JPH03112109A - Gas-filled transformer - Google Patents

Gas-filled transformer

Info

Publication number
JPH03112109A
JPH03112109A JP24935289A JP24935289A JPH03112109A JP H03112109 A JPH03112109 A JP H03112109A JP 24935289 A JP24935289 A JP 24935289A JP 24935289 A JP24935289 A JP 24935289A JP H03112109 A JPH03112109 A JP H03112109A
Authority
JP
Japan
Prior art keywords
tank
gas
wall
cooler
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24935289A
Other languages
Japanese (ja)
Inventor
Yasunobu Togawa
戸川 安信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24935289A priority Critical patent/JPH03112109A/en
Publication of JPH03112109A publication Critical patent/JPH03112109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To provide a gas-filled transformer of large capacity prevented from overheating by a constitution in which a metal plate is arranged outside a tank wall to provide a gas channel between the metal plate and tank wall. CONSTITUTION:An iron core 1 and windings 2 around it are housed in a tank 3 that contains insulating gas 4. A difference in pressure is provided between inlet and outlet ports for the gas 4 within the tank 3. The tank 3 has a horizon tal partition 8 that directs the gas to the core 1 and windings 2. An external gas cooler 5 is connected through a blower 6 to the tank 3. A metal plate 10 is provided a certain distance apart from the outer wall 7 of the tank 3. The plate has a port 11 in its upper portion, through which cooled gas 4 is introduced from the cooler 5. The insulating gas entering through the port 11 is admitted to the space between the wall 7 and the plate 10 and then into the tank 3 through an opening in a lower part of the tank wall. The tank wall is thus prevented from overheating.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はSF6ガスのような絶縁性のガスを絶縁および
冷却の媒体として用いたガス絶縁変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas insulated transformer using an insulating gas such as SF6 gas as an insulating and cooling medium.

(従来の技術) 油入変圧器に代わる不燃性の変圧器として絶縁油の代り
に不燃性の絶縁ガス(例えばSF6ガス)を冷却および
絶縁の媒体として用いるいわゆるガス絶縁変圧器が数1
0MVA程度の容量のものまで実用化されている。この
ようなガス絶縁変圧器においては、油入変圧器に比べ気
体を用いることによる冷却特性の低下は避けられない。
(Prior Art) There are several so-called gas insulated transformers that use nonflammable insulating gas (for example, SF6 gas) as a cooling and insulating medium instead of insulating oil as nonflammable transformers that replace oil-immersed transformers.
Even those with a capacity of about 0MVA have been put into practical use. In such a gas insulated transformer, compared to an oil-immersed transformer, the cooling characteristics inevitably deteriorate due to the use of gas.

そこで、鉄心や巻線の内部の冷却方式にはガスを強制的
に流して冷却特性を高めるようにしており、強制対流に
することにより絶縁ガスによっても絶縁油の自然対流並
の冷却特性が得られるようになる。この強制対流を行な
うためには鉄心や巻線に絶縁ガスを送るために送風機が
用いられる。
Therefore, in the cooling method inside the iron core and windings, gas is forced to flow to improve the cooling characteristics.By using forced convection, the cooling characteristics of the insulating gas can be compared to the natural convection of insulating oil. You will be able to do it. To perform this forced convection, a blower is used to send insulating gas to the core and windings.

専在のところ30MVA程度まで自然対流冷却方式のガ
ス絶縁変圧器が実用化されているが、自然対流方式の場
合、寸法9重量とも強制対流に比べて大きくなるためI
OMVA以上では前記の送風機を用いた強制対流方式が
多い。
Gas insulated transformers with natural convection cooling are currently in practical use up to about 30MVA, but natural convection has larger dimensions and weight than forced convection, so
For OMVA and above, the forced convection method using the above-mentioned blower is often used.

従来の強制対流方式のガス絶縁変圧器を第4図および第
5図について説明する。
A conventional forced convection type gas insulated transformer will be explained with reference to FIGS. 4 and 5.

図に示すように、鉄心1およびこの鉄心1に巻回された
巻線2をタンク3内に絶縁ガス4とともに収納し、鉄心
1や巻線2内にガスが流れるようにするために仕切板8
で上下に区分されている。
As shown in the figure, an iron core 1 and a winding 2 wound around the iron core 1 are stored in a tank 3 together with an insulating gas 4, and a partition plate is installed to allow the gas to flow into the iron core 1 and the winding 2. 8
It is divided into upper and lower parts.

また、タンク3の外部には送風機6を介してガス冷却器
5が接続されている。
Further, a gas cooler 5 is connected to the outside of the tank 3 via a blower 6.

ところで、ガス絶縁変圧器において、鉄心1および巻線
2の発熱部を通過して温度上昇した絶縁ガス4は、タン
ク3上部から上部配管を経由して冷却器5に送られこの
内部を通過するとき再び冷却される。冷却器5をでた絶
縁ガス4は下部配管を経てタンク3下部からタンク3内
に戻る。タンク3下部からタンク3内へ送られた絶縁ガ
ス4は鉄心1および巻線2の下部から鉄心1および巻線
2の内部へ導かれ、これらを冷却する。
By the way, in a gas insulated transformer, the insulating gas 4 whose temperature has increased after passing through the heat generating parts of the iron core 1 and the winding 2 is sent from the upper part of the tank 3 via the upper piping to the cooler 5 and passes through the inside thereof. When cooled down again. The insulating gas 4 leaving the cooler 5 returns into the tank 3 from the bottom of the tank 3 via the lower piping. The insulating gas 4 sent into the tank 3 from the lower part of the tank 3 is guided from the lower part of the iron core 1 and the winding 2 into the inside of the iron core 1 and the winding 2, and cools them.

送風機6は上部あるいは下部配管の途中に設置される。The blower 6 is installed in the middle of the upper or lower piping.

(図では上部配管に設置されている。)この場合上部あ
るいは下部配管のいずれに取付けても特性上の差はない
が、上部配管に取付ける方がタンクカバー上のスペース
を利用できるので、空間利用の意味では効率的である。
(In the figure, it is installed on the upper piping.) In this case, there is no difference in characteristics whether it is installed on the upper or lower piping, but it is better to install it on the upper piping because it can utilize the space above the tank cover. It is efficient in this sense.

また、冷却器5の設置位置は油入変圧器と同様に変圧器
タンク3の両サイドに取付ける場合が多いが、絶縁油に
比べ比重が1/60程度と小さい絶縁ガス特性を活し、
ガス絶縁変圧器の階上に冷却器を配置する構成も実用化
されている。タンク壁7には後記する理由で磁気シール
ド15が適当な間隔を置いて取付けられている。16は
負荷時タップ切換器である。
In addition, although the cooler 5 is often installed on both sides of the transformer tank 3 in the same way as an oil-immersed transformer, the cooler 5 is installed on both sides of the transformer tank 3 in the same way as an oil-immersed transformer.
A configuration in which a cooler is placed above a gas-insulated transformer has also been put into practical use. Magnetic shields 15 are attached to the tank wall 7 at appropriate intervals for reasons to be described later. 16 is an on-load tap changer.

(発明が解決しようとする課題) ところで、このようなガス絶縁変圧器では容量あるいは
インピーダンス電圧が大きくなると、巻線2の洩れ磁束
が増加し、この洩れ磁束が変圧器内の金属構造物やタン
ク3に鎖交すると、渦電流が発生し、金属構造物やタン
ク壁7が加熱される。
(Problem to be Solved by the Invention) By the way, in such a gas insulated transformer, as the capacity or impedance voltage increases, the leakage magnetic flux of the winding 2 increases, and this leakage magnetic flux is transmitted to the metal structures inside the transformer and the tank. 3, an eddy current is generated and the metal structure and tank wall 7 are heated.

油入変圧器でも同様の現象が発生して金属構造物やタン
ク壁が加熱されるが、絶縁油の冷却特性がよいためほと
んど問題になることはない。しかし、タンク壁7の過熱
対策としてタンク内壁面に沿ってアルミ製の電磁シール
ド板をはって磁束の集中を避けたり、珪素鋼板の磁気シ
ールド15によりタンク壁7に入射する磁束量を減らし
て対処している。
A similar phenomenon occurs in oil-immersed transformers, causing the metal structures and tank walls to heat up, but this is rarely a problem due to the good cooling properties of insulating oil. However, as a countermeasure against overheating of the tank wall 7, an electromagnetic shield plate made of aluminum is installed along the inner wall surface of the tank to avoid concentration of magnetic flux, and the amount of magnetic flux incident on the tank wall 7 is reduced by using a magnetic shield 15 made of silicon steel plate. I'm dealing with it.

一方、ガス絶縁変圧器では、前述したように絶縁ガスの
冷却特性は自然対流では絶縁油の115〜1/10であ
るため、油入変圧器に比べ小容量。
On the other hand, in a gas insulated transformer, as mentioned above, the cooling properties of the insulating gas are 115 to 1/10 that of insulating oil in the case of natural convection, so the capacity is smaller than that of an oil-immersed transformer.

低インピーダンス電圧でもこの問題が顕在化するので、
油入変圧器より相当小さい容量から過熱対策が必要とな
る。しかしながら、このような対策を講することにより
、材料費の高騰や取付作業のための製作工数の大幅な増
加等による変圧器のコストアップが避けられず、また珪
素鋼板製の磁気シールド15は曲率の小さいタンクには
取付けられないことから、タンクの形状についても制限
をうけるという問題がある。
This problem becomes apparent even at low impedance voltages, so
Measures against overheating are required since the capacity is considerably smaller than that of an oil-immersed transformer. However, by taking such measures, it is unavoidable that the cost of the transformer increases due to a sharp rise in material costs and a significant increase in the number of manufacturing steps required for installation work.In addition, the magnetic shield 15 made of silicon steel sheet Since it cannot be installed on small tanks, there is a problem in that there are restrictions on the shape of the tank.

本発明は前記の問題を解決するためになされたもので、
変圧器のタンク壁にシールドを取り付けることなく、タ
ンク壁の過熱を防止し安価で製作の容易な大容量化に適
するガス絶縁変圧器を得ることを目的とするものである
The present invention was made to solve the above problems,
The object of the present invention is to provide a gas insulated transformer that prevents overheating of the tank wall of the transformer without attaching a shield to the tank wall, is inexpensive, easy to manufacture, and is suitable for increasing capacity.

[発明の構成] (課題を解決するための手段) 本発明は上記の目的を達成するために、鉄心および巻線
を収納するタンクと、このタンク内に封入された絶縁ガ
スと、この絶縁ガスを冷却する冷却器を有するガス絶縁
変圧器において、前記タンク側壁面の少なくとも一部分
を2重化し、この2重化した内部の間隙内を経由して前
記冷却器からでた絶縁ガスがタンク内へ導かれるように
構成したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a tank for storing an iron core and a winding, an insulating gas sealed in the tank, and an insulating gas. In a gas insulated transformer having a cooler for cooling, at least a portion of the side wall surface of the tank is doubled, and the insulating gas discharged from the cooler enters the tank through a gap inside the double layer. It is designed to guide you.

(作 用) 本発明によると、過熱が生じ易いタンク壁を2重化し、
その内部に冷却器で冷却された絶縁ガスを強制的に流す
ようにしたので、強制対流により熱伝達率を向上し、絶
縁油の自然対流と同等の熱伝達率とすることができる。
(Function) According to the present invention, the tank wall, which is prone to overheating, is doubled,
Since the insulating gas cooled by the cooler is forced to flow inside, the heat transfer coefficient is improved by forced convection, and the heat transfer coefficient can be made equivalent to the natural convection of insulating oil.

仮に、2重化したタンクの間隙を10anとし、この間
隙中に5 m / sの流速でSF6ガスを流すと、ガ
ス圧1.25Kg/cm2・gで熱伝達率は約80W/
m2 ・Cとなり、絶縁油の自然対流熱伝達率とほぼ同
様な値となる。
If the gap between the duplicated tanks is 10 an and SF6 gas is flowed through this gap at a flow rate of 5 m/s, the heat transfer coefficient will be approximately 80 W/cm at a gas pressure of 1.25 Kg/cm2・g.
m2 ・C, which is almost the same value as the natural convection heat transfer coefficient of insulating oil.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the present invention.

第1図に示すように、鉄心1およびこの鉄心lに巻回さ
れた巻線2をタンク3内に絶縁ガス4とともに収納し、
タンク3内部は絶縁ガス4の入口側と出口側とに差圧を
設け、鉄心1や巻線2内にガスが流れるようにするため
に仕切板8で上下に区分されている。またタンク3の外
部には送風機6を介してガス冷却器5が接続されている
。タンク3の外面側にタンク壁7と例えば10cmの間
隙をとって金属製の板10を取付け、この板10の上部
にガス冷却器5で冷却された絶縁ガス4の取り入れ孔1
1を設け、この取り入れ孔11から入った絶縁ガスはタ
ンク壁7と前記板10との間の間隙を流れた後、タンク
壁下部開口部12からタンク3内に入るように構成され
ている。
As shown in FIG. 1, an iron core 1 and a winding 2 wound around the iron core 1 are stored in a tank 3 together with an insulating gas 4,
The inside of the tank 3 is divided into upper and lower parts by a partition plate 8 in order to provide a differential pressure between the inlet side and the outlet side of the insulating gas 4 and to allow the gas to flow into the iron core 1 and the windings 2. Further, a gas cooler 5 is connected to the outside of the tank 3 via a blower 6. A metal plate 10 is attached to the outer surface of the tank 3 with a gap of, for example, 10 cm from the tank wall 7, and an intake hole 1 for the insulating gas 4 cooled by the gas cooler 5 is provided in the upper part of this plate 10.
1 is provided, and the insulating gas entering through the intake hole 11 flows through the gap between the tank wall 7 and the plate 10, and then enters the tank 3 through the lower opening 12 of the tank wall.

板10の取付方法については第2図の平面図および第3
図の一部を断面で示した側面図に示すように、ガス絶縁
変圧器のタンク3には内部に高圧力および真空時に変形
が生じないようにするため金属製の補強材13が溶接で
固着されている。
For details on how to attach the plate 10, see the plan view in Fig. 2 and the plan view in Fig. 3.
As shown in the partially cross-sectional side view of the figure, a metal reinforcing material 13 is welded to the tank 3 of the gas insulated transformer to prevent deformation during high pressure and vacuum conditions. has been done.

この補強材13に前記の板10を溶接し、タンクを2重
化する。板10の上部および下部端とタンク壁7間にも
板材14を溶接するなどして封じ、上下に絶縁ガス4が
洩れないようにすることは当然である。タンク壁7と板
10との間隙寸法を変えればこの間隙内の絶縁ガス4の
流速は自由に選べる。
The plate 10 described above is welded to this reinforcing material 13 to double the tank. It goes without saying that the upper and lower ends of the plate 10 and the tank wall 7 are also sealed by welding the plate material 14 to prevent the insulating gas 4 from leaking upward or downward. By changing the size of the gap between the tank wall 7 and the plate 10, the flow rate of the insulating gas 4 within this gap can be freely selected.

第2図は3相3脚鉄心に巻線が配置された場合に巻線に
対向するタンク壁7の外側に板10を取付けた状態を示
している。板10がないタンク壁部分は内側に負荷時タ
ップと切換器が設置され、巻線とタンク壁との距離が大
きいため、洩れ磁束によるタンク壁の温度上昇が問題に
ならない部分である。
FIG. 2 shows a state in which a plate 10 is attached to the outside of the tank wall 7 facing the windings when the windings are arranged on a three-phase, three-leg iron core. The tank wall portion without the plate 10 has the load tap and switching device installed inside, and the distance between the winding and the tank wall is large, so the temperature rise in the tank wall due to leakage magnetic flux is not a problem.

[発明の効果] 以上説明したように、本発明によれば、鉄心および巻線
を収納するタンクと、このタンク内に封入された絶縁ガ
スと、この絶縁ガスを冷却するガス冷却器を有するガス
絶縁変圧器において、タンク外壁面の外側に金属製の板
を配置し、この板とタンク壁との間にガス流路を設ける
ようにしたので、タンク壁の過熱を防止し、安価で製作
容易な大容量化に適したガス絶縁変圧器を得ることがで
きる。
[Effects of the Invention] As explained above, according to the present invention, a gas tank having a tank for storing an iron core and a winding, an insulating gas sealed in the tank, and a gas cooler for cooling the insulating gas is provided. In the isolation transformer, a metal plate is placed on the outside of the tank outer wall, and a gas flow path is provided between this plate and the tank wall, which prevents overheating of the tank wall and is inexpensive and easy to manufacture. A gas insulated transformer suitable for increasing capacity can be obtained.

また、タンク内壁面に珪素鋼板を積層した磁気シールド
を取付ける必要がなくなるため、タンクの曲率半径を小
さくでき、最小限の鋼材で強度の高いタンクを製作する
ことができる。
Furthermore, since there is no need to attach a magnetic shield made of laminated silicon steel plates to the inner wall of the tank, the radius of curvature of the tank can be reduced, and a highly strong tank can be manufactured using a minimum amount of steel.

さらに、ガス冷却器とタンクとを接続する冷却配管をタ
ンクの上部に取付けるため、タンク下部まで配管を導い
ている従来例に比ベタンクの側面のスペースを点検用の
通路としたり、付属品を設置するなど有効に利用できる
Furthermore, since the cooling piping that connects the gas cooler and the tank is installed at the top of the tank, the space on the side of the tank can be used as a passageway for inspection and accessories can be installed, compared to the conventional system where the piping is led to the bottom of the tank. It can be used effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のタンク構造を示す平面図、第3図は第2図のA−A線
から見たタンク構造の一部を断面で示した側面図、第4
図は従来のガス絶縁変圧器の縦断面図、第5図は第4図
のタンク構造の平面図である。 1・・・鉄心 2・・・巻線 3・・・タンク 4・・・絶縁ガス 5・・・ガス冷却器 6・・・送風機 7・・・タンク壁 8・・・仕切板 9・・・ガス流路 10.14・・・板 11・・・取り入れ孔 12・・・開口部 13・・・補強材 15・・・タンク磁気シールド 16・・・負荷時タップ切換器 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 2 図
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a plan view showing the tank structure of Fig. 1, and Fig. 3 is a part of the tank structure seen from line A-A in Fig. 2. A side view showing a cross section, No. 4
The figure is a longitudinal sectional view of a conventional gas insulated transformer, and FIG. 5 is a plan view of the tank structure of FIG. 4. 1... Iron core 2... Winding 3... Tank 4... Insulating gas 5... Gas cooler 6... Blower 7... Tank wall 8... Partition plate 9... Gas flow path 10.14... Plate 11... Intake hole 12... Opening 13... Reinforcement material 15... Tank magnetic shield 16... On-load tap changer (8733) Agent Patent attorney Yoshiaki Inomata (and others)
1 person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)鉄心および巻線を収納するタンクと、このタンク
内に封入された絶縁ガスと、この絶縁ガスを冷却する冷
却器を有するガス絶縁変圧器において、前記タンク側壁
面の少なくとも一部分を2重化し、この2重化した内部
の間隙内を経由して前記冷却器からでた絶縁ガスがタン
ク内へ導かれるように構成したことを特徴としたガス絶
縁変圧器。
(1) In a gas insulated transformer having a tank for storing an iron core and a winding, an insulating gas sealed in the tank, and a cooler for cooling the insulating gas, at least a portion of the side wall surface of the tank is double layered. A gas insulated transformer characterized in that the insulating gas discharged from the cooler is guided into the tank through the double internal gap.
JP24935289A 1989-09-27 1989-09-27 Gas-filled transformer Pending JPH03112109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24935289A JPH03112109A (en) 1989-09-27 1989-09-27 Gas-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24935289A JPH03112109A (en) 1989-09-27 1989-09-27 Gas-filled transformer

Publications (1)

Publication Number Publication Date
JPH03112109A true JPH03112109A (en) 1991-05-13

Family

ID=17191750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24935289A Pending JPH03112109A (en) 1989-09-27 1989-09-27 Gas-filled transformer

Country Status (1)

Country Link
JP (1) JPH03112109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082414A (en) * 2009-10-09 2011-04-21 Toshiba Corp Gas-insulated transformer
JP2013149783A (en) * 2012-01-19 2013-08-01 Yazaki Corp Coil unit
US20220416522A1 (en) * 2020-03-17 2022-12-29 Abb Schweiz Ag Switchgear assembly and switchgear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082414A (en) * 2009-10-09 2011-04-21 Toshiba Corp Gas-insulated transformer
JP2013149783A (en) * 2012-01-19 2013-08-01 Yazaki Corp Coil unit
US20220416522A1 (en) * 2020-03-17 2022-12-29 Abb Schweiz Ag Switchgear assembly and switchgear

Similar Documents

Publication Publication Date Title
JPH03112109A (en) Gas-filled transformer
US6639497B2 (en) Stationary induction apparatus
JP3709767B2 (en) Static induction machine
JPH05315150A (en) Foil-wound transformer
CN217719270U (en) Transformer device
JPH0722257A (en) Stationary induction machine
US3967226A (en) Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure
JP3148044B2 (en) Gas cooled stationary electrical equipment
JP3653581B2 (en) Transformer
JPS63289804A (en) Foil wound transformer
JP3321588B2 (en) Gas insulated transformer
JPH08236359A (en) Gas-insulated stationary electric equipment
JP2505922Y2 (en) Electromagnetic induction equipment
JPH02144903A (en) Foil-wound transformer
JPH05166638A (en) Gas-insulated stationary induction apparatus
JPH01239906A (en) Gas insulated transformer
JPH0352206A (en) Gas-insulated transformer
JPH0218912A (en) Foil wound transformer
JPH09115738A (en) Gas insulated transformer
JPH0218907A (en) Gas-insulated transformer
JPH05114519A (en) Gas sending type gas insulated transformer
JPH10116737A (en) Gas insulated transformer
JPH0864424A (en) Gas-insulated stationary induction device
JPH03101112A (en) Gas insulated transformer
JPH01204406A (en) Gas insulated transformer