JPH03110867A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPH03110867A
JPH03110867A JP1247999A JP24799989A JPH03110867A JP H03110867 A JPH03110867 A JP H03110867A JP 1247999 A JP1247999 A JP 1247999A JP 24799989 A JP24799989 A JP 24799989A JP H03110867 A JPH03110867 A JP H03110867A
Authority
JP
Japan
Prior art keywords
conductivity type
diode
region
effect transistor
schottky barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247999A
Other languages
Japanese (ja)
Inventor
Shinji Fujimoto
藤本 慎治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Inter Electronics Corp
Original Assignee
Nihon Inter Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Inter Electronics Corp filed Critical Nihon Inter Electronics Corp
Priority to JP1247999A priority Critical patent/JPH03110867A/en
Publication of JPH03110867A publication Critical patent/JPH03110867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To shorten a reverse recovery time by a method wherein a second layer of an N-conductivity type is exposed on one main surface of a substrate of the N-conductivity type and is brought into contact with a source electrode so as to pass the central part of a region of a P-conductivity type and a Schottky barrier diode region is formed in this part. CONSTITUTION:A second layer 12 of an N-conductivity type is exposed on one main surface of a substrate 11 of the N-conductivity type and is brought into contact with a source electrode 18 so as to pass the central part of a region 13 of a P-conductivity type as a self-isolation region, a Schottky barrier diode region 21 is formed. As a result, in this structure the Schottky barrier diode 21 is connected in parallel between a drain electrode 19 and the source electrode 18 while a flywheel diode is left. Consequently, when an area and a shape of the Schottky barrier diode 21 are selected properly in a relationship with the flywheel diode, a forward rise voltage of the flywheel diode can be made higher than a forward rise voltage of the Schottky barrier diode 21. Thereby, a diode current flows preferentially in the Schottky barrier diode, and a reverse recovery time of a built-in diode can be shortened.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、早い逆回復時間(t rr)を維持する内蔵
ダイオードを備えた縦型電界効果トランジスタに関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to vertical field effect transistors with built-in diodes that maintain fast reverse recovery times (trr).

[従来の技術] この種の従来の縦型電界効果トランジスタの構造の一部
を第7図に示す。
[Prior Art] A part of the structure of a conventional vertical field effect transistor of this type is shown in FIG.

この縦型電界効果トランジスタは、N導電型基板1上に
同−導1B型で不純物濃度がN導電型基板1より低い第
2のN導電型層2を有し、この第2のN導電型M2中に
、その接合面を一方の主表面に露出するP導電型領域3
が自己分離領域として形成されている。このP導電型領
域3の中央部は図示のように深い拡散層となっている。
This vertical field effect transistor has a second N conductivity type layer 2 on an N conductivity type substrate 1, which has the same conductivity as 1B type and has an impurity concentration lower than that of the N conductivity type substrate 1. In M2, a P conductivity type region 3 whose bonding surface is exposed on one main surface
is formed as a self-isolated area. The central portion of this P conductivity type region 3 is a deep diffusion layer as shown in the figure.

さらにこのP導電型領域3内であって、かつ、その接合
部が1ifl記一方の主表面に露出する第3のN導電型
領域4が形成されている。また、自己分離領域である眞
記P導電型領域3の表面には、絶縁N5を介してゲート
電極6が設けられている。
Further, a third N-conductivity type region 4 is formed within this P-conductivity type region 3 and having a junction thereof exposed on one main surface. Furthermore, a gate electrode 6 is provided on the surface of the P conductivity type region 3, which is a self-isolation region, with an insulation N5 interposed therebetween.

前記第3のN導電型領域4とP導電型領域3とを全面的
に覆う金属層7で短絡したソース電極8を有し、また、
前記N導電型基板1の主表面と反対側となる主表面には
ドレイン電極9を有する。
It has a source electrode 8 short-circuited by a metal layer 7 that completely covers the third N conductivity type region 4 and P conductivity type region 3, and
A drain electrode 9 is provided on the main surface opposite to the main surface of the N-conductivity type substrate 1 .

上記の構造の縦型電界効果トランジスタは、自己分離領
域としてのPint型領域3と第2のN導電型層2との
間に形成されるPN接合型ダイオード10を上記ドレイ
ンffi+ff9−ソース電極8間に並列に内蔵した構
造となり、これを等価回路的に示すと第8図のようにな
る。
The vertical field effect transistor having the above structure has a PN junction diode 10 formed between the Pint type region 3 as a self-isolation region and the second N conductivity type layer 2 between the drain ffi+ff9 and the source electrode 8. The structure is built in parallel with the circuit, and the equivalent circuit diagram of this is shown in FIG.

ところで、上記のような縦型電界効果トランジスタを1
例えば第9図に示すようなブリッジ型インバータ回路等
に用いると、縦型電界効果トランジスタQ、、Q2.Q
3およびQ4に流れる電流経路の種類は、A、13およ
びCの3種類となる。このうち、電流経路A、Bでは、
縦型電界効果トランジスタQ、、Q4およびQ 3− 
Q 2には順方向電流が流れているが、電流経路Cでは
、縦型電界効果トランジスタQ2を通る電流は逆向きと
なる。このことは当3M トランジスタQ2に内蔵され
たフライホイールダイオードFD2中を電流が流れるこ
とになり、このトランジスタQ2の部分には電流が流九
でいないことを意味してしている。
By the way, if the vertical field effect transistor as mentioned above is
For example, when used in a bridge type inverter circuit as shown in FIG. 9, vertical field effect transistors Q, , Q2 . Q
There are three types of current paths flowing through Q3 and Q4: A, 13, and C. Among these, in current paths A and B,
Vertical field effect transistors Q, , Q4 and Q3-
A forward current is flowing through Q2, but in current path C, the current passing through vertical field effect transistor Q2 is in the opposite direction. This means that current flows through the flywheel diode FD2 built into the 3M transistor Q2, and no current flows through the transistor Q2.

次に、縦型電界効果トランジスタQ、〜Q4のゲート電
極G1−04に、図示しない制御回路から別の電流経路
、例えば電流経路Bとなるような信号を与えると、縦型
電界効果トランジスタQ2は、オフ状態からオン状態に
変わるが、この時のスイッチ、ング時聞は、主として縦
型電界効果トランジスタQ2に内蔵されたフライホイー
ルダイオードFD2の逆回復時間(t、 rr)に左右
されている。
Next, when a signal is applied from a control circuit (not shown) to the gate electrode G1-04 of the vertical field effect transistors Q, ~Q4 to create another current path, for example, current path B, the vertical field effect transistor Q2 , the switching time changes from the off state to the on state, and the switching time at this time mainly depends on the reverse recovery time (t, rr) of the flywheel diode FD2 built in the vertical field effect transistor Q2.

その理由は、同じ大きさの電流に対し、ユニポーラ型素
子として動作する縦型電界効果トランジスタの部分と、
バイパーラ素子として動作するPN接合ダイオードの部
分とでは、応答時間に約3〜4倍の差があることに起因
している。例えば縦型電界効果トランジスタの部分のタ
ーンオンタイムおよびターンオフタイムが約200〜3
00 n5ccであるのに対し、PN接合ダイオードの
逆回復時rIjJ(tr、)は、約1t 0OOnse
cと長いのが一般的であるためである。
The reason is that the vertical field effect transistor operates as a unipolar element for the same amount of current;
This is due to the fact that there is a difference of approximately 3 to 4 times in response time between the PN junction diode portion that operates as a bipolar element. For example, the turn-on time and turn-off time of the vertical field effect transistor part are approximately 200 to 3
00n5cc, whereas rIjJ(tr,) during reverse recovery of a PN junction diode is approximately 1t0OOnse
This is because it is generally long.

上記のような内蔵フライホイールダイオードの逆回復時
間(t rr)は、スイッチング周波数が高くなるにし
たがい、trr時間内の損失が顕著となる。すなわち+
  trr時1flj内はブリッジ回路の上下で素子が
短絡されているので、その時消費される損失がより大き
いものと考えられる。また、−数的には逆回復時間tr
rは、素子耐圧が高くなるに従い、より低濃度で、かつ
、より厚いエピタキシャル層を使用することから、その
エピタキシャル層中のキャリアのライフタイムが長くな
り、より長い逆回復時間となる傾向がある。したがって
、高耐圧素子はどその影響はさらに大きくになる。
Regarding the reverse recovery time (trr) of the built-in flywheel diode as described above, as the switching frequency becomes higher, the loss within the trr time becomes more significant. That is +
Since the elements are short-circuited at the top and bottom of the bridge circuit within 1 flj at the time of trr, it is considered that the loss consumed at that time is larger. Also, -numerically, the reverse recovery time tr
As the device breakdown voltage increases, r is used at a lower concentration and a thicker epitaxial layer, which tends to lengthen the lifetime of carriers in the epitaxial layer and result in a longer reverse recovery time. . Therefore, the influence of high voltage elements becomes even greater.

[発明が解決しようとする課題] 上記のように構成された従来の縦型電界効果トランジス
タに対し、その不都合を補うため、素子製作上あるいは
回路技術上での対策が種々ある。
[Problems to be Solved by the Invention] In order to compensate for the disadvantages of the conventional vertical field effect transistor configured as described above, there are various measures in terms of device manufacturing or circuit technology.

例えば、素子製作上として、内蔵フライホイールダイオ
ード中の逆回復時間(1,、)を小さくするために、ラ
イフタイムキラーとなる重金属を公知の方法でドープさ
せたり、電子線、中性子線等を照射して結晶中にキャリ
アトラップを形成する方法等が採用されている。
For example, in device manufacturing, in order to reduce the reverse recovery time (1,,) in the built-in flywheel diode, heavy metals that act as lifetime killers may be doped using known methods, or irradiation with electron beams, neutron beams, etc. A method has been adopted in which carrier traps are formed in the crystal.

しかしながら、これらの方法では、例えばしきいイ]α
電圧(Vい)の制御が困難になったり、オン抵抗(RO
M)が高くなる傾向がある等の縦型電界効果トランジス
タ自体の特性を損なう危険性があるという解決すべき課
題があった。
However, in these methods, for example, the threshold
It may become difficult to control the voltage (V), or the on-resistance (RO) may become difficult to control.
There is a problem to be solved that there is a risk of damaging the characteristics of the vertical field effect transistor itself, such as the tendency for M) to become high.

また、回路技術上の対策としては、例えば第10図に示
すように、フライホイールダイオードFDに、外付けの
ショットキーバリヤダイオードSBDを直列に接続し、
ファースト・リカバリー・ダイオードFRDを縦型電界
効果トランジスタのソースS−ドレイン9間に並列に付
加して電流経路を強制的にaからbに変更する方法も考
えられている。
In addition, as a countermeasure in terms of circuit technology, for example, as shown in Fig. 10, an external Schottky barrier diode SBD is connected in series to the flywheel diode FD.
A method of forcibly changing the current path from a to b by adding a fast recovery diode FRD in parallel between the source S and drain 9 of the vertical field effect transistor is also being considered.

しかしながら、上記の方法では部品点数の増大を招来さ
せること、また、図示の電流経路Cで示すように、順方
向導通時のショットキーバリャダイオードSBDによる
順電圧損失を招来させること等で改善策としてはさほど
得策ではないという末だ解決すべき課題があった。
However, the above method causes an increase in the number of parts, and as shown by current path C in the figure, causes forward voltage loss due to the Schottky barrier diode SBD during forward conduction. However, there were issues that needed to be resolved.

[発明の目的コ 本発明は、上記のような各課題を解決するためになされ
たもので、何ら従来の製法に追加の工程を設けることな
く、また、素子の性能を損なう危険性もなく、縦型電界
効果トランジスタに内蔵されたフライホイールダイオー
ドの逆回復時間(trr)を短縮し得る構造を備えた縦
型電界効果トランジスタを提供することを目的とする。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned problems, and can be achieved without adding any additional steps to the conventional manufacturing method and without risk of impairing the performance of the device. An object of the present invention is to provide a vertical field effect transistor having a structure capable of shortening the reverse recovery time (trr) of a flywheel diode built into the vertical field effect transistor.

NjlTjJ点を解決するための手段]本発明の縦型電
界効果トランジスタは、自己分離領域としてのP導電型
領域の中心部を貫くように、第2のN導電型層をN導電
型基板の一方の主表面に露出させてソース電極と接する
ようにし、ショトキ−バリアダイオード領域を形成した
ものである。
Means for solving the NjlTjJ point] In the vertical field effect transistor of the present invention, the second N-conductivity type layer is formed on one side of the N-conductivity type substrate so as to penetrate through the center of the P-conductivity type region as a self-isolation region. A Schottky barrier diode region is formed by exposing the main surface of the diode to be in contact with the source electrode.

[作用コ 本発明の縦型電界効果トランジスタは、ドレイン電極−
ソース11を極間に、フライホイールダイオードを残し
たままでショトキ−バリアダイオードを並列接続した構
造となる。従って、自己分離領域を貫くようにして形成
されたショトキ−バリアダイオードの面積や形状をフラ
イホイールダイオードとの関係で適宜選択することで、
フライホイールダイオードの順方向立ち上がり電圧をシ
ョトキ−バリアダイオードの順方向立ち上がり電圧より
も高くする。かかる関係を有する場合に、縦型電界効果
トランジスタのソース電極−ドレイン電極間に流れるダ
イオード電流は、ショトキ−バリアダイオード中を優先
して流れることになり、内蔵ダイオードの逆回復時間(
Lrr)を短縮することができる。
[Function] The vertical field effect transistor of the present invention has a drain electrode
The structure is such that Schottky barrier diodes are connected in parallel with the source 11 between the poles and the flywheel diode remains. Therefore, by appropriately selecting the area and shape of the Schottky barrier diode formed to penetrate the self-isolation region in relation to the flywheel diode,
The forward rising voltage of the flywheel diode is made higher than the forward rising voltage of the Schottky barrier diode. When such a relationship exists, the diode current flowing between the source electrode and the drain electrode of the vertical field effect transistor will preferentially flow through the Schottky barrier diode, and the reverse recovery time of the built-in diode (
Lrr) can be shortened.

[実施例] 以下に、本発明の実施例を図を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示す縦型電界効果トランジス
タの概略構成図である。 図において、N′導電型基板
11上に、同一導電型で不純物濃度がN1導電型基板1
1より低い第2のN−導電型PIJ 12が、エピタキ
シャル成長により形成されている。この第2のN−導電
型NJ12中に、接合部の端部を、前記基板11の一方
の主表面に露出するP導電型領域13が選択的に形成さ
れるが、この部分が従来の縦型電界効果トランジスタと
大きくことなる。すなわち、この自己分離領域としての
P導電型領域13は、図示の点線20からも明らかなよ
うに、従来では存在した中心部の深い■〕導電型拡散層
13は取り除かれている。換言すれば、かかる自己分離
領域の中心部をN−導電型層12が貫通し、基板表面ま
で露出している。そしてソース電極18を形成すべく設
けられたアルミニウム金属等からなる金属層17と接し
、その界面にショトキ−バリアダイオード(以下、SB
Dと略記)21を形成している。この5BD21は、図
示の記号で示したように金、cI1層17側が5BD2
1のアノード側に、第2のN導電型層12がカソード側
に対応している。
FIG. 1 is a schematic diagram of a vertical field effect transistor showing an embodiment of the present invention. In the figure, a substrate 1 of conductivity type N1 having the same conductivity type and an impurity concentration is placed on a substrate 11 of conductivity type N'.
A second N-conductivity type PIJ 12 of less than 1 is formed by epitaxial growth. In this second N-conductivity type NJ 12, a P-conductivity type region 13 is selectively formed in which the end of the bonding portion is exposed on one main surface of the substrate 11, but this portion is different from the conventional vertical It is significantly different from the type field effect transistor. That is, in the P conductivity type region 13 serving as the self-isolation region, as is clear from the dotted line 20 in the figure, the deep central conductivity type diffusion layer 13 that existed conventionally has been removed. In other words, the N-conductivity type layer 12 penetrates through the center of the self-isolation region and is exposed to the substrate surface. It is in contact with a metal layer 17 made of aluminum metal or the like provided to form a source electrode 18, and a Schottky barrier diode (hereinafter referred to as SB) is connected to the interface thereof.
Abbreviated as D) 21 is formed. This 5BD21 is made of gold, and the cI1 layer 17 side is 5BD2 as shown by the symbol in the figure.
The second N conductivity type layer 12 corresponds to the anode side of the first layer 1 and the cathode side.

上記のように、自己分離領域の中心部に5BI)21を
形成してもこの5BD21の外側周辺を囲むように、P
N接合ダイオードFDが残存していることになる。
As mentioned above, even if 5BI) 21 is formed in the center of the self-isolation area, P
This means that the N-junction diode FD remains.

次に、第2図に上記実施例の変形例を示す。この変形例
を第7図の従来型と比較すると、深いP導電型領域13
aは、一部に残しているが、その中心部は第2のN導電
型層12が基板表面にまで露出し、上記実施例と同様の
構成となっている。
Next, FIG. 2 shows a modification of the above embodiment. Comparing this modification with the conventional type shown in FIG.
Although part a is left, the second N-conductivity type layer 12 is exposed to the substrate surface in the central part, and has the same structure as the above embodiment.

なお、第2図において、第1図と同一の構成部分には同
一符号を付し、その詳しい説明は省略する。
In FIG. 2, the same components as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

さて、上記構造を等価回路的に示すと、第3図のように
なる。この第3図と従来構造の第8図と比較すると、第
3図では縦型電界効果トランジスタのソース電極18と
ドレイン電極19との間に、5BD21が並列接続され
、かつ、鎖線で示したように、PN接合型ダイオード(
以下、FDと略記)10が残存した構造となっている。
Now, the above structure is shown in an equivalent circuit as shown in FIG. 3. Comparing this Fig. 3 with Fig. 8 of the conventional structure, in Fig. 3, 5BD21 is connected in parallel between the source electrode 18 and the drain electrode 19 of the vertical field effect transistor, and as shown by the chain line. , a PN junction diode (
Hereinafter, it is a structure in which 10 (abbreviated as FD) remains.

ところで、これら5BD21およびFDIOの2つの内
蔵型ダイオードの順方向電流特性は、第4図に示すよう
になる。図中、A、A’は5BD21の順方向電流特性
曲線、BはFDIOの順方向電流特性曲線を示している
。また、横軸に順方向電圧(V)、縦軸に電流密度(I
)を採っである。この図から明らかのように、5BD2
Lの面積、形状をFDIOに対して適宜選択することに
より5BD21の立ち上がり電圧■いとFDIOの立ち
上がり電圧■8との関係を■8≦V8に維持することが
可能となる。VA≦v8の関係が維持されている間は、
第3図のソース電極18からドレイン電極19に流れる
ダイオード電流は、FDLOよりもS I3 D 21
中を優先して流れる。この場合、5BD21は多数キャ
リア素子であるため、FD 10の逆回復時間(trr
)よりも短いし、rを有することになる。また、自己分
離領域である■〕導電型領域13の中心部にS B D
 21が設けられているので、FDIOの実効素子領域
面積が小さくなる。このため、FDIO中の逆回復時の
電荷総量(Qrr)が小さくなり、その分、5BD2L
とFDIOとを合わせた内蔵ダイオード並列接続体とし
てのI−rrが短縮されることになる。
By the way, the forward current characteristics of these two built-in diodes, 5BD21 and FDIO, are as shown in FIG. In the figure, A and A' indicate the forward current characteristic curve of 5BD21, and B indicates the forward current characteristic curve of FDIO. Also, the horizontal axis is the forward voltage (V), and the vertical axis is the current density (I
) is taken. As is clear from this figure, 5BD2
By appropriately selecting the area and shape of L with respect to FDIO, it is possible to maintain the relationship between the rising voltage (2) of the 5BD21 and the rising voltage (2) 8 of FDIO to be 8≦V8. While the relationship VA≦v8 is maintained,
The diode current flowing from the source electrode 18 to the drain electrode 19 in FIG.
Flows with priority given to the inside. In this case, since 5BD21 is a majority carrier element, the reverse recovery time (trr
) and has r. In addition, in the center of the conductivity type region 13, which is a self-separation region
21, the effective element area of the FDIO becomes smaller. Therefore, the total amount of charge (Qrr) during reverse recovery during FDIO becomes smaller, and 5BD2L
I-rr as a built-in diode parallel connection body including FDIO and FDIO is shortened.

ところで、上記のことは、5BD21の実用的な耐圧範
囲(60〜200 v)以下での場合であり、これをさ
らに耐圧の高いS B D 21に設計すると、第4図
の点線で示した順方向電流特性曲線A′となる。かかる
場合に、立ち上がり電圧はV侃V8であるため、もはや
上記■9≦VBの関係は成立しなくなり、Lrr短縮の
効果が得られなくなる。したがって、5BD21の耐圧
範囲を、上記関係を維持する範囲に設計することは!F
要なことである。
By the way, the above is the case below the practical breakdown voltage range (60 to 200 V) of 5BD21, and if this is designed into SBD21 with an even higher breakdown voltage, the order shown by the dotted line in Figure 4 will be achieved. The directional current characteristic curve becomes A'. In this case, since the rising voltage is from V to V8, the above relationship (19≦VB) no longer holds true, and the effect of reducing Lrr can no longer be obtained. Therefore, it is important to design the withstand voltage range of 5BD21 to a range that maintains the above relationship! F
This is important.

次に、上記本発明の構造を平面パターンとして表わした
ものを第5図および第6図に示す。
Next, FIGS. 5 and 6 show the structure of the present invention expressed as a plane pattern.

このうち、第5図は丸型セル22を六角形状に配置した
ものであり、第6図は正方形セル23を正方形状に配置
したものである。いずれも自己分離領域としての1)導
電型領域の中心部に、縦型電界効果トランジスタに内蔵
されたS I3 D 21が存在する。また、このS 
B D 2 ]の周辺部にそれぞれFDIOがいずれの
場合も残存している。
Of these, FIG. 5 shows round cells 22 arranged in a hexagonal shape, and FIG. 6 shows square cells 23 arranged in a square shape. In both cases, the S I3 D 21 built into the vertical field effect transistor exists in the center of the 1) conductivity type region serving as the self-isolation region. Also, this S
BD 2 ], FDIO remains in each case.

なお、上記*造の製作工程は、特に述べなかったが、従
来から公知の選択拡散技術によって容易に実現すること
ができる。ただ、ソース電極としてのオーミック性接触
を維持しながら第2のN導電型層2の表面に5BD21
を形成するという両者を成立させる実用的な熱処理条件
が存在することは言うまでもない。
Incidentally, although the manufacturing process of the * structure described above was not specifically described, it can be easily realized by conventionally known selective diffusion technology. However, while maintaining ohmic contact as a source electrode, 5BD21 is added to the surface of the second N conductivity type layer 2.
It goes without saying that there are practical heat treatment conditions that satisfy both conditions.

[発明の効果コ 以上のように、本発明によれば、自己分離領域としての
P導電型領域の中心部を貫くように、第2のN導電型層
をN導電型基板の一方の主表面に露出させてソース電極
と接するようにし、かかる部分にショトキ−バリアダイ
オード領域を形成したので、縦型電界効果トランジスタ
のソース電極−ドレイン電極間に流れるダイオード電流
が、PN接合型ダイオードよりもショトキ−バリアダイ
オード中を優先して流れ、逆回復時間Drr)を短縮す
ることができるなどの優れた効果がある。
[Effects of the Invention] As described above, according to the present invention, the second N conductivity type layer is formed on one main surface of the N conductivity type substrate so as to penetrate through the center of the P conductivity type region serving as the self-isolation region. Since the Schottky barrier diode region is formed in this region, the diode current flowing between the source electrode and the drain electrode of the vertical field effect transistor is more Schottky than that of a PN junction diode. It has excellent effects such as being able to preferentially flow through the barrier diode and shorten the reverse recovery time (Drr).

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例である縦型電界効
果トランジスタの構成図、第3図はその等価回路図、第
4図は縦型1u界効果トランジスタに内蔵されるショト
キ−バリアダイオードとPN接合型ダイオードの順方向
特性曲線図、第5図および第6図は上記本発明の縦?f
、11ヒ界効果トランジスタの平面構造図、第7図は従
来の縦’f!、in界効果トランジスタの構成図、第8
図はその等価回路図、第9図は上記従来の縦型電界効果
トランジスタを使用して製作したブリッジ型インバータ
回路図、第10図は従来の縦型電界効果トランジスタの
不都合を補うための回路図である。 10・・・PN接合型ダイオード、11・・・N導電型
基板、】2・・・第2のN導電型層へi、13・・・P
導電型領域(自己分離領域)、14・・・第3のN導電
型Jψ、15・・・絶縁層、16・・・ゲート電極、1
7・・・金属層、18・・・ソース電極、19・・・ド
レイン電極、21・・・ショトキ−バリアダイオード、
FD・・・I) N接合型ダイオード
Figures 1 and 2 are block diagrams of a vertical field effect transistor that is an embodiment of the present invention, Figure 3 is its equivalent circuit diagram, and Figure 4 is a Schottky barrier built in the vertical 1u field effect transistor. The forward characteristic curve diagrams of the diode and the PN junction diode, FIGS. 5 and 6, are the longitudinal characteristics of the present invention. f
, 11 A planar structural diagram of a field effect transistor, FIG. 7 is a conventional vertical 'f! , Block diagram of in-field effect transistor, No. 8
The figure shows its equivalent circuit diagram, Figure 9 is a circuit diagram of a bridge type inverter manufactured using the conventional vertical field effect transistor mentioned above, and Figure 10 is a circuit diagram to compensate for the disadvantages of the conventional vertical field effect transistor. It is. 10...PN junction diode, 11...N conductivity type substrate, ]2...i to second N conductivity type layer, 13...P
Conductivity type region (self-separation region), 14... Third N conductivity type Jψ, 15... Insulating layer, 16... Gate electrode, 1
7... Metal layer, 18... Source electrode, 19... Drain electrode, 21... Schottky barrier diode,
FD...I) N junction diode

Claims (1)

【特許請求の範囲】[Claims] N導電型基板上に同一導電型で不純物濃度が前記N導電
型基板より低い第2のN導電型層と、この第2のN導電
型層中に、接合部の端部が前記N導電型基板の一方の主
表面に露出するP導電型領域と、このP導電型領域中に
設けられ、接合部の端部が前記一方の主表面に露出する
第3のN導電型領域と、前記P導電型領域の表面に絶縁
層を介して形成したゲート電極と、前記第3のN導電型
領域と前記P導電型領域とを金属層により短絡して形成
したソース電極と、前記N導電型基板の主表面と反対側
となる主表面に形成したドレイン電極とを有する縦型電
界効果トランジスタにおいて、前記P導電型領域の中心
部を貫通するように前記第2のN導電型層を設け、その
表面を前記一方の主表面に露出させ、前記ソース電極と
接触させてショトキーバリアダイオード領域を形成した
ことを特徴とする縦型電界効果トランジスタ。
A second N conductivity type layer having the same conductivity type and lower impurity concentration than the N conductivity type substrate is formed on the N conductivity type substrate; a P conductivity type region exposed on one main surface of the substrate; a third N conductivity type region provided in this P conductivity type region and having an end of a joint portion exposed on the one main surface; a gate electrode formed on the surface of the conductivity type region via an insulating layer; a source electrode formed by short-circuiting the third N conductivity type region and the P conductivity type region with a metal layer; and the N conductivity type substrate. In a vertical field effect transistor having a main surface and a drain electrode formed on a main surface opposite to the main surface, the second N conductivity type layer is provided so as to penetrate through the center of the P conductivity type region; A vertical field effect transistor, wherein a Schottky barrier diode region is formed by exposing a surface to the one main surface and contacting the source electrode.
JP1247999A 1989-09-26 1989-09-26 Vertical field-effect transistor Pending JPH03110867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247999A JPH03110867A (en) 1989-09-26 1989-09-26 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247999A JPH03110867A (en) 1989-09-26 1989-09-26 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03110867A true JPH03110867A (en) 1991-05-10

Family

ID=17171686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247999A Pending JPH03110867A (en) 1989-09-26 1989-09-26 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03110867A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203967A (en) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd Semiconductor element
JP2003017701A (en) * 2001-07-04 2003-01-17 Denso Corp Semiconductor device
JP2003526923A (en) * 2000-02-24 2003-09-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Monolithic integrated semiconductor device
WO2003067665A3 (en) * 2002-02-02 2003-11-13 Koninkl Philips Electronics Nv Cellular mosfet devices and their manufacture
JP2006024690A (en) * 2004-07-07 2006-01-26 Toshiba Corp Semiconductor device for electric power
US7126169B2 (en) 2000-10-23 2006-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor element
WO2006114424A2 (en) * 2005-04-28 2006-11-02 Siemens Aktiengesellschaft Controllable semiconductor diode, electronic component and indirect voltage converter
JP2011067051A (en) * 2009-09-18 2011-03-31 Sharp Corp Inverter, and electrical apparatus and solar power generator employing the same
JP2012049562A (en) * 2011-11-04 2012-03-08 Renesas Electronics Corp Semiconductor device
WO2012056720A1 (en) * 2010-10-29 2012-05-03 パナソニック株式会社 Inverter
US8350549B2 (en) 2010-10-29 2013-01-08 Panasonic Corporation Converter with switches having a diode region that is unipolar-conductive only in the reverse direction
WO2013031212A1 (en) * 2011-08-29 2013-03-07 次世代パワーデバイス技術研究組合 Bidirectional element, bidirectional element circuit, and power converting apparatus
WO2013177552A1 (en) * 2012-05-24 2013-11-28 Microsemi Corporation Monolithically integrated sic mosfet and schottky barrier diode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526923A (en) * 2000-02-24 2003-09-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Monolithic integrated semiconductor device
JP2002203967A (en) * 2000-10-23 2002-07-19 Matsushita Electric Ind Co Ltd Semiconductor element
US7126169B2 (en) 2000-10-23 2006-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor element
JP2003017701A (en) * 2001-07-04 2003-01-17 Denso Corp Semiconductor device
WO2003067665A3 (en) * 2002-02-02 2003-11-13 Koninkl Philips Electronics Nv Cellular mosfet devices and their manufacture
JP2006024690A (en) * 2004-07-07 2006-01-26 Toshiba Corp Semiconductor device for electric power
WO2006114424A2 (en) * 2005-04-28 2006-11-02 Siemens Aktiengesellschaft Controllable semiconductor diode, electronic component and indirect voltage converter
WO2006114424A3 (en) * 2005-04-28 2007-03-01 Siemens Ag Controllable semiconductor diode, electronic component and indirect voltage converter
JP2011067051A (en) * 2009-09-18 2011-03-31 Sharp Corp Inverter, and electrical apparatus and solar power generator employing the same
WO2012056720A1 (en) * 2010-10-29 2012-05-03 パナソニック株式会社 Inverter
US8350549B2 (en) 2010-10-29 2013-01-08 Panasonic Corporation Converter with switches having a diode region that is unipolar-conductive only in the reverse direction
US8693226B2 (en) 2010-10-29 2014-04-08 Panasonic Corporation Synchronous rectification type inverter
WO2013031212A1 (en) * 2011-08-29 2013-03-07 次世代パワーデバイス技術研究組合 Bidirectional element, bidirectional element circuit, and power converting apparatus
JP2012049562A (en) * 2011-11-04 2012-03-08 Renesas Electronics Corp Semiconductor device
WO2013177552A1 (en) * 2012-05-24 2013-11-28 Microsemi Corporation Monolithically integrated sic mosfet and schottky barrier diode

Similar Documents

Publication Publication Date Title
US10937784B2 (en) Method of manufacturing a semiconductor device
US6743703B2 (en) Power diode having improved on resistance and breakdown voltage
US7518197B2 (en) Power semiconductor device
US6967374B1 (en) Power semiconductor device
US9685512B2 (en) Semiconductor device
JP3502371B2 (en) Semiconductor element
KR20190063483A (en) Schottky diode
CN104835839A (en) Semiconductor Device, Method for Manufacturing the Same and IGBT with Emitter Electrode Electrically Connected with Impurity Zone
JP4017258B2 (en) Semiconductor device
JPH03110867A (en) Vertical field-effect transistor
JP2018182242A (en) Semiconductor device and method of manufacturing the same
JP3765950B2 (en) Edge structure with high voltage tolerance for semiconductor modules
JPS6115370A (en) Semiconductor device
CN111201611B (en) Power switching device with high DV/DT capacity and method for manufacturing such a device
US10083956B2 (en) Semiconductor device
JP2002517097A (en) Power diode structure
JP2002530869A (en) Semiconductor component having a dielectric or semi-insulating shield structure
CN108292669A (en) Flat grid reversing thyristor
JPS6182477A (en) Conduction modulation type mosfet
JP2022019598A (en) Wide band gap semiconductor electronic device comprising jbs diode having improved electrical characteristics and manufacturing method thereof
US11177380B2 (en) Silicon carbide semiconductor component
KR102399239B1 (en) Silicon carbide power semiconductor device
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
JPH06112494A (en) Insulated gate bipolar transistor
US20160276441A1 (en) Semiconductor device