JPH0311420B2 - - Google Patents

Info

Publication number
JPH0311420B2
JPH0311420B2 JP19380781A JP19380781A JPH0311420B2 JP H0311420 B2 JPH0311420 B2 JP H0311420B2 JP 19380781 A JP19380781 A JP 19380781A JP 19380781 A JP19380781 A JP 19380781A JP H0311420 B2 JPH0311420 B2 JP H0311420B2
Authority
JP
Japan
Prior art keywords
temperature
magnetic
coil
inductance element
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19380781A
Other languages
Japanese (ja)
Other versions
JPS5895232A (en
Inventor
Norisuke Fukuda
Susumu Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19380781A priority Critical patent/JPS5895232A/en
Publication of JPS5895232A publication Critical patent/JPS5895232A/en
Publication of JPH0311420B2 publication Critical patent/JPH0311420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、インダクタンス素子に係り、たとえ
ば、温度センサなどとして用いることができるイ
ンダクタンス素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an inductance element, and relates to an inductance element that can be used, for example, as a temperature sensor.

[発明の技術的背景] たとえば、被温度検出部の温度が基準温度を越
えたとき、いわゆる出力を送出する温度検出装置
としては、従来、機械式のものと電気式のものと
が知られている。すなわち、機械式の代表的なも
のとしては、バイメタルを温度センサとして用い
るものがあげられ、また、電気式の代表的なもの
としてはサーミスタ等の感温抵抗素子を温度セン
サとして用いるものがあげられる。
[Technical Background of the Invention] For example, mechanical type and electric type temperature detection devices have been known to send out a so-called output when the temperature of a temperature detected part exceeds a reference temperature. There is. In other words, a typical mechanical type uses a bimetal as a temperature sensor, and a typical electric type uses a temperature-sensitive resistance element such as a thermistor as a temperature sensor. .

[背景技術の問題点] しかしながら、このような従来の温度検出装置
にあつては次のような問題があつた。すなわち、
バイメタルを温度センサとして用いたものにあつ
ては、機械的な変位量を利用しているため、応答
性が悪く、しかも、出力を取り出す手段として機
械的な接点を用いているので、寿命が短かいばか
りか環境等によつて接点不良を起こし易い問題が
あつた。また、感温抵抗素子を温度センサとして
用いたものにあつては、素子の特性にばらつきが
存在するので、各検出装置に組込むとき、その動
作温度点を確認および調整する必要があり、この
ため量産性に欠ける問題があつた。
[Problems with Background Art] However, such conventional temperature detection devices have the following problems. That is,
Bimetal temperature sensors use mechanical displacement, so they have poor response, and they also use mechanical contacts as a means to extract output, so they have short lifespans. Not only that, but there was also the problem that contact failure was easily caused by the environment and other factors. In addition, when a temperature-sensitive resistance element is used as a temperature sensor, there are variations in the characteristics of the element, so when incorporating it into each detection device, it is necessary to check and adjust its operating temperature point. There was a problem with mass production.

[発明の目的] 本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、応答性に勝れた
温度センサとしても使用でき、使用自由度に富
み、量産性に勝れ、そのうえ小型で長寿命なイン
ダクタンス素子を提供することにある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to provide a temperature sensor with excellent responsiveness, a high degree of flexibility in use, and a structure that is suitable for mass production. The object of the present invention is to provide an inductance element that is superior in size, is small in size, and has a long life.

[発明の概要] すなわち、本発明に係るインダクタンス素子
は、コイルと、このコイルの外周を覆うように設
けられた磁性材製の薄片とで構成されている。な
お、磁性材製の薄片は、アモルフアス磁性金属材
で形成されていることが好ましい。
[Summary of the Invention] That is, the inductance element according to the present invention includes a coil and a thin piece made of a magnetic material provided so as to cover the outer periphery of the coil. In addition, it is preferable that the magnetic thin piece is formed of an amorphous magnetic metal material.

[発明の効果] 本発明に係るインダクタンス素子は、コイルの
外周を覆う薄片として、あるキユーリ点のものを
用いることによつて、そのキユーリ点を境にし
て、いわゆる出力信号が変化する温度センサとし
て使用できる。すなわち、コイルの外周を覆う薄
片温度が、そのキユーリ点に達すると、薄片の磁
気特性、具体的には透磁率が急激に小さくなる。
キユーリ点より低い温度では、コイルで発生した
磁束は主として薄片内を通る。薄片の温度がキユ
ーリ点に至つて、薄片の透磁率が変化すると、コ
イルのインダクタンス値が急変する。このよう
に、キユーリ点を境にしてインダクタンス値が急
変するので、このインダクタンス値の変化を温度
検出に利用できることになり、結局、温度センサ
として使用できることになる。磁性材製の薄片
は、圧縮応力や引張り応力によつても透磁率が変
化する。したがつて、このインダクタンス素子
は、力センサや歪みセンサとしてとしても使用で
きる。
[Effects of the Invention] The inductance element according to the present invention can be used as a temperature sensor in which the so-called output signal changes around the Kuyuri point by using a thin piece with a certain Kuyuri point as a thin piece covering the outer periphery of the coil. Can be used. That is, when the temperature of the flake surrounding the outer periphery of the coil reaches its Kyuri point, the magnetic properties of the flake, specifically the magnetic permeability, rapidly decrease.
At temperatures below the Kiuri point, the magnetic flux generated in the coil passes primarily through the laminae. When the temperature of the flake reaches the Kiuri point and the magnetic permeability of the flake changes, the inductance value of the coil changes suddenly. In this way, since the inductance value changes suddenly with the Kiuri point as a boundary, this change in inductance value can be used for temperature detection, and as a result, it can be used as a temperature sensor. The magnetic permeability of a thin piece made of magnetic material also changes due to compressive stress or tensile stress. Therefore, this inductance element can also be used as a force sensor or a strain sensor.

これらのセンサとして使用する場合、薄片をア
モルフアス磁性金属で形成すると、さらにその効
果が大きい。アモルフアス磁性金属は、本質的に
透磁率が極めて大きい。したがつて、温度センサ
として用いた場合を例にとると、キユーリ点以下
の温度領域では、コイルで発生した磁束の全部を
薄片内だけに通過させることができ、キユーリ点
を越える温度領域ではコイルで発生した磁束の全
部を、いわゆる漏洩磁束の形態で通過させること
ができる。このため、たとえば近くに他の金属材
が存在している場合てあつてもその影響を受けず
にキユーリ点を境にしてコイルのインダクタンス
を急変させることができる。また、アモルフアス
磁性金属のキユーリ点は、一般にその組成によつ
て決まり、不変である。したがつて、温度センサ
として利用した場合には、キユーリ点を境にして
インダクタンスを大幅に変化させることができ、
感度の高い温度センサを実現できる。また、薄膜
状の薄片の使用によつて、応答性の向上も図るこ
とができる。さらに、磁性材製の薄片のキユーリ
点は、上述の如く組成によつて変わるので、予
め、被温度検出部の基準温度に一致したキユーリ
点の磁性材の薄片を用いるようにすれば、組立時
に調整等を行なわなくても、被温度検出部の温度
が基準温度を越えようとしたときコイルのインダ
クタンスを急変させることができる。したがつ
て、量産性に富んだものを得ることができる。ま
た、環境によつて特性が変化する虞れがなく、し
かも長寿命なものを得ることができる。また、前
述の如く配置上の制約もそれ程受けないので検出
対象を広範囲に選ぶことが可能となり、したがつ
て、使用自由度に富んだものを得ることができ
る。さらにまた、大型の要素を全く必要としない
ので、全体の小型化および低価格化も図れる。
When used as these sensors, the effect is even greater if the thin piece is made of amorphous magnetic metal. Amorphous magnetic metals inherently have extremely high magnetic permeability. Therefore, for example, when used as a temperature sensor, in the temperature range below the Kuyuri point, all of the magnetic flux generated in the coil can pass through only the thin piece, and in the temperature range above the Kuyuri point, the coil All of the magnetic flux generated can be passed through in the form of so-called leakage magnetic flux. Therefore, for example, even if other metal materials exist nearby, the inductance of the coil can be suddenly changed around the Kiuri point without being affected by the presence of other metal materials. Further, the Kyuri point of an amorphous magnetic metal is generally determined by its composition and remains unchanged. Therefore, when used as a temperature sensor, the inductance can be changed significantly around the Kiuri point,
A highly sensitive temperature sensor can be realized. Further, by using a thin film-like flake, it is possible to improve responsiveness. Furthermore, since the Kuyuri point of a thin piece of magnetic material changes depending on the composition as mentioned above, if you use a thin piece of magnetic material with a Kuyuri point that matches the reference temperature of the temperature detection part in advance, it is recommended to use a thin piece of magnetic material during assembly. Even without adjustment or the like, the inductance of the coil can be suddenly changed when the temperature of the temperature detected section is about to exceed the reference temperature. Therefore, it is possible to obtain a product that is highly mass-producible. Moreover, there is no possibility that the characteristics will change depending on the environment, and a product with a long life can be obtained. Further, as mentioned above, since there are not so many restrictions on the arrangement, it is possible to select a detection target from a wide range, and therefore it is possible to obtain a device with a high degree of freedom of use. Furthermore, since no large-sized elements are required, the overall size and cost can be reduced.

[発明の実施例] 以下、本発明の一実施例を図面を参照しながら
説明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例に係るインダクタ
ンス素子を用いて実際に温度検出を行なう一例を
ブロツク的に示すものである。すなわち、図中1
は、被温度検出部であり、この被温度検出部1に
は、上記被温度検出部1から良好に熱供給を受け
得る状態に、温度センサとしてのインダクタンス
素子2が添設されている。このインダクタンス素
子2は第2図に示すように数ターンに形成され、
かつ表面が絶縁処理されたコイル3を、所定温度
で磁気特性が急変する2枚の薄いアモルフアス合
金磁性板4a,4bで挟み、かつ上記磁性板4
a,4b相互をスポツト溶接などで一体化したも
のとなつている。
FIG. 1 shows in block form an example of actual temperature detection using an inductance element according to an embodiment of the present invention. In other words, 1 in the figure
1 is a temperature detecting section, and an inductance element 2 as a temperature sensor is attached to the temperature detecting section 1 in such a manner that it can receive heat supply satisfactorily from the temperature detecting section 1. This inductance element 2 is formed into several turns as shown in FIG.
A coil 3 whose surface is insulated is sandwiched between two thin amorphous alloy magnetic plates 4a and 4b whose magnetic properties suddenly change at a predetermined temperature, and the magnetic plates 4
A and 4B are integrated by spot welding or the like.

そして、上記インダクタンス素子2のコイル3
の両端はリード線を介して発振回路5に接続され
ており、上記発振回路5の出力端5a,5bから
電気信号として検出出力Pを送出するようにして
いる。
Then, the coil 3 of the inductance element 2
Both ends are connected to an oscillation circuit 5 via lead wires, and a detection output P is sent out as an electric signal from output ends 5a and 5b of the oscillation circuit 5.

発振回路5は具体的には第4図に示すように構
成されている。すなわち、この発振回路5は直流
電源11、コンデンサ12、ターン数の比較的多
いコイル13、前記インダクタンス素子2のコイ
ル3、帰還用のコンデンサ14、トランジスタ1
5からなるハートレー発振回路で構成されてい
る。そして、帰還信号をコンデンサ16を介して
トランジスタ17のベースに与え、このトランジ
スタ17のコレクタ出力を出力端5a,5bに導
くようにしている。
The oscillation circuit 5 is specifically constructed as shown in FIG. That is, this oscillation circuit 5 includes a DC power supply 11, a capacitor 12, a coil 13 having a relatively large number of turns, a coil 3 of the inductance element 2, a feedback capacitor 14, and a transistor 1.
It consists of a Hartley oscillation circuit consisting of 5 parts. Then, a feedback signal is applied to the base of a transistor 17 via a capacitor 16, and the collector output of this transistor 17 is guided to output terminals 5a and 5b.

このような構成であると、発振回路5は、磁性
板4a,4bの影響下にあるコイル3およびコイ
ル13のインダクタンス値とコンデンサ12の容
量値とで決定される周波数で発振する。このと
き、コイル3で発生した磁束は、第3図中実線矢
印で示すように磁性板4a,4b内だけを通る。
With such a configuration, the oscillation circuit 5 oscillates at a frequency determined by the inductance values of the coils 3 and 13 and the capacitance value of the capacitor 12 under the influence of the magnetic plates 4a and 4b. At this time, the magnetic flux generated by the coil 3 passes only through the magnetic plates 4a and 4b, as shown by solid line arrows in FIG.

今、被温度検出部1の温度が何らかの原因で上
昇し、これに伴つて磁性板4a,4bの温度も上
昇し、この温度が磁性板4a,4bのキユーリ点
を越えようとすると、磁性板4a,4bの透磁率
が急激に1に低下する。この結果、コイル3の磁
路の状態が変化し、コイル3のインダクタンス値
と選択度Qとが変化する。このため、発振回路5
の発振が停止し、この結果、出力端5a,5b間
で得られる出力Pの振幅も大幅に変化する。した
がつて、出力Pの変化から被温度検出部1の温度
が磁性板4a,4bのキユーリ点に至つたこと、
換言すると、磁性板4a,4bのキユーリ点を基
準温度とすると、被温度検出部1の温度が基準温
度を越えたことを検出できることになる。
Now, the temperature of the temperature detection unit 1 rises for some reason, the temperature of the magnetic plates 4a, 4b also rises, and when this temperature tries to exceed the Kuyuri point of the magnetic plates 4a, 4b, the magnetic plate The magnetic permeability of 4a and 4b rapidly decreases to 1. As a result, the state of the magnetic path of the coil 3 changes, and the inductance value and selectivity Q of the coil 3 change. For this reason, the oscillation circuit 5
oscillation stops, and as a result, the amplitude of the output P obtained between the output ends 5a and 5b also changes significantly. Therefore, from the change in the output P, the temperature of the temperature detection unit 1 has reached the Kuyuri point of the magnetic plates 4a and 4b;
In other words, if the Kuyuri points of the magnetic plates 4a and 4b are taken as the reference temperature, it is possible to detect that the temperature of the temperature detection section 1 exceeds the reference temperature.

そして、この場合には、機械的な動きをなす要
素を用いていないので、応答性に勝れ、また信頼
性の高い出力特性が得られる。また、磁性板4
a,4bのキユーリ点は、組成によつて決まり、
ある素材をもとにして形成された複数の磁性板の
キユーリ点は全て等しいことからして、組立時に
細かい調整を行なうことなしに同一特性の温度検
出が可能であり、したがつて、量産性に富んだも
のが得られる。また、純電気磁気学的に検出で
き、しかも発振回路5から大きな電気出力を取り
出すことができるので、小型で、しかも後段の信
号処理の容易なものが得られる。また、コイル3
を磁性板4a,4bで完全に覆うようにしている
ので付近の金属の影響を受けることがなく、した
がつて多種類の被温度検出部についてそのまま使
用できるので使用自由度に富んだものが得られ、
結局、前述した効果が得られる。
In this case, since no mechanically moving elements are used, excellent responsiveness and highly reliable output characteristics can be obtained. In addition, the magnetic plate 4
The Kiuri points of a and 4b are determined by the composition,
Since the Kyuri points of multiple magnetic plates formed from a certain material are all the same, it is possible to detect temperatures with the same characteristics without making detailed adjustments during assembly, and therefore, mass production is possible. You can get something rich in Furthermore, since it can be detected purely electromagnetically and a large electrical output can be taken out from the oscillation circuit 5, it is possible to obtain a device that is compact and easy to process signals in subsequent stages. Also, coil 3
Since it is completely covered with the magnetic plates 4a and 4b, it is not affected by nearby metals, and therefore, it can be used as is for many types of temperature detection parts, so it has a high degree of freedom of use. is,
As a result, the aforementioned effects can be obtained.

なお、アモルフアス合金の磁性板を薄膜状にし
て熱容量を十分小さくすれば、応答性を一層向上
させることができる。また、磁性板4a,4bの
透磁率は、圧縮応力や引張り応力によつても変化
する。この発明に係るインダクタンス素子は、温
度センサばかりでなく、力センサのようなセンサ
としても使用できる。
Note that if the amorphous alloy magnetic plate is made into a thin film to have a sufficiently small heat capacity, the responsiveness can be further improved. Furthermore, the magnetic permeability of the magnetic plates 4a and 4b changes depending on compressive stress and tensile stress. The inductance element according to the present invention can be used not only as a temperature sensor but also as a sensor such as a force sensor.

以上詳述したように、本発明によれば、応答性
に勝れ、使用自由度に富み、量産性に勝れ、小型
で長寿命なインダクタンス素子を提供できる。
As described in detail above, according to the present invention, it is possible to provide an inductance element that is excellent in response, has a high degree of freedom of use, is excellent in mass production, is small in size, and has a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るインダクタン
ス素子の一使用例を示すブロツク的構成図、第2
図は同装置におけるインダクタンス素子を一部切
欠して示す斜視図、第3図は第2図におけるA−
A線切断矢視図、第4図は同装置における発振回
路の構成図である。 1……被温度検出部、2……インダクタンス素
子、3……コイル、4a,4b……アモルフアス
合金の磁性板、5……発振回路。
FIG. 1 is a block diagram showing an example of the use of an inductance element according to an embodiment of the present invention, and FIG.
The figure is a partially cutaway perspective view of the inductance element in the same device, and Figure 3 is A--A in Figure 2.
FIG. 4, which is a view taken along line A, is a configuration diagram of an oscillation circuit in the same device. DESCRIPTION OF SYMBOLS 1... Temperature detection unit, 2... Inductance element, 3... Coil, 4a, 4b... Magnetic plate of amorphous alloy, 5... Oscillation circuit.

Claims (1)

【特許請求の範囲】 1 コイルと、このコイルの外周を覆うように設
けられた磁性材製の薄片とを具備してなることを
特徴とするインダクタンス素子。 2 前記薄片は、アモルフアス磁性金属で形成さ
れていることを特徴とする特許請求の範囲第1項
記載のインダクタンス素子。
[Scope of Claims] 1. An inductance element comprising a coil and a thin piece of magnetic material provided so as to cover the outer periphery of the coil. 2. The inductance element according to claim 1, wherein the thin piece is made of an amorphous magnetic metal.
JP19380781A 1981-12-02 1981-12-02 Temperature detector Granted JPS5895232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19380781A JPS5895232A (en) 1981-12-02 1981-12-02 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19380781A JPS5895232A (en) 1981-12-02 1981-12-02 Temperature detector

Publications (2)

Publication Number Publication Date
JPS5895232A JPS5895232A (en) 1983-06-06
JPH0311420B2 true JPH0311420B2 (en) 1991-02-15

Family

ID=16314091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19380781A Granted JPS5895232A (en) 1981-12-02 1981-12-02 Temperature detector

Country Status (1)

Country Link
JP (1) JPS5895232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667236B1 (en) * 2015-05-29 2016-10-18 한양대학교 산학협력단 Device and method for correcting stereo vision sensor by considering time delay

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144735A (en) * 1986-12-09 1988-06-16 Inoue Japax Res Inc Electromagnetic element
GB8918774D0 (en) * 1989-08-17 1989-09-27 Nat Res Dev Temperature llistory indicator
US5201583A (en) * 1989-08-17 1993-04-13 British Technology Group Limited Temperature history indicator
JP2002062196A (en) * 2000-08-24 2002-02-28 Miura Co Ltd Temperature detector
US7985022B2 (en) 2007-03-01 2011-07-26 Metglas, Inc. Remote temperature sensing device and related remote temperature sensing method
US7931400B2 (en) * 2007-03-01 2011-04-26 Metglas, Inc. Temperature sensor and related remote temperature sensing method
CN106197731B (en) * 2016-06-29 2018-02-23 东南大学 A kind of inductance type temperature sensor and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101667236B1 (en) * 2015-05-29 2016-10-18 한양대학교 산학협력단 Device and method for correcting stereo vision sensor by considering time delay

Also Published As

Publication number Publication date
JPS5895232A (en) 1983-06-06

Similar Documents

Publication Publication Date Title
US5517073A (en) Pressure sensor
US20150292954A1 (en) Temperature sensor
JP4243540B2 (en) Sensor component with sensor element surrounded by a heating element
KR0176983B1 (en) Pressure sensor for determination of the pressure in the combustion space of an internal-combustion engine
US10054471B2 (en) Sensor device with integrated calibration system and calibration method
JPH0311420B2 (en)
AU9416398A (en) Switch having a temperature-dependent switching mechanism
US6091316A (en) Switch having a temperature-dependent switching mechanism
US4344062A (en) Humidity sensor element
US2637823A (en) Thermomagnetic transducer
RU2465609C1 (en) Contactless current metre
US3110954A (en) Method for manufacturing a thermoresponsive device
US3512148A (en) Freezer warning system
US2751464A (en) Temperature responsive switch
JPS5895231A (en) Temperature detecting element
US2878355A (en) Electrical temperature sensing element
JPS5937426A (en) Electronic balance
US20240288320A1 (en) Thermosensitive sensor
JPS625603Y2 (en)
JPH0124598Y2 (en)
JP2000292294A (en) Inner pressure sensor for enclosed container
US2418384A (en) Switch
US4829828A (en) Pressure transducer
SU393621A1 (en) lH ^^ OZNAYA
US870423A (en) Electrical thermostatic alarm.