JPH03110045A - Metallic fiber having bulging part and production thereof - Google Patents

Metallic fiber having bulging part and production thereof

Info

Publication number
JPH03110045A
JPH03110045A JP24679989A JP24679989A JPH03110045A JP H03110045 A JPH03110045 A JP H03110045A JP 24679989 A JP24679989 A JP 24679989A JP 24679989 A JP24679989 A JP 24679989A JP H03110045 A JPH03110045 A JP H03110045A
Authority
JP
Japan
Prior art keywords
molten metal
metallic fiber
fiber
metal
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24679989A
Other languages
Japanese (ja)
Inventor
Takaharu Ichiyanagi
隆治 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP24679989A priority Critical patent/JPH03110045A/en
Publication of JPH03110045A publication Critical patent/JPH03110045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce metallic fiber strengthened in physical bonding force between the fibers and between the fiber and matrix by composing of the metallic fiber of the same composition over the length and providing bulging part to this fiber at the suitable position. CONSTITUTION:In molten metal spinning method, the molten metal is injected from a fine hole 5 while keeping the fixed flow velocity and rapidly solidified while diameter of the molten metal stream 6 is constant to obtain the metallic fiber having the uniform diameter. In this case, at the time of discharging the molten metal into the spinning cylinder 8, by varying injection pressure, the molten metal is discharged from the fine hole and the metallic fiber 7 is shaken off. That is, by varying the injection pressure, the molten metal stream is made to pulsating condition to form the bulging part. As the metal material, Fe, Al, Cu, etc., or these alloy is used. By this method, the metallic fiber having strong physical bonding force is obtd. and as mat product, the stable product having a little coming-off of the metallic fiber is obtd., and as reinforcing material for combined material, the combined material having excellent mechanical property can be obtd.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は繊維長手方向の適所にふくらみ部を有する金属
繊維およびその製造方法に関するものである。本発明に
よりて提供される金属繊維は、現在金属繊維が使用され
ているほとんどの分野で使用できるが、特に金属繊維同
士あるいは金属繊維とマトリックス間の物理的結合力の
必要な分野に適している。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal fiber having bulges at appropriate locations in the longitudinal direction of the fiber, and a method for producing the same. The metal fibers provided by the present invention can be used in most fields where metal fibers are currently used, but are particularly suitable for fields that require physical bonding strength between metal fibers or between metal fibers and a matrix. .

[従来の技術] 金属繊維を製造する方法としては、ダイスを用いて順次
細くする線引法、工具を用いて削り出してゆく切削法、
溶融金属を細孔より吐出させた後急冷凝固する溶融紡糸
法などが知られている。従来これらの方法は、一般的傾
向に従って均質繊維を製造することを目的として実施さ
れていたため、得られた金属繊維は断面積の変動の少な
い比較的平滑な表面からなる金属繊維であった。
[Prior art] Methods for manufacturing metal fibers include a drawing method in which the fibers are gradually thinned using dies, a cutting method in which the fibers are cut out using a tool,
Melt spinning methods are known in which molten metal is discharged from pores and then rapidly solidified. Conventionally, these methods have been carried out with the aim of producing homogeneous fibers according to general trends, and the resulting metal fibers have relatively smooth surfaces with little variation in cross-sectional area.

[発明が解決しようとする課題] 従来技術によって得られた断面積変動の少ない平滑な金
属繊維は金属繊維同士を絡ませたとき、あるいは金属繊
維をマトリックス中に分散させたときの相互の係合ポイ
ントが少なく、従って物理的結合力が弱いため、該金属
繊維を短繊維として例えばマット等に使用する場合には
、す抜けを生じ易いという欠点があり、また複合材料の
強化材として使用する場合には金属繊維とマトリックス
との界面ですべりが生じやすく強化材としての効果が十
分に発揮されないという欠点がある。
[Problem to be solved by the invention] Smooth metal fibers with little variation in cross-sectional area obtained by the prior art have mutual engagement points when the metal fibers are entangled with each other or when the metal fibers are dispersed in a matrix. Therefore, when the metal fibers are used as short fibers in mats, etc., they tend to slip through easily, and when used as reinforcing materials in composite materials, has the disadvantage that it tends to slip at the interface between the metal fibers and the matrix, making it less effective as a reinforcing material.

[課題を解決するための手段] 本発明に係る金属繊維は全長に亘って同一組成からなる
金属繊維であって、該金属繊維の適所にふくらみ部を有
する点に要旨がある。また本発明の上記金属繊維は、細
孔より吐出された溶融金属流が凝固する以前に該溶融金
属流の適所の直径を変動させてふくらみ部を形成するこ
とによって製造することができる。
[Means for Solving the Problems] The metal fiber according to the present invention is a metal fiber having the same composition over its entire length, and has bulges at appropriate locations. Further, the metal fiber of the present invention can be manufactured by varying the diameter of a molten metal stream at an appropriate point to form a bulge before the molten metal stream discharged from the pores solidifies.

[作用コ 本発明の金属繊維におけるふくらみ部の形状は格別限定
されるものではないが、もつとも一般的には水玉状を呈
し、ふくらみ部の最大直径(Da)とふくらみを有しな
い通常部分の直径(ob)との比Da/Dbも特に限定
されないが、好ましいのは1.1〜20の範囲であり、
ふくらみ部の存在ピッチについても制約を受けないが、
例えば20000Dbで定義される長さ内に少なくとも
1個以上のふくらみ部を有することが好ましい。
[Function] Although the shape of the bulge in the metal fiber of the present invention is not particularly limited, it generally exhibits a polka dot shape, and the maximum diameter (Da) of the bulge and the diameter of the normal portion without a bulge The ratio Da/Db with (ob) is also not particularly limited, but is preferably in the range of 1.1 to 20,
There are no restrictions on the pitch at which the bulge exists, but
For example, it is preferable to have at least one bulge within a length defined by 20,000 Db.

Da/Dbが1.1未満では繊維外観が平滑になって物
理的結合力が弱くなり、Da/Dbが20を超えると物
理的結合力は良くなるものの、積層体や不織布等に使用
する場合にふくらみ部が大きすぎて成形性が悪くなる傾
向を示し、また製品外観の面でもあまり良いものは得ら
れない。また20000Dbで定義される繊維長さ内に
少なくとも1個以上のふくらみ艇がないと物理的結合力
は不十分となる。
When Da/Db is less than 1.1, the fiber appearance becomes smooth and the physical bonding strength becomes weak, and when Da/Db exceeds 20, the physical bonding strength improves, but when used in laminates, nonwoven fabrics, etc. The bulges tend to be too large, resulting in poor moldability, and the appearance of the product is also not very good. Moreover, if there is not at least one inflatable boat within the fiber length defined by 20,000 Db, the physical bonding force will be insufficient.

また本発明の金属繊維を構成する金属材料は用途に応じ
て適正なものを選択すれば良く、例えばFe、A1.C
u等、或はこれらの合金が使用される。また鉄系合金に
おけるFeの含有量は、強度などの機械的性質からの要
求、更には電磁波シールド材料や磁気シールド材料のフ
ィラー用途に使用する場合には、磁気的性質からの要求
を考慮して、Feを75%以上の割合で含有することが
好ましい。
Further, the metal material constituting the metal fiber of the present invention may be appropriately selected depending on the application, such as Fe, A1. C
u, etc., or alloys thereof are used. In addition, the Fe content in iron-based alloys is determined based on mechanical properties such as strength, and when used as a filler for electromagnetic shielding materials or magnetic shielding materials, taking into consideration magnetic properties. , Fe is preferably contained in a proportion of 75% or more.

次に、ふくらみ部を有する金属繊維の製造方法について
説明する。
Next, a method for manufacturing a metal fiber having a bulge will be described.

本発明のようなふくらみ部を有する金属繊維を製造する
には、前記溶融紡糸法を改良して実施することが好まし
い。すなわち、通常の溶融紡糸法では、溶融金属を細孔
から一定流速に保ちつつ噴射し、溶融金属流の直径が一
定である内に急冷凝固させて均一な直径の金属繊維を製
造するが、本発明の金属繊維の場合は溶融金属を凝固さ
せる以前に溶融金属流の直径を変動させることによって
製造することができる。
In order to produce metal fibers having bulges as in the present invention, it is preferable to improve the melt spinning method. In other words, in the usual melt spinning method, molten metal is injected through pores while maintaining a constant flow rate, and the molten metal flow is rapidly solidified while the diameter remains constant to produce metal fibers with a uniform diameter. The metal fibers of the invention can be produced by varying the diameter of the molten metal stream before solidifying the molten metal.

直径を変動させる手段としては種々考えられるが、次に
2例を非限定的に示す。
Although various means for varying the diameter can be considered, two non-limiting examples will be shown below.

(1)回転するドラム内に遠心力で形成した水層中に、
溶融金属を噴射して金属繊維を製造する方法(第2図参
照): 噴射圧を下げて2.0〜10.0kg/cm2とし、ド
ラムの回転によって生じる水層の表面速度が通常の溶融
紡糸法における溶融金属流の吐出速度より1.2倍以上
に速くなる様にドラムの回転速度を調節すると、溶融金
属流は水層表面上で跳ねるような挙動を示し脈流を生じ
、この過程でふくらみ部を形成し、次いで急冷凝固され
る。
(1) In the water layer formed by centrifugal force inside the rotating drum,
A method of producing metal fibers by injecting molten metal (see Figure 2): The injection pressure is lowered to 2.0 to 10.0 kg/cm2, and the surface velocity of the water layer generated by the rotation of the drum is lower than that of normal melt spinning. When the rotation speed of the drum is adjusted to be 1.2 times faster than the discharge speed of the molten metal flow in the method, the molten metal flow behaves as if it bounces on the surface of the water layer, creating a pulsating flow, and in this process, A bulge is formed and then rapidly solidified.

(2)溶融金属を紡糸筒内に吐出させて金属繊維を製造
する方法(第1図参照); 噴射圧を変動させて細孔より溶融金属を吐出させ金属繊
維を振り落とす。即ち、噴射圧を変動させると溶融金属
流が脈動状態となり、ふくらみ部が形成される。
(2) A method for producing metal fibers by discharging molten metal into a spinning tube (see Figure 1); Varying the injection pressure, discharging molten metal from pores and shaking off metal fibers. That is, when the injection pressure is varied, the molten metal flow becomes pulsating, and a bulge is formed.

[実施例コ 実施例I Si:8.0重量%、残部がFeと不可避不純物からな
るFe−Si合金を、底部に直径0.06mmの細孔を
有するセラミック製容器内で高周波加熱により1460
℃まで加熱して溶融させた後、平均圧力が2.5kg/
cm”のアルゴンガス加圧下で平均圧力±0.5kg/
cm’の範囲内で1秒間に3〜10回変動させ細孔部よ
り10℃の雰囲気下にある紡糸筒に吐出させて、銅製の
冷却板上に振り落としたところ、溶融金属流は細孔のノ
ズル下0.5〜15c+aの間で脈流を生じ、ふくらみ
部を有すると共に適宜長さで切断された金属繊維となっ
た。
[Example Example I A Fe-Si alloy consisting of 8.0% by weight of Si and the balance being Fe and unavoidable impurities was heated to 1460% by high frequency heating in a ceramic container having pores with a diameter of 0.06 mm at the bottom.
After heating to ℃ and melting, the average pressure is 2.5 kg/
cm” under argon gas pressure, average pressure ±0.5 kg/
When the molten metal flow was fluctuated 3 to 10 times per second within the range of 10 cm' and discharged from the pores into a spinning tube in an atmosphere of 10°C, it was shaken off onto a copper cooling plate. A pulsating flow was generated between 0.5 and 15c+a below the nozzle, and the metal fiber had a bulge and was cut to an appropriate length.

このようにして得られた金属短繊維は、繊維長が1〜6
0cmの範囲にあり、水玉状のふくらみ部の直径が84
〜420μ口、ふくらみ部間の直径が51〜70μm、
ふくらみ部間の長さが0.5〜30cmの金属繊維であ
った。第3図は実施品の拡大図である。
The short metal fibers obtained in this way have a fiber length of 1 to 6.
It is in the range of 0 cm, and the diameter of the polka dot-shaped bulge is 84 cm.
~420 μm mouth, diameter between bulges 51-70 μm,
The metal fiber had a length between bulges of 0.5 to 30 cm. FIG. 3 is an enlarged view of the actual product.

上記繊維を用いマット状製品を作成したところ、繊維の
す抜けが少ない製品が得られた。
When a mat-like product was created using the above-mentioned fibers, a product with few fibers passing through was obtained.

実施例2 A1:5.2重量%、Si:2.7重量%、残部がFe
と不可避不純物からなるFe系合金を、底部に直径0.
08mmの細孔を有するセラミック製容器内で高周波加
熱により1500℃まで加熱して溶融させた後、回転す
るドラム内に遠心力により形成した15℃の水層中に、
3.0kg/cm2のアルゴンガス加圧下で細孔部と水
層表面との距離を311II11あけて細孔部より吐出
させた。このとき、水層の表面速度(VW )と溶融金
属流の速度(VJ )との速度比Vw/Vaが1.2以
上になるようにドラムの回転速度を調整したところ、溶
融金属流は水層表面で脈流を生じ、ふくらみ部を有する
と共に適宜長さで切断された金属繊維となった。
Example 2 A1: 5.2% by weight, Si: 2.7% by weight, balance Fe
A Fe-based alloy consisting of unavoidable impurities is placed at the bottom with a diameter of 0.
After melting by heating to 1500 °C by high frequency heating in a ceramic container with 08 mm pores, it is placed in a 15 °C water layer formed by centrifugal force in a rotating drum.
Under argon gas pressure of 3.0 kg/cm2, the water was discharged from the pores with a distance of 311II11 between the pores and the surface of the water layer. At this time, when the rotational speed of the drum was adjusted so that the speed ratio Vw/Va between the surface velocity of the water layer (VW) and the velocity of the molten metal flow (VJ) was 1.2 or more, the molten metal flow was Pulsating currents were generated on the surface of the layer, resulting in metal fibers that had bulges and were cut to appropriate lengths.

このようにして得られた繊維は繊維長が1〜300cm
の範囲にあり、水玉状のふくらみ部の直径が90〜30
0μm、ふくらみ部間の直線状部の直径が60〜85μ
m、ふくらみ部間の長さが0.5〜60cmの金属繊維
であった。
The fibers obtained in this way have a fiber length of 1 to 300 cm.
The diameter of the polka dot-like bulge is between 90 and 30 mm.
0 μm, the diameter of the straight part between the bulges is 60 to 85 μm
m, the length between the bulges was 0.5 to 60 cm.

上記繊維を用いマット状製品を作成したところ、繊維の
す抜けが少ない製品が得られた。
When a mat-like product was created using the above-mentioned fibers, a product with few fibers passing through was obtained.

[発明の効果〕 本発明は以上のように構成されており、繊維同士あるい
は繊維とマトリックス間の物理的結合力の強い金属繊維
を提供することができるようになった。本発明の金属繊
維をマット状製品等に使用した場合には金am 維のす
抜けが少ない安定した製品となり、複合材料の強化材と
して使用した場合には機械的性質の優れた複合材料とな
る。
[Effects of the Invention] The present invention is configured as described above, and it has become possible to provide metal fibers with strong physical bonding strength between the fibers or between the fibers and the matrix. When the metal fibers of the present invention are used in mat-like products, etc., it becomes a stable product with few gold fibers falling through, and when used as a reinforcing material for composite materials, it becomes a composite material with excellent mechanical properties. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1に使用した溶融紡糸装置の断面図、第
2図は実施例2に使用した溶融紡糸装置の断面図、第3
図は本発明によって得られた金属繊維の拡大図である。 1・・・ガス 3・・・るつぼ 5・・・細孔 7・・・金属繊維 9・・・冷却液面 11・・・回転ドラム 13・・・モーター 2・・・ガス圧変動装置 4・・・誘導コイル 6・・・溶融金属流 8・・・紡糸筒 10・・・冷却液体 12・・・ベルト 第 図 第3図 第2図 1
Figure 1 is a cross-sectional view of the melt-spinning apparatus used in Example 1, Figure 2 is a cross-sectional view of the melt-spinning apparatus used in Example 2, and Figure 3 is a cross-sectional view of the melt-spinning apparatus used in Example 2.
The figure is an enlarged view of the metal fiber obtained by the present invention. 1... Gas 3... Crucible 5... Pore 7... Metal fiber 9... Cooling liquid level 11... Rotating drum 13... Motor 2... Gas pressure fluctuation device 4. ... Induction coil 6 ... Molten metal flow 8 ... Spinning tube 10 ... Cooling liquid 12 ... Belt Fig. 3 Fig. 2 Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)全長に亘って同一組成からなる金属繊維であって
、該金属繊維の適所にふくらみ部を有することを特徴と
するふくらみ部を有する金属繊維。
(1) A metal fiber having a bulge, which is a metal fiber having the same composition over its entire length, and has a bulge at a proper location of the metal fiber.
(2)溶融金属を細孔より吐出・凝固させて繊維化する
金属繊維の製造方法において、溶融金属流が凝固する以
前に溶融金属流の適所の直径を変動させて、請求項(1
)記載の金属繊維を製造することを特徴とするふくらみ
部を有する金属繊維の製造方法。
(2) In a method for producing metal fibers in which molten metal is discharged from pores and solidified to form fibers, the diameter of the molten metal flow at an appropriate point is varied before the molten metal flow solidifies.
) A method for producing a metal fiber having a bulge, the method comprising producing the metal fiber according to the above.
JP24679989A 1989-09-21 1989-09-21 Metallic fiber having bulging part and production thereof Pending JPH03110045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24679989A JPH03110045A (en) 1989-09-21 1989-09-21 Metallic fiber having bulging part and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24679989A JPH03110045A (en) 1989-09-21 1989-09-21 Metallic fiber having bulging part and production thereof

Publications (1)

Publication Number Publication Date
JPH03110045A true JPH03110045A (en) 1991-05-10

Family

ID=17153852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24679989A Pending JPH03110045A (en) 1989-09-21 1989-09-21 Metallic fiber having bulging part and production thereof

Country Status (1)

Country Link
JP (1) JPH03110045A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717088A (en) * 2012-07-02 2012-10-10 王金华 Method for preparing aluminum fiber material
WO2014103202A1 (en) * 2012-12-27 2014-07-03 三菱マテリアル株式会社 Porous aluminum body and manufacturing method therefor
CN106102966A (en) * 2014-05-16 2016-11-09 三菱综合材料株式会社 Porous aluminum sintered body and the manufacture method of porous aluminum sintered body
CN106662409A (en) * 2014-07-02 2017-05-10 三菱综合材料株式会社 Porous aluminum heat exchange member
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material
US10981228B2 (en) 2014-05-16 2021-04-20 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717088A (en) * 2012-07-02 2012-10-10 王金华 Method for preparing aluminum fiber material
US9764385B2 (en) 2012-12-27 2017-09-19 Mitsubishi Materials Corporation Porous aluminum body and manufacturing method therefor
JP2014141733A (en) * 2012-12-27 2014-08-07 Mitsubishi Materials Corp Aluminum porous body and production method thereof
CN104797361A (en) * 2012-12-27 2015-07-22 三菱综合材料株式会社 Porous aluminum body and manufacturing method therefor
WO2014103202A1 (en) * 2012-12-27 2014-07-03 三菱マテリアル株式会社 Porous aluminum body and manufacturing method therefor
EP2939762B1 (en) * 2012-12-27 2019-02-06 Mitsubishi Materials Corporation Porous aluminum body and manufacturing method therefor
CN106102966A (en) * 2014-05-16 2016-11-09 三菱综合材料株式会社 Porous aluminum sintered body and the manufacture method of porous aluminum sintered body
US10478895B2 (en) 2014-05-16 2019-11-19 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
US10981228B2 (en) 2014-05-16 2021-04-20 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex
CN106662409A (en) * 2014-07-02 2017-05-10 三菱综合材料株式会社 Porous aluminum heat exchange member
US10598446B2 (en) 2014-07-02 2020-03-24 Mitsubishi Materials Corporation Porous aluminum heat exchange member
CN106662409B (en) * 2014-07-02 2020-10-20 三菱综合材料株式会社 Porous aluminothermic exchange member
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material

Similar Documents

Publication Publication Date Title
CN105537582B (en) It is a kind of for 316L powder of stainless steel of 3D printing technique and preparation method thereof
AU611444B2 (en) Aluminium alloy composites
US4194900A (en) Hard alloyed powder and method of making the same
US4758405A (en) Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat resistant aluminum alloy
JP4521714B2 (en) Method for producing materials reinforced with nanoparticles
CN107116224A (en) A kind of preparation method of the mould powdered steels of 18Ni 300 for 3D printing technique
JPS63140001A (en) Granular metal composite and its production
US5337803A (en) Method of centrifugally casting reinforced composite articles
JPH03110045A (en) Metallic fiber having bulging part and production thereof
US4678720A (en) Silver-copper-titanium brazing alloy
JPS61223176A (en) Production of metal matrix composite
EP0017723B1 (en) Method and apparatus for making metallic glass powder
US5295528A (en) Centrifugal casting of reinforced articles
US5376462A (en) Thixoformable layered materials and articles made from them
EP0547167B1 (en) Incorporation of ceramic particles into a copper base matrix to form a composite material
JPS6017029A (en) Production of second phase particle dispersion type ultraquickly cooled alloy
Duszczyk et al. Properties of particles produced by different rapid solidification techniques
JPS6347343A (en) Powder metallurgical production of processed product made of heat resistant aluminum alloy
JP2000129307A (en) Method for molding amorphous alloy powder
JPH0626751B2 (en) Method for producing cast iron material having fine spheroidal graphite
JPS6017028A (en) Production of second phase particle dispersion type ultraquickly cooled alloy
JPH04198407A (en) Sintered metal mold and production thereof
WO2023062727A1 (en) Semi-solidified slurry production method, molded body production method, and molded body
JPH05105918A (en) Method and device for producing finely dispersed composite powder
JPH0463206A (en) High pressure water injecting pipe for manufacturing metal powder and manufacture of metal powder having low apparent density