送り速度を8+n+u/sにしてピッチ0.61の溝状
の加工を行った。
The Q-switch was then operated at 5 kHz. Groove-like processing with a pitch of 0.61 was performed at a processing feed rate of 8+n+u/s.

結果は表面に溶融物もなく、第5図と同様に、チップ5
1に溝状に照射したレーザ焦点近傍が幅300μIl〜
400μll1(W)、深さ60μIII〜80μ1(
D)の溝52が形成され、この溝52の内壁面に厚さ2
0μIll〜30μlの多分域層53が形成されていた
。このウェハの表面を、コロイダル5i02にて10μ
m〜20μmのポリッシングを行った。またこのウェハ
はチッピングもなく、そりも20μmと良好であった。
As a result, there was no melt on the surface, and as in Fig. 5, chip 5
The width of the laser beam irradiated in a groove shape on 1 is 300μIl~
400μll1(W), depth 60μIII~80μ1(
D) groove 52 is formed, and the inner wall surface of this groove 52 has a thickness of 2
A multi-area layer 53 of 0 μl to 30 μl was formed. The surface of this wafer was coated with Colloidal 5i02 for 10μ
Polishing was performed to a thickness of m to 20 μm. Further, this wafer had no chipping and warpage was 20 μm, which was good.

このウェハを使い、鏡面側にTV用ラフイルターデバイ
ス製作したところバルク波による反射波か効率良く除去
できて従来の0点トラップが一45dBに対し一52d
Bまで落ちて良好なSAWフィルター特性が得られた。
Using this wafer, we fabricated a TV rough filter device on the mirror side, and it was able to efficiently remove reflected waves from bulk waves.
It was possible to obtain good SAW filter characteristics.

また、加工歪みも少なく割れにくくデバイスプロセス歩
留りも8%以上の向上が得られた。
Furthermore, the device process yield was improved by 8% or more with less processing distortion and less cracking.

(比較例1) LiNb03単結晶76φX  O,62mm tの 
1288Y板のスライスウェハをGC$2500の砥粒
で両面ラップ加工により厚みを0.52 mm tに整
える。このウェハをレーザ加工装置にセットし、レーザ
加工装置を発振させ、LOWの連続出力で安定させる。
(Comparative Example 1) LiNb03 single crystal 76φXO, 62mm t
A sliced wafer of 1288Y plate was lapped on both sides with abrasive grains of GC$2500 to a thickness of 0.52 mm. This wafer is set in a laser processing device, and the laser processing device is caused to oscillate and stabilized at a continuous LOW output.

次にQ−スイッチを5kllzて稼働させた。加工送り
速度をLOmm/sにしてピッチ0.5mmの溝状の加
工を行った。
Next, the Q-switch was turned on for 5 kllz. Grooves with a pitch of 0.5 mm were processed at a processing feed rate of LO mm/s.

結果は表面に溶融物が付着し、クラックが各所に発生し
、加工歩留は10%以下であった。このウェハを使い、
鏡面側にTV用ラフイルターデバイス製作したところ一
部はバルク波による反射波か除去でき、従来の0点トラ
ップが一45dBに対し一52dBまで落ちたSAWフ
ィルター特性が得られたが、加工歪みも多く割れ易くデ
バイスプロセス歩留りも20%と低下°した。また、こ
のチップの断面を鏡面研磨して120℃にてフッ硝酸で
エツチングしたところ、レーザ照射部が溝状に多分域化
され350μmの深さとなっていた。一部は多分域層が
表面層まで達していた。
As a result, molten matter adhered to the surface, cracks occurred in various places, and the processing yield was less than 10%. Using this wafer,
When I fabricated a TV rough filter device on the mirror side, I was able to remove some of the reflected waves due to bulk waves, and I was able to obtain a SAW filter characteristic that dropped to -52 dB compared to -45 dB for the conventional 0-point trap, but it also caused processing distortion. It was easy to break and the device process yield decreased to 20%. Further, when the cross section of this chip was polished to a mirror surface and etched with hydrofluoric nitric acid at 120° C., the laser irradiation area was multi-regioned in the form of a groove with a depth of 350 μm. In some cases, the multiregional layer reached the surface layer.

(比較例2) LiTaO3単結晶76φX  O,62mm tのX
板のスライスウェハをGC#2500の砥粒で両面ラッ
プ加工により厚みを0.52 mtn tに整える。こ
のウェハをレーザ加工装置にセットし、レーザ加工装置
を発振させ、15Wの連続出力で安定させる。
(Comparative Example 2) LiTaO3 single crystal 76φX O, 62mm t
The thickness of the sliced wafer was adjusted to 0.52 mtnt by lapping both sides with GC #2500 abrasive grains. This wafer is set in a laser processing device, and the laser processing device is caused to oscillate and stabilized at a continuous output of 15W.

次に、Q−スイッチを5 k tl zで稼働させた。Next, the Q-switch was operated at 5 ktlz.

加工送り速度を10m+n/sにしてピッチ0.5nu
++の溝状の加工を行った。
Processing feed speed is 10m+n/s and pitch is 0.5nu
++ groove-like processing was performed.

結果は表面に溶融物が付着し、クラックが各所に発生し
、加工歩留は10%以下であった。このウェハを使い、
鏡面側にTV用フィルターデバイスを製作したところ一
部はバルク波による反射波が除去でき、従来の0点トラ
ップが一45dBに対し一52dBまで落ちたSAWフ
ィルター特性が得られたが、加工歪みも多く割れ易くデ
バイスプロセス歩留りも10%と低下した。また、この
チップの断面を鏡面研磨して120℃にてフッ硝酸でエ
ツチングしたところ、レーザ照射部が溝状に多分域化さ
れ350μmの深さとなっていた。一部は多分域層が表
面層まで達していた。
As a result, molten matter adhered to the surface, cracks occurred in various places, and the processing yield was less than 10%. Using this wafer,
By fabricating a TV filter device on the mirror side, we were able to remove some of the reflected waves due to bulk waves, and we were able to obtain SAW filter characteristics that dropped to -52 dB compared to -45 dB for the conventional zero-point trap, but it also caused processing distortion. It was easy to break and the device process yield decreased to 10%. Further, when the cross section of this chip was polished to a mirror surface and etched with hydrofluoric nitric acid at 120° C., the laser irradiation area was multi-regioned in the form of a groove with a depth of 350 μm. In some cases, the multiregional layer reached the surface layer.

なお、上述の多分域層の形成形状は上述した実施例に限
定されるものではなく、第6図に示すように、チップ6
1に幅200p m 〜6(10μre  (W)、厚
さ 100μl〜300μm  (T)帯状の多分域層
62を形成してもよく、また第7図に示すように、チッ
プ71の櫛状電極を形成する面71aを除く全面に厚さ
20μI11〜50μmの多分域層72を形成するとと
もに、溝状に照射したレーザ焦点近傍が幅100μI1
1〜800μ1(W)、深さ80μm 〜100μm 
 (D)の溝73が形成された形状であってもよい。
Note that the formation shape of the multi-region layer described above is not limited to the above-mentioned embodiment, and as shown in FIG.
A strip-shaped multi-region layer 62 having a width of 200 p m to 6 (10 μre (W) and a thickness of 100 μl to 300 μm (T)) may be formed on the chip 1, and as shown in FIG. A multi-region layer 72 with a thickness of 20 μI11 to 50 μm is formed on the entire surface except the surface 71a to be formed, and the vicinity of the laser focal point irradiated in a groove shape has a width of 100 μI1.
1 to 800μ1 (W), depth 80μm to 100μm
It may also have a shape in which the groove 73 shown in (D) is formed.

[発明の効果コ 以上説明したように本発明の弾性表面波フィルター用基
板およびその製造方法は、弾性表面波フィルター用基板
を溶媒液中に浸漬し、この基板の櫛状電極のパターン形
成部分を除く箇所にレーザ光を照射して多分域層を形成
するので、多分域層が有するランダムな極性により多分
域層と単分域層との境界でバルク波やレーリー波等の不
要波の反射を防止することができ、良好なフィルター特
性が得られる。また、ウェハ自体も外的な加工歪みを受
けず、ウェハプロセスおよびデバイスプロセスでの歩留
りも大幅に向上させることができる。
[Effects of the Invention] As explained above, the surface acoustic wave filter substrate of the present invention and the manufacturing method thereof include immersing the surface acoustic wave filter substrate in a solvent solution, and removing the comb-shaped electrode pattern forming portion of the substrate. Since a multi-domain layer is formed by irradiating laser light on the areas to be removed, the random polarity of the multi-domain layer prevents the reflection of unnecessary waves such as bulk waves and Rayleigh waves at the boundary between the multi-domain layer and the single-domain layer. can be prevented and good filter characteristics can be obtained. Further, the wafer itself is not subjected to external processing distortion, and yields in wafer processing and device processing can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の弾性表面波フィルター用基
板を説明するための図、第2図は本実施例の製造方法に
適用されるレーザ加工装置を説明するための図、第3図
は本発明の一実施例の弾性表面波フィルター用基板の製
造方法により得られた基板を説明するための図、第4図
および第5図はそれぞれ本発明の他の実施例の弾性表面
波フィルター用基板の製造方法により得られた基板を説
明するための図、第6図および第7図は本発明の他の実
施例の弾性表面波フィルター用基板における多分域層の
形状を説明するだめの図、第8図および第9図はそれぞ
れ従来の弾性表面波フィルター用基板を示す図である。 11・・・圧電基板、12.13・・・櫛状電極、14
・・・多分域層、21・・・レーザ発振器、23・・・
ビーム走査ユニット、24・・・水中容器、26・・・
ウェハ、27・・・溶媒。
FIG. 1 is a diagram for explaining a surface acoustic wave filter substrate according to an embodiment of the present invention, FIG. 2 is a diagram for explaining a laser processing apparatus applied to the manufacturing method of this embodiment, and FIG. The figure is a diagram for explaining a substrate obtained by the method for manufacturing a surface acoustic wave filter substrate according to an embodiment of the present invention, and FIGS. 4 and 5 respectively show surface acoustic wave filters according to other embodiments of the present invention. FIGS. 6 and 7 are diagrams for explaining the substrate obtained by the filter substrate manufacturing method, and are for explaining the shape of the multi-region layer in the surface acoustic wave filter substrate of other embodiments of the present invention. , FIG. 8, and FIG. 9 are views showing conventional surface acoustic wave filter substrates, respectively. 11... Piezoelectric substrate, 12.13... Comb-shaped electrode, 14
...Multi-domain layer, 21...Laser oscillator, 23...
Beam scanning unit, 24... Underwater container, 26...
Wafer, 27...solvent.

Claims (2)

【特許請求の範囲】[Claims] (1)圧電基板の主面に櫛状電極パターンが形成され、
この櫛状電極パターンが形成された主面を除く面に多分
域層が形成されるとともに、前記多分域層が形成される
前記基板の面が非平面とされたことを特徴とする弾性表
面波フィルター用基板。
(1) A comb-shaped electrode pattern is formed on the main surface of the piezoelectric substrate,
A surface acoustic wave characterized in that a multi-domain layer is formed on a surface other than the main surface on which the comb-shaped electrode pattern is formed, and the surface of the substrate on which the multi-domain layer is formed is non-planar. Substrate for filter.
(2)圧電基板の主面に櫛状電極パターンを形成し、こ
の基板を溶媒液中に浸漬し、前記基板の櫛状電極パター
ンを形成した主面を除く面にレーザ光を照射して前記主
面を除く面を非平面とするとともに、厚さ20μm〜3
00μmの多分域層を形成することを特徴とする弾性表
面波フィルター用基板の製造方法。
(2) A comb-shaped electrode pattern is formed on the main surface of a piezoelectric substrate, this substrate is immersed in a solvent solution, and a laser beam is irradiated to the surface of the substrate other than the main surface on which the comb-shaped electrode pattern is formed. The surface other than the main surface is non-planar, and the thickness is 20 μm to 3
A method for manufacturing a surface acoustic wave filter substrate, the method comprising forming a multi-band layer of 00 μm.
JP25306789A 1989-09-28 1989-09-28 Substrate for surface acoustic wave filter and manufacture thereof Pending JPH03114310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25306789A JPH03114310A (en) 1989-09-28 1989-09-28 Substrate for surface acoustic wave filter and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25306789A JPH03114310A (en) 1989-09-28 1989-09-28 Substrate for surface acoustic wave filter and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03114310A true JPH03114310A (en) 1991-05-15

Family

ID=17246031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25306789A Pending JPH03114310A (en) 1989-09-28 1989-09-28 Substrate for surface acoustic wave filter and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03114310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046107A (en) * 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Elastic wave device and module
JP2018042209A (en) * 2016-09-09 2018-03-15 株式会社ディスコ Manufacturing method for surface elastic wave device chip
US10483941B2 (en) 2016-01-12 2019-11-19 Taiyo Yuden Co., Ltd. Acoustic wave device and method of manufacturing the same
JP2020182035A (en) * 2019-04-23 2020-11-05 株式会社ディスコ SAW filter manufacturing method and SAW filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046107A (en) * 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Elastic wave device and module
US10483941B2 (en) 2016-01-12 2019-11-19 Taiyo Yuden Co., Ltd. Acoustic wave device and method of manufacturing the same
JP2018042209A (en) * 2016-09-09 2018-03-15 株式会社ディスコ Manufacturing method for surface elastic wave device chip
JP2020182035A (en) * 2019-04-23 2020-11-05 株式会社ディスコ SAW filter manufacturing method and SAW filter

Similar Documents

Publication Publication Date Title
US7202590B2 (en) Surface acoustic wave device and method of manufacturing the same
US8866365B2 (en) Composite substrate with partially planarized irregular surface
KR20190133794A (en) Bonding method
KR20190133793A (en) Bonding method
JP2007134889A (en) Composite piezoelectric substrate
KR20190014476A (en) Method of manufacturing substrate for acoustic wave device
CN110391793A (en) The manufacturing method of SAW device
JPH03114310A (en) Substrate for surface acoustic wave filter and manufacture thereof
KR100453083B1 (en) A method for manufacturing surface acoustic wave
JPH1010348A (en) Production of optical waveguide device
JPH11309665A (en) Manufacture of oxide single crystal substrate
KR20170103677A (en) Baw device and method of manufacturing baw device
JP3663845B2 (en) Crystal surface processing method and crystal piece manufacturing method
JP2007096369A (en) Metal mask and method of cutting piezoelectric resonator element
CN111835313A (en) Method for manufacturing SAW filter and SAW filter
JP5234236B2 (en) Quartz substrate and method for manufacturing quartz substrate
JPH04294622A (en) Production of piezoelectric element
JPH0218612B2 (en)
JP2018042208A (en) Manufacturing method for surface elastic wave device chip
JPH01209811A (en) Surface acoustic wave filter and its manufacture
JPH076984A (en) Manufacture of single crystal wafer
JPH08330876A (en) Manufacture of liquid crystal resonator
JPH05160659A (en) Production of piezoelectric oscillating element
JP2790281B2 (en) Surface acoustic wave wafer
JPH09117859A (en) Polishing method of substrate to be polished