JPH03113403A - Method for connecting optical fiber with high strength - Google Patents

Method for connecting optical fiber with high strength

Info

Publication number
JPH03113403A
JPH03113403A JP25142589A JP25142589A JPH03113403A JP H03113403 A JPH03113403 A JP H03113403A JP 25142589 A JP25142589 A JP 25142589A JP 25142589 A JP25142589 A JP 25142589A JP H03113403 A JPH03113403 A JP H03113403A
Authority
JP
Japan
Prior art keywords
optical fiber
optical fibers
height
electrodes
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25142589A
Other languages
Japanese (ja)
Inventor
Shigeo Sotodani
茂雄 外谷
Tatsuo Teraoka
寺岡 達夫
Yoshiyuki Hiramoto
平本 嘉之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP25142589A priority Critical patent/JPH03113403A/en
Publication of JPH03113403A publication Critical patent/JPH03113403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To improve the tensile rupture strength of a junction part by deviating the butting parts of optical fibers in a >=0.05mm to <=0.1mm range from the axial line of electrodes. CONSTITUTION:The butting end parts of the optical fibers 1, 1' from which the coatings are removed by chemicals are arranged with the deviation by a height (h) from the axial line connecting the electrodes 2, 2' and the butting parts of the optical fibers 1, 1' are fusion-spliced in this state by the arc discharge heat generated between the electrodes 2 and 2'. The heating temp. of the optical fibers at the time of the fusion splicing and the luminance (light emitting intensity) of the optical fibers correspond to each other, the temp. distribution of the optical fiber surface is smoother when the height (h) is deviated by 0.1mm. Thus, the heating temp. range in the axial direction is made wide and gentle, the thermal strains at the fusion splicing point is released and the strength of the junction part is greatly improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は先ファイバを高強度に融着接続する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for fusion splicing fibers with high strength.

[従来の技術] 海底光ケーブルのような数百〜数千km以上にもおよぶ
光線路にあっては、1条の光ケーブルの長さができるだ
け長いことが望ましい。なぜならば、数十km程度の光
ケーブルをいちいち接続していたのでは、ケーブル接続
工程が多くなり、信頼性の面で問題が発生しやすいから
である。そのため、最近では接続間隔即ち中継間隔を1
00kI11程度までに長距離化しようとする方向にあ
る。しかし、要求される引張破断強度を全長に亘って満
足した長尺な光ファイバを工業的に得ることは難しい状
況にあるため、数十km程度の光ファイバを接続した長
尺光ファイバを予じめ準備しておき、これをケーブル化
することになる。
[Prior Art] For optical lines extending over several hundred to several thousand kilometers, such as submarine optical cables, it is desirable that the length of a single optical cable be as long as possible. This is because if optical cables of several tens of kilometers were connected one by one, the number of cable connection steps would increase, which would easily cause problems in terms of reliability. Therefore, recently the connection interval, that is, the relay interval, has been reduced to 1
The trend is to increase the distance to about 00kI11. However, it is difficult to industrially obtain a long optical fiber that satisfies the required tensile strength over its entire length, so it is necessary to prepare a long optical fiber in which several tens of kilometers of optical fibers are connected. This will be prepared and converted into a cable.

第2図は従来の光フアイバ融着接続方法を示す説明図で
ある。同図において、1,1′は紙面上垂直方向に延び
る1対の光ファイバであり、実際には光ファイバ1′は
光ファイバ1の影に隠れているので、便宜上これを破線
で示している。また、2.2゛は1対の電極である。従
来の光フアイバ融着接続方法では、先ず光ファイバ1.
1゛の突き合わせ部を電極2,2′を結ぶ軸線上に位置
させ、次に電極2,2′間にアーク放電を発生させてそ
の熱により融着接続するようにしている。
FIG. 2 is an explanatory diagram showing a conventional optical fiber fusion splicing method. In the figure, 1 and 1' are a pair of optical fibers extending perpendicularly to the paper surface, and since optical fiber 1' is actually hidden in the shadow of optical fiber 1, it is shown by a broken line for convenience. . Further, 2.2゛ is a pair of electrodes. In the conventional optical fiber fusion splicing method, first the optical fiber 1.
The abutting portion of 1" is located on the axis connecting the electrodes 2 and 2', and then an arc discharge is generated between the electrodes 2 and 2', and the heat is used to fuse and connect the electrodes.

[発明が解決しようとする課題] しかしながら、従来の光ファイバ融着接続方法では、融
谷接続部の強度か光フアイバ心線強度の約10分の1の
600g程度まで低下してしまうそのため、このような
接続強度の低い接続部を有する長尺光ファイバをケーブ
ル化した場合には、ケーブル化工程またはケーブル布設
作業中に強度の弱い接続部で断線してしまうという問題
があった。
[Problems to be Solved by the Invention] However, in the conventional optical fiber fusion splicing method, the strength of the fusion valley splice decreases to about 600 g, which is about one-tenth of the optical fiber core strength. When a long optical fiber having such a connection part with low connection strength is made into a cable, there is a problem that the connection part with low strength is broken during the cable production process or cable installation work.

接続部の強度が低下する原因としては、■接続部がアー
ク放電温度(1600〜1800℃)から急激に常温ま
で冷却されるため熱歪が大きい、■加熱により蒸発した
ガラスの蒸気が接続部近傍に析出付着し、クラックが入
りやすくなる、等があげられる。引張破断試験の結果で
は、特に接続点からlll1ffi離れた位置での破断
が多く発生している。
The reasons why the strength of the connection part decreases are: 1. The connection part is rapidly cooled from the arc discharge temperature (1600 to 1800°C) to room temperature, resulting in large thermal strain; 2. Glass vapor evaporated by heating near the connection part. For example, it may deposit and adhere to the surface, making it easier for cracks to form. The results of the tensile rupture test show that many ruptures occur particularly at positions lll1ffi away from the connection point.

本発明の目的は、上記した従来技術の課題を解決し、接
続部を有する長尺光ファイバをケーブル化した場合にお
いても、ケーブル化工程またはケーブル布設作業中に断
線することのない高強度の融着接続部を得ることができ
る高強度光ファイバ接続方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a high-strength flexible cable that will not break during the cable-making process or cable installation work even when a long optical fiber having a connection part is made into a cable. An object of the present invention is to provide a high-strength optical fiber splicing method that can obtain a bonded splice.

[課題を解決するための手段] 本発明の要旨は、互いに接続すべきl対の光ファイバの
端部を突き合わせてその突き合わせ部を1対の電極間に
配置し、該電極の放電加熱により上記光ファイバの突き
合わせ部を融着接続する方法において、上記光ファイバ
の突き合わせ部を上記電極の軸線から0.05mm以上
0.1mm以下の範囲でずらしたことにあり、これによ
って接続部の引張破断強度を従来よりも大幅に向上させ
ることができる。
[Means for Solving the Problems] The gist of the present invention is to abut the ends of l pairs of optical fibers to be connected to each other, place the abutted portions between a pair of electrodes, and perform discharge heating of the electrodes to achieve the above-mentioned In the method of fusion splicing the butt portions of optical fibers, the butt portions of the optical fibers are shifted from the axis of the electrode by a range of 0.05 mm or more and 0.1 mm or less, thereby increasing the tensile breaking strength of the spliced portion. can be significantly improved compared to conventional methods.

[実施例) 以下本発明の実施例について説明する。[Example) Examples of the present invention will be described below.

第1図は本発明の一実施例を示す説明図であり、第2図
と同一符号については、その説明を省略する。本実施例
の融着接続方法の手順について説明すると、先ず、被覆
を薬品により除去した光ファイバ1,1−の突き合わせ
端部が、電極2,2′を結ぶ軸線から、高さhだけずら
して配置され、この状態で電極2,2′間に発生させた
のアーク放電熱により光ファイバ1,1′の突き合わせ
部が融着接続される。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and explanations of the same symbols as those in FIG. 2 will be omitted. To explain the procedure of the fusion splicing method of this embodiment, first, the butt ends of the optical fibers 1, 1-, whose coatings have been removed using chemicals, are shifted by a height h from the axis connecting the electrodes 2, 2'. In this state, the abutting portions of the optical fibers 1, 1' are fused and spliced by arc discharge heat generated between the electrodes 2, 2'.

次に、高さhを変化させたときの光ファイバの加熱状態
について説明する。
Next, the heating state of the optical fiber when the height h is changed will be explained.

融着接続時の光ファイバの加熱温度と光ファイバの輝度
(発光強度)が対応することから、輝度計により接続部
をモニタして光ファイバの加熱状態を観察した。第3図
は、融着接続時の光ファイバの軸方向における輝度分布
を示す説明図であり、横軸は光ファイバの輝度分布の幅
を示し、縦軸は輝度の強度を示している。曲線Aは、高
さh−0゜1ml11の場合の輝度分布を示し、曲線B
は高さh−0の場合の輝度分布を示している。なお、輝
度のピーク値りを合わせるため、それぞれ放電電流値を
変えて測定を行っている。同図から明らかなように、曲
線Aのほうが曲線Bよりも幅りが大きくなって緩やかな
曲線を呈しており、これは曲線A即ち高さhを0.1+
nmずらしたときのほうが、光フアイバ表面の温度分布
がなだらかになることを示している。
Since the heating temperature of the optical fiber during fusion splicing corresponds to the brightness (emission intensity) of the optical fiber, the spliced portion was monitored with a brightness meter to observe the heating state of the optical fiber. FIG. 3 is an explanatory diagram showing the brightness distribution in the axial direction of the optical fiber during fusion splicing, where the horizontal axis shows the width of the brightness distribution of the optical fiber, and the vertical axis shows the brightness intensity. Curve A shows the brightness distribution when the height is h-0°1ml11, and curve B
shows the brightness distribution at the height h-0. Note that in order to match the peak brightness values, measurements were performed with different discharge current values. As is clear from the figure, curve A is wider and gentler than curve B, and this means that curve A, that is, height h, is 0.1 +
It is shown that the temperature distribution on the optical fiber surface becomes gentler when shifted by nm.

第4図は放電電流値を一定としたときの高さhと輝度ピ
ーク値との関係を示す説明図であり、横軸は高さh1縦
軸は輝度を示している。なお、輝度は、第3図と同様に
輝度分布の幅をD、輝度のピーク値をHとしたときのH
/D (%)として表した。同図から明らかなように、
高さh=oで輝度H/Dは最大となり、高さhが大きく
なるにしたがって輝度H/Dは小さくなる。従って、高
さh > Oamとしたときに、輝度が高さh−oの場
合と同じになるように放電電流値を調節すれば、第3図
に示したように光ファイバの軸方向の加熱温度範囲を広
範囲に且つ緩やかにすることができる。
FIG. 4 is an explanatory diagram showing the relationship between the height h and the brightness peak value when the discharge current value is constant, where the horizontal axis shows the height h1 and the vertical axis shows the brightness. Note that the brightness is H when the width of the brightness distribution is D and the peak value of brightness is H, as in Figure 3.
/D (%). As is clear from the figure,
The brightness H/D is maximum at height h=o, and as the height h increases, the brightness H/D decreases. Therefore, when the height h > Oam, if the discharge current value is adjusted so that the brightness is the same as that at the height ho, the heating in the axial direction of the optical fiber can be achieved as shown in Figure 3. The temperature range can be widened and moderated.

このことは、光フアイバ融着接続点の熱歪を緩和するこ
とを意味している。
This means that thermal strain at the optical fiber fusion splicing point is alleviated.

次に、高さhの最適条件について説明する。第5図は高
さhと引張破断強度との関係を示す説明図であり、光フ
アイバ融着接続部の破断荷重を測定し、これをワイブル
確率紙にプロットしたものである。横軸は破断荷重、縦
軸は累積破断確率を示す。累積破断確率か50%では、
高さh−0゜h −0、05mm、  h −0、1m
l11の場合の破断荷重は、それぞれ2.3kgr、3
.2kgr、3.7kgrであり、高さhが大きくなる
に従い引張破断強度が向上している。このように高さh
が大きくなるに従い引張破断強度が向上したのは、前述
のように、融着接続時の光フアイバ表面の温度分布がな
だらかになったことにより、融着接続点近傍の熱歪を大
幅に低減できたためと考えられる。なお、高強度接続部
は、引張破断強度2.1kgf以上を高い確率で達成す
る必要があること、また他の劣化要因を考慮しなければ
ならないことから、通常平均3.Okgf程度は確保し
ておく必要がある。
Next, the optimum conditions for the height h will be explained. FIG. 5 is an explanatory diagram showing the relationship between height h and tensile breaking strength, in which the breaking load of the optical fiber fusion spliced portion was measured and this was plotted on Weibull probability paper. The horizontal axis shows the failure load, and the vertical axis shows the cumulative failure probability. If the cumulative failure probability is 50%,
Height h-0゜h-0, 05mm, h-0, 1m
The breaking load for l11 is 2.3 kgr and 3 kgr, respectively.
.. 2 kgr and 3.7 kgr, and the tensile strength at break improves as the height h increases. In this way the height h
As mentioned above, the tensile strength at break increases as the value increases because the temperature distribution on the surface of the optical fiber becomes gentle during fusion splicing, which greatly reduces thermal strain near the fusion splicing point. It is thought that this was due to an accident. Note that high-strength connections must have a tensile strength at break of 2.1 kgf or more with a high probability, and other deterioration factors must be considered, so they usually have an average strength of 3.0 kgf. It is necessary to secure about Okgf.

従って、高さhとしては、h≧0.05a+i以上必要
である。また、高さhをあまり大きくすると今度は光フ
ァイバが十分加熱されない、アーク放電エネルギーを大
きくするために電極寿命が短くなる、等の理由から、通
常の融着接続機では高さh≦0.15a+i、好ましく
はh≦061■が適当である。
Therefore, the height h must be h≧0.05a+i or more. In addition, if the height h is too large, the optical fiber will not be heated sufficiently, and the life of the electrode will be shortened due to the increased arc discharge energy. 15a+i, preferably h≦061■.

[発明の効果] 以」−に説明した如く 本発明によれば次のような顕著
な効果を奏することができる。
[Effects of the Invention] As explained below, according to the present invention, the following remarkable effects can be achieved.

(1)光ファイバの軸方向の加熱温度範囲を広範囲に且
つ緩やかにすることができるため、光フアイバ融着接続
点の熱歪を緩和し、接続部の強度を大幅に向上させるこ
とができる。
(1) Since the heating temperature range in the axial direction of the optical fiber can be widened and moderated, thermal strain at the optical fiber fusion splicing point can be alleviated and the strength of the spliced portion can be significantly improved.

(2)光ファイバの軸方向の加熱温度範囲が広範囲であ
り且つ接続点を加熱し過ぎることがないため、加熱によ
り蒸発したガラス粒子が接続点近傍に付着することがな
く、接続部の強度を大幅に向上させることができる。
(2) Since the heating temperature range in the axial direction of the optical fiber is wide and the connection point is not overheated, glass particles evaporated by heating do not adhere to the vicinity of the connection point, increasing the strength of the connection point. can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図は従来
例を示す説明図、第3図は融着接続時の光ファイバの軸
方向における輝度分布を示す説明図、第4図は放電電流
値を一定としたときの位置ずれ高さhと輝度ピーク値と
の関係を示す説明図、第5図は位置ずれ高さhと引張破
断強度との関係を示す説明図である。 ・・光フ アイμ 2 。 ・・・電極。 出 願 人 日 立 電 線 株 式 輝度分布の輻=D
Fig. 1 is an explanatory diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing a conventional example, Fig. 3 is an explanatory diagram showing the luminance distribution in the axial direction of the optical fiber during fusion splicing, and Fig. 4 is an explanatory diagram showing an example of the present invention. The figure is an explanatory diagram showing the relationship between misalignment height h and brightness peak value when the discharge current value is constant, and FIG. 5 is an explanatory diagram showing the relationship between misalignment height h and tensile breaking strength. . ... Optical fiber μ 2. ···electrode. Applicant Hitachi Cable stock brightness distribution convergence = D

Claims (1)

【特許請求の範囲】[Claims] (1)互いに接続すべき1対の光ファイバの端部を突き
合わせてその突き合わせ部を1対の電極間に配置し、該
電極の放電加熱により前記光ファイバの突き合わせ部を
融着接続する方法において、前記光ファイバの突き合わ
せ部を前記電極の軸線上から0.05mm以上0.1m
m以下の範囲でずらしたことを特徴とする光ファイバの
高強度接続方法。
(1) In a method of abutting the ends of a pair of optical fibers to be connected to each other, placing the abutting portion between a pair of electrodes, and fusion splicing the abutting portions of the optical fibers by electric discharge heating of the electrodes. , the abutting portion of the optical fiber is 0.05 mm or more and 0.1 m from the axis of the electrode.
A high-strength optical fiber connection method characterized by shifting within a range of less than m.
JP25142589A 1989-09-27 1989-09-27 Method for connecting optical fiber with high strength Pending JPH03113403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25142589A JPH03113403A (en) 1989-09-27 1989-09-27 Method for connecting optical fiber with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25142589A JPH03113403A (en) 1989-09-27 1989-09-27 Method for connecting optical fiber with high strength

Publications (1)

Publication Number Publication Date
JPH03113403A true JPH03113403A (en) 1991-05-14

Family

ID=17222658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25142589A Pending JPH03113403A (en) 1989-09-27 1989-09-27 Method for connecting optical fiber with high strength

Country Status (1)

Country Link
JP (1) JPH03113403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257028A (en) * 1992-03-12 1993-10-08 Fujikura Ltd Method for heating optical fiber of fusion splicing machine of multiple optical fiber
US5414788A (en) * 1993-05-03 1995-05-09 At&T Corp. Method and apparatus for fusion splicing optical fibers
US5487125A (en) * 1994-06-28 1996-01-23 At&T Corp. Method and apparatus for fusion splicing optical fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257028A (en) * 1992-03-12 1993-10-08 Fujikura Ltd Method for heating optical fiber of fusion splicing machine of multiple optical fiber
JP2779875B2 (en) * 1992-03-12 1998-07-23 株式会社フジクラ Optical fiber heating method in multi-core optical fiber fusion splicer
US5414788A (en) * 1993-05-03 1995-05-09 At&T Corp. Method and apparatus for fusion splicing optical fibers
US5487125A (en) * 1994-06-28 1996-01-23 At&T Corp. Method and apparatus for fusion splicing optical fibers

Similar Documents

Publication Publication Date Title
CA1288565C (en) Alternating current arc for lensing system
US5142603A (en) Method of connecting high numerical aperture optical waveguides
EP0361321B1 (en) Process for fusion-splicing hermetically coated optical fibers
JPS63502460A (en) Technology to reduce fiber connection loss
US6550985B2 (en) Method of splicing two optical fibers
JPH01169408A (en) Inspecting method for optical fiber connecting part
JPH03113403A (en) Method for connecting optical fiber with high strength
EP0623831A1 (en) Method and apparatus for fusion splicing optical fibers
JPS6235643B2 (en)
JPH0693048B2 (en) Optical fiber fusion splicing method
JPS61120106A (en) Connecting method of single-mode optical fiber
JPH06174961A (en) Method for connecting optical fiber
JPS6145203A (en) Welding connection device for optical fiber
US20010041036A1 (en) Method of fabricating optical fiber apparatus, and the optical fiber apparatus
JPH026908A (en) Fusion splicing method for optical fiber
JP3344061B2 (en) Optical fiber fusion splicing method
JPH0526167B2 (en)
JPS5821217A (en) Connecting method for optical fiber
JPS60149003A (en) Terminal treatment of optical fiber
US5623570A (en) Method of fusion-splicing optical fiber
JPH027006A (en) Discharge fusion splicing method of optical fiber
JPH0361926B2 (en)
JPS5855349A (en) Glass fiber treatment
JP2748460B2 (en) Manufacturing method of fiber coupler
JPS62195607A (en) Splicing method for optical fiber