JPH03109837A - Optical data transmission system - Google Patents

Optical data transmission system

Info

Publication number
JPH03109837A
JPH03109837A JP1246529A JP24652989A JPH03109837A JP H03109837 A JPH03109837 A JP H03109837A JP 1246529 A JP1246529 A JP 1246529A JP 24652989 A JP24652989 A JP 24652989A JP H03109837 A JPH03109837 A JP H03109837A
Authority
JP
Japan
Prior art keywords
light
transmission
optical
exchange
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246529A
Other languages
Japanese (ja)
Inventor
Masaru Nakamura
勝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1246529A priority Critical patent/JPH03109837A/en
Publication of JPH03109837A publication Critical patent/JPH03109837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optical data multiplex transmission with the same carrier frequency and not requiring tight optical axis alignment between an exchange and a terminal equipment by providing a reception means in which photodetectors are planerly arranged, a transmission means in which light emitting elements with directivity are planerly arranged, an optical means guiding a transmission light and a reception light and a processing means. CONSTITUTION:An exchange 20 is provided with a reception section 32 in which photodetectors are planerly arranged, a transmission section 34 in which light emitting elements with directivity are planerly arranged similarly, optical means 36, 38 guiding a transmission light and a reception light, and a processing means 40 processing the transmission/reception signal between the reception means 32 and the transmission means 34 and the position information of terminal equipments 24, 26 and the exchange applies transmission/reception of optical data with plural terminal equipments 24, 26 having one set of light emitting and light receiving elements. The exchange 20 detects the position of the transmission terminal equipment based on the position of the photodetector receiving a light and forms a line with a light emitting element at a position effective to the transmission. Thus, a 2-way multiple space propagation light utilized optical data transmission system is realized, in which no optical alignment between the transmitter and the receiver is required and the terminal equipments 24, 26 are moved freely and their positions are detectable.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空間伝搬光による複数回線同時通信システムに
適用される光データ伝送システム、特にローカルエリア
ネットワーク等の構内光データ通信に適用される光デー
タ伝送システムに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an optical data transmission system applied to a multiple-line simultaneous communication system using spatially propagating light, particularly an optical data transmission system applied to a local area network or other internal optical data communication. Regarding data transmission systems.

[従来の技術] 空間伝搬光通信システムの多重化方式としては、■異な
る波長によるもの、■空間分割によるもの、または偏光
を応用するもの、■時分割によるものがある。
[Prior Art] As multiplexing methods for space propagation optical communication systems, there are 1) methods using different wavelengths, 2) methods using space division or applying polarization, and 2) methods using time division.

異なる波長によるものの例として、特公昭61−424
61 r空間伝搬光送受信装置」に記載されたものがあ
る。この装置は第9図に示すように、光ファイバ3と光
結合器4とで相互に結合された複数の送信部1と複数の
受信部2とをそれぞれもつA端末およびB端末間の空間
Cを、方向調整機構6で方向調整したレンズ5を通して
複数波長単一ビーム光として送受信している。ここで、
空間Cは屋外を想定しているのでレンズ系のみを屋外環
境に曝すこと、単一ビームのために指向性調整が容易で
あること、および屋外構築物を縮小できること等の効果
かえられる。
As an example of different wavelengths,
61 r Space Propagation Optical Transmitter/Receiver". As shown in FIG. 9, this device has a space C between terminals A and B, each of which has a plurality of transmitting sections 1 and a plurality of receiving sections 2, which are mutually coupled with an optical fiber 3 and an optical coupler 4. is transmitted and received as a single beam of light with multiple wavelengths through a lens 5 whose direction is adjusted by a direction adjustment mechanism 6. here,
Since the space C is assumed to be outdoors, the following effects can be obtained: only the lens system is exposed to the outdoor environment, directivity adjustment is easy because of the single beam, and outdoor structures can be reduced.

また、空間分割多重方式の従来技術例として、特開平1
−109867 rテレビのリモコン位置検出装置」が
ある。この装置は、テレビの左右スピーカの音量の絶対
量とバランスとを、テレビを見ている人の位置に応じて
自動的に調整するもので、第10図に示すように、リモ
コン7とテレビの受光部11とで構成される。リモコン
7は位置検出信号、通信信号、赤外線信号の各発生手段
(図示せず)を有し、受光部11は、無指向性の通信信
号検出用受光素子8と、レフレクタIOで高指向性を付
与した複数のリモコン位置検出用受光素子9とを有して
いる。テレビを見る人の位置の方向θを、リモコン位置
検出用受光素子9の数に対応する指向性で、距離を通信
信号検出用受光素子8の受信光強度から求めている。
In addition, as an example of the conventional technology of the space division multiplexing method,
-109867 r TV remote control position detection device". This device automatically adjusts the absolute volume and balance of the left and right speakers of the TV according to the position of the person watching the TV. It is composed of a light receiving section 11. The remote controller 7 has means for generating position detection signals, communication signals, and infrared signals (not shown), and the light receiving section 11 has a nondirectional communication signal detection light receiving element 8 and a reflector IO to generate high directivity. It has a plurality of light receiving elements 9 for remote control position detection provided therein. The direction θ of the position of the person watching the television is determined by the directivity corresponding to the number of light receiving elements 9 for detecting remote control positions, and the distance is determined from the intensity of the received light of the light receiving elements 8 for detecting communication signals.

上記の異なる波長による多重化方式の場合には、回線数
だけ異なる波長の組み合わせが必要であり、したがって
、その波長の組み合わせに応じた数の光発信部と光送信
部との組み合わせを必要とする。また第9図の実施例で
は、光送信部と光受信部の端末の移動可能範囲が、各端
末内の光ファイバ3の接続苛能範囲に限定される。
In the case of the above-mentioned multiplexing method using different wavelengths, it is necessary to combine different wavelengths for the same number of lines, and therefore, it is necessary to combine the number of optical transmitters and optical transmitters according to the number of combinations of wavelengths. . Further, in the embodiment shown in FIG. 9, the movable range of the terminals of the optical transmitting section and the optical receiving section is limited to the connection range of the optical fiber 3 in each terminal.

一方、後者の空間分割多重方式または偏光を応用する場
合には、回線間の干渉を防止するために、送信光または
受信光方向特性を狭指向特性とし、各端末ごとの方向調
整を精密に行なう必要がある。
On the other hand, when applying the latter method of space division multiplexing or polarization, in order to prevent interference between lines, the direction characteristics of the transmitted light or the received light must be narrow directional characteristics, and the direction must be precisely adjusted for each terminal. There is a need.

さらに、時分割多重方式については、原理的に各端末で
同期を取る必要があること、および継続したデータの送
受信ができない欠点がある。
Furthermore, the time division multiplexing method has the disadvantage that it is necessary to synchronize each terminal in principle and that continuous data transmission and reception cannot be performed.

[発明が解決しようとする課題1 本発明はこのような従来技術の欠点を解消し、送・受信
機間の光軸調整が不要な、端末の移動が自由でその位置
も検出可能な双方向性多重の空間伝搬光利用光データ伝
送システムを提供することを目的とする。
[Problem to be Solved by the Invention 1] The present invention solves the drawbacks of the prior art, and provides a bidirectional system that eliminates the need for optical axis adjustment between the transmitter and receiver, allows the terminal to move freely, and allows its position to be detected. The purpose of this invention is to provide a spatially multiplexed optical data transmission system using spatially propagated light.

[課題を解決するための手段] 本発明による光データ伝送システムは、面状に受光素子
を配置した受信部、同じく面状に指向性発光素子を配置
した送信部、送信光および受信光を導くための光学手段
、受信手段および送信手段間の送受信信号および端末の
位置情報を処理する処理手段とを有する交換機によって
、一組の送受光素子を持つ複数の端末との光データの送
受信を行ない、交換機は受光した受光素子の位置により
送信端末の位置を検出すると共に、送信に有効な位置の
発光素子との間に回線を形成することを特徴とする。
[Means for Solving the Problems] An optical data transmission system according to the present invention includes a receiving section in which light receiving elements are arranged in a planar manner, a transmitting section in which directional light emitting elements are arranged in a planar manner, and guiding transmitted light and received light. transmitting and receiving optical data to and from a plurality of terminals each having a set of light transmitting and receiving elements, by means of an exchange having optical means for processing, receiving means, and processing means for processing transmission and reception signals between the transmitting means and position information of the terminals; The exchange is characterized in that it detects the position of a transmitting terminal based on the position of a light-receiving element that receives light, and also forms a line with a light-emitting element at a position effective for transmission.

[作 用] 本発明は空間分割多重方式によるが、同方式の欠点であ
る狭指向性の送受信特性と、送受信機の厳密な方向調整
の要求を回避するために、端末間に介在する交換機の発
光、受光素子を面状に多数敷き詰めたアレイとしである
。このアレイは現在の半導体および電子技術によって容
易に製作することができる。受光素子のアレイ面と垂直
な前方向に全受光素子に共通の、レンズからなる光学系
を配し、アレイ面と任意の角度をなす方向から到着した
送信端末からの光が、必ずいずれかの受光素子に焦点を
結ぶように調整すれば、この受光素子の位置より送信端
末の位置を一元的に決定することができる。
[Function] The present invention uses a space division multiplexing method, but in order to avoid narrow directivity transmission and reception characteristics, which are the drawbacks of the same method, and the requirement for strict directional adjustment of the transmitter and receiver, the switching system interposed between the terminals is It is an array with a large number of light-emitting and light-receiving elements laid out in a planar shape. This array can be easily fabricated using current semiconductor and electronic technology. An optical system consisting of a lens common to all light receiving elements is arranged in the front direction perpendicular to the array surface of the light receiving element, so that light from the transmitting terminal arriving from a direction forming an arbitrary angle with the array surface is always directed to one of the light receiving elements. By adjusting the focus to be focused on the light receiving element, the position of the transmitting terminal can be centrally determined from the position of the light receiving element.

発光素子のアレイ面にも、垂直な前方向に全発光素子に
共通のレンズからなる光学系を配し、前記位置情報をも
とに送信に有効な発光素子を選定して送出角度を設定す
れば、受信端末から送信端末への返信回路を形成するこ
ことができる。この場合、送信端末からの送光は、交換
機の受光光学系を一定レベル以上の光量で照射すればよ
く、□指向性は特に問題としない二なお、交換機の送信
部発光素子には指向性を与えることにより、伯回線との
干渉、第三者の傍受を防止することができる。
An optical system consisting of a lens common to all the light emitting elements is arranged vertically in the front direction on the array surface of the light emitting elements, and based on the position information, the light emitting elements effective for transmission are selected and the sending angle is set. For example, a return circuit from the receiving terminal to the transmitting terminal can be formed. In this case, the light transmitted from the transmitting terminal only needs to illuminate the light-receiving optical system of the exchange with an amount of light above a certain level, and □ Directivity is not a particular issue. By providing this information, interference with the Brazilian line and interception by third parties can be prevented.

同様にして、他の送信端末と交換機との間に回線が形成
されて、交換機を介して一つの端末と複数の端末、?!
数の端末と他の複数の端末との通信回線が同時に多数形
成される。
Similarly, a line is formed between another transmitting terminal and the exchange, and one terminal and multiple terminals are connected through the exchange? !
A large number of communication lines between one terminal and a plurality of other terminals are simultaneously formed.

[実施例] 次に添付図面を参照して本発明による光データ伝送シス
テムの実施例を詳細に説明する。
[Embodiments] Next, embodiments of the optical data transmission system according to the present invention will be described in detail with reference to the accompanying drawings.

第1図には本発明によるシステムの基本構成が示されて
いる。端末24.26・・・28と交換機20とは送受
光部22を介して、光により双方向に接続されている。
FIG. 1 shows the basic configuration of a system according to the present invention. The terminals 24, 26, . . . , 28 and the exchange 20 are bidirectionally connected by light via a light transmitting/receiving section 22.

交換機20を天井や壁の上方のような見通しのよい場所
に設置することにより、端末間のクロストークのないワ
イヤレス通信が容易である。
By installing the exchange 20 in a place with good visibility, such as above the ceiling or wall, wireless communication without crosstalk between terminals is facilitated.

第2図は第1図の交換機の実施例である。FIG. 2 is an embodiment of the exchange shown in FIG.

交換機20は送受光部22、情報処理部40より構成さ
れる。送受光部22は二次元的に敷き詰められた受光素
子アレイ32.同じく発光素子アレイ34゜ハーフミラ
−36、およびレンズ38により構成される。情報処理
部40は制御回路42と交換回路44とで構成される。
The exchange 20 includes a light transmitting/receiving section 22 and an information processing section 40. The light transmitting/receiving section 22 includes a two-dimensionally laid out light receiving element array 32. Similarly, it is composed of a light emitting element array 34, a half mirror 36, and a lens 38. The information processing section 40 is composed of a control circuit 42 and a switching circuit 44.

次に、この装置において、端末24から端末26に送信
を行なう場合を例にとり動作を説明する。端末24から
の送信光はレンズ38により、ハーフミラ−36を透過
して受光素子アレイ32の素子ARに集光する。素子A
Rは端末24の位置によって一元的に選択される。送信
光の情報には自端末と相手端末との識別子信号、および
回線選択のための伝送パラメータを含んでおり、情報処
理部40の制御回路42で、受光素子がARであること
と識別子信号とから端末24の最新の位置情報とを記憶
する。
Next, the operation of this device will be explained, taking as an example the case where transmission is performed from the terminal 24 to the terminal 26. The transmitted light from the terminal 24 is transmitted through the half mirror 36 by the lens 38 and focused on the element AR of the light receiving element array 32. Element A
R is selected centrally depending on the location of the terminal 24. The information on the transmitted light includes an identifier signal between the own terminal and the other terminal, and transmission parameters for line selection. to the latest location information of the terminal 24.

次に制御回路42では、同しく識別子信号から相手端末
が端末26であることを検知すると共に、既に記憶しで
ある端末26の位置情報から、対応する発光素子アレイ
34の素子BSを選択し、端末24からの呼出し信号を
ハーフミラ−36を介して端末26に送信する。端末2
6は交換機20からの信号を受信すると、自端末の識別
子信号を応答信号として交換機20に送る。端末26か
らの送信光が交換機20に達すると、レンズ38により
、ハーフミラ−36を透過して、端末26の位置に対応
する受光素子アレイ32の素子BRに集光する。さらに
制御回路42は、端末26との接続を確認すると、端末
24の位置に対応する発光素子アレイ34の素子ASを
選択し、端末24に端末26との接続を知らせる。
Next, the control circuit 42 similarly detects from the identifier signal that the other terminal is the terminal 26, and selects the corresponding element BS of the light emitting element array 34 from the already stored position information of the terminal 26. A calling signal from the terminal 24 is transmitted to the terminal 26 via the half mirror 36. Terminal 2
When the terminal 6 receives the signal from the exchange 20, it sends its own terminal's identifier signal to the exchange 20 as a response signal. When the transmitted light from the terminal 26 reaches the exchange 20, it is transmitted through the half mirror 36 by the lens 38 and focused on the element BR of the light receiving element array 32 corresponding to the position of the terminal 26. Furthermore, when the control circuit 42 confirms the connection with the terminal 26, it selects the element AS of the light emitting element array 34 corresponding to the position of the terminal 24, and notifies the terminal 24 of the connection with the terminal 26.

交換回路44は受光素子アレイ32の素子AR1BRと
発光素子アレイ34の素子AS、BSとの接続を制御し
、双方向の通信回線を形成する。所定の通信回線が形成
されると、制御回路42は、他の端末間の回線を独立に
形成するために、他の端末からの信号を受信する待機状
態に入る。また制御回路42は定期的に発光素子アレイ
34の発光素子を順次発光させ、他の端末からの応答信
号を受光素子アレイ32で受光して、各端末の最新位置
を記憶する。
The exchange circuit 44 controls the connection between the elements AR1BR of the light receiving element array 32 and the elements AS and BS of the light emitting element array 34, and forms a bidirectional communication line. When a predetermined communication line is formed, the control circuit 42 enters a standby state in which it receives signals from other terminals in order to independently form lines between the other terminals. Further, the control circuit 42 periodically causes the light emitting elements of the light emitting element array 34 to emit light one after another, receives response signals from other terminals at the light receiving element array 32, and stores the latest position of each terminal.

回線の切断は、どちらかの端末が送光を停止したときで
あって、情報処理部40が検知し、接続状態を元に戻す
The line is disconnected when one of the terminals stops transmitting light, which is detected by the information processing unit 40 and restores the connection state.

なお、受光素子アレイ32への受信光の集光は、必ずい
ずれかの素子が受光できる大きさの焦点とし、複数素子
が受光したときは、どの信号を選択するか、または合成
するかをSN比、フェージング等伝搬路の状態を判断し
制御回路42が決定する。
The received light is focused on the light receiving element array 32 at a focal point large enough to be received by one of the elements, and when multiple elements receive light, the SN determines which signal to select or combine. The control circuit 42 determines the state of the propagation path, such as ratio and fading.

第3図は第2図の交換機の情報処理部40の主要回路構
成例であって、符号は、同一機能部分を第2図の部分と
同じにして、主要部にのみ付しである。受光素子である
ホトダイオードAR46と発光素子であるLED BS
 60を各1個取り出し、クロスバ−型の交換回路とマ
イコンによる制御回路とで接続した例である。ホトダイ
オードAR46で受信した信号は、アンプ48で増幅さ
れ、まず信号検知回路部100に人力される。この信号
検知回路部100は、どの受光素子が受光したかを検知
し、人力信号をデータレジスタ50に送る機能を有する
FIG. 3 shows an example of the main circuit configuration of the information processing section 40 of the exchange shown in FIG. 2. The same functional parts are designated by the same reference numerals as those shown in FIG. 2, and only the main parts are given the same reference numerals. Photodiode AR46 as a light receiving element and LED BS as a light emitting element
This is an example in which one each of 60 is taken out and connected with a crossbar type exchange circuit and a control circuit using a microcomputer. The signal received by the photodiode AR46 is amplified by the amplifier 48 and first inputted to the signal detection circuit section 100. The signal detection circuit section 100 has a function of detecting which light receiving element receives light and sending a human signal to the data register 50.

2つのDフリップフロップ52.54が共にクリアされ
てready状態にあるとき、1つの受光素子が受光し
た信号のみがデータレジスタ50に接続される。この時
のDフリップフロップ52.54は第6図の状態3の値
を取る。この例では端末Kが接続し、Rにのラインから
信号がデータレジスタ50に入力される。
When the two D flip-flops 52 and 54 are both cleared and in a ready state, only the signal received by one light receiving element is connected to the data register 50. At this time, the D flip-flops 52 and 54 take the value of state 3 in FIG. In this example, terminal K is connected and a signal is input to data register 50 from the line R.

データレジスタ50に信号が入力されると、マイコン5
6に割り込み信号が送られる。マイコン56は、データ
レジスタ50の値と、Dフリップフロップ52.54の
値とから端末の識別子、位置、送信先、伝送パラメータ
を求める。続いて、マイコン56は送信先端末に対応す
る発光素子60を発光させて、図示しない端末Jに呼出
しを行ない、応答が確認できたとき、アナログスイッチ
58上で受信回路SKを送信回路TJに直接つなぎかえ
る。そして、Dフリップフロップ52の値を1からOl
すなわち、第4図の状態2か63にして、他の端末から
の人力を禁止した後、信号検知回路部100を待機状態
に戻す。
When a signal is input to the data register 50, the microcomputer 5
An interrupt signal is sent to 6. The microcomputer 56 determines the terminal identifier, position, destination, and transmission parameters from the data register 50 value and the D flip-flop 52.54 value. Next, the microcomputer 56 causes the light emitting element 60 corresponding to the destination terminal to emit light, calls the terminal J (not shown), and when a response is confirmed, directly connects the receiving circuit SK to the transmitting circuit TJ on the analog switch 58. Reconnect. Then, the value of the D flip-flop 52 is changed from 1 to Ol
That is, after entering state 2 or 63 in FIG. 4 and prohibiting human input from other terminals, the signal detection circuit section 100 is returned to the standby state.

第5図には本発明に用いられる送受光部の他の実施例で
ある。第2図の実施例においては、受光素子アレイと発
光素子アレイとを別の平面上に形成したが、第5図の実
施例においては受光素子ア1 レイロ8と発光素子アレイ66とを同一平面上に交互に
形成して二次元受発光素子64とし、ハーフミラ−を省
略している。この装置においては、発光素子、受光素子
それぞれの隣接素子との間隔が大きくなり、不感帯が生
ずる可能性があるが、焦点の大きさと比較して、素子の
面積を充分に小さく、また密に敷き詰めることができる
ので、既に説明したように複数の素子の信号を制御する
ことで上記の問題を回避できる。
FIG. 5 shows another embodiment of the light transmitting/receiving section used in the present invention. In the embodiment shown in FIG. 2, the light receiving element array and the light emitting element array 66 are formed on different planes, but in the embodiment shown in FIG. The two-dimensional light emitting and receiving elements 64 are formed alternately on the top, and the half mirror is omitted. In this device, the distance between the adjacent elements of the light-emitting element and the light-receiving element becomes large, and a dead zone may occur. However, the area of the elements is sufficiently small compared to the size of the focal point, and the elements are arranged densely. Therefore, the above problem can be avoided by controlling the signals of a plurality of elements as described above.

第6図は本発明における送受光部のさらに伯の実施例で
ある。受光素子アレイ72上に端末からの光のみを通す
フィルタ76を被せ、その上に透過性の発光素子アレイ
74を搭載し、レンズ70のみの光学系としている。た
だし、この実施例ではフィルタ76を通過する波長え1
を受信光として、遮断される波長ん2を送信光として用
いるため、2種類の波長の光を用いる必要がある。
FIG. 6 shows a further embodiment of the light transmitting/receiving section in the present invention. A filter 76 that passes only light from the terminal is placed on the light receiving element array 72, and a transparent light emitting element array 74 is mounted on top of the filter 76 to form an optical system consisting only of the lens 70. However, in this embodiment, the wavelength 1 passing through the filter 76 is
Since the wavelength 2 is used as the received light and the blocked wavelength 2 is used as the transmitted light, it is necessary to use light of two types of wavelengths.

第7図には、複数の交換機と、複数の外部回線との接続
がある場合のシステムの実施例が示されている。外部回
線82から端末90に送信する場合を 2 考える。外部回線82からの信号は端末86を通って交
換機78に伝送される。さらに交換機80への伝送は光
を用いる方法と、交換機同士をケーブル94で直結する
方法のいずれを用いてもよい。光を用いる方法としては
、交換機78から中継器88を介し見通し外伝送、また
は遠距離伝送を行なう。同様にして、交換機80と接続
した外部回線84から端末86に伝送することもできる
。外部回線と端末、または交換機とのインターフェース
は、第3図の実施例において説明したホトダイオードと
LEDによる電気・光相互変換により容易である。
FIG. 7 shows an example of a system in which there are connections between a plurality of exchanges and a plurality of external lines. Let us consider the case of transmitting from the external line 82 to the terminal 90. Signals from external line 82 are transmitted through terminal 86 to switch 78. Further, the transmission to the exchange 80 may be performed using either a method using light or a method in which the exchanges are directly connected to each other with a cable 94. As a method using light, non-line-of-sight transmission or long-distance transmission is performed from the exchange 78 via the repeater 88. Similarly, it can also be transmitted to the terminal 86 from an external line 84 connected to the exchange 80. The interface between an external line and a terminal or exchange can be easily achieved by the electrical/optical mutual conversion using the photodiode and LED described in the embodiment of FIG.

第8図には、さらに光信号の一部を光ファイバ96を通
すシステムの実施例が示されている。
FIG. 8 further shows an embodiment of a system in which a portion of the optical signal is routed through optical fiber 96.

この実施例においては、交換機78と交換機80と端末
90とを光ファイバ96によって接続し、壁などの障壁
による見通し外伝送、遠距離伝送、秘話伝送に対処して
いる。
In this embodiment, an exchange 78, an exchange 80, and a terminal 90 are connected by an optical fiber 96 to cope with non-line-of-sight transmission, long-distance transmission, and secret transmission due to barriers such as walls.

[発明の効果] 本発明によれば、端末の位置が一元的に検知され、交換
機と端末間の厳密な光軸合わせが不要で、同一搬送周波
数による光データ多重伝送が可能である。しかも、信号
強度の充分な範囲で端末の移動が自由である上、ケーブ
ル、光ファイバ、中継器との接続の融通性に富むので伝
送域の拡大が容易である。
[Effects of the Invention] According to the present invention, the positions of terminals are detected centrally, there is no need for strict optical axis alignment between the exchange and the terminals, and optical data multiplex transmission using the same carrier frequency is possible. Furthermore, terminals can be moved freely within a range of sufficient signal strength, and the transmission range can be easily expanded because there is great flexibility in connection with cables, optical fibers, and repeaters.

本発明によるシステムは、構内光データ通信、構内位置
確認装置、構内携帯電話、ベージング、大退室管理、セ
キュリティ、ローカルエリアネットワーク等の構内光デ
ータ通信に適用できる。
The system according to the present invention can be applied to internal optical data communications, such as internal optical data communications, internal location confirmation devices, internal mobile telephones, paging, large exit management, security, and local area networks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光データ伝送システムの基本構成
図、 第2図は第1図のシステムに用いられる交換機の一実施
例を示す図、 第3図は本発明によるシステムの情報処理部を示す回路
図、 第4図は第3図中のDフリップフロップの真理値表(示
す巳。 第5図および第6図は、本発明によるシステム中の送受
光部の他の実施例を示す図、 第7図および第8図は、本発明によるシステムにおいて
、複数の交換機とケーブルまたは光ファイバを用いて伝
送域を拡大した他の実施例を示す図、 第9図は従来の空間伝搬光送受信装置の説明図、 第10図は従来のテレビのリモコン位置検出装置の説明
図である。 主要部 の符号の説明 交換機 送受光部 受光素子アレイ 発光素子アレイ ハーフミラ− レンズ 情報処理部 制御回路 交換回路 データレジスタ Dフリップフロップ  5 、マイコン アナログスイッチ 、交換機 、中継器 ケーブル 、光ファイバ 、信号検出回路部
FIG. 1 is a basic configuration diagram of an optical data transmission system according to the present invention, FIG. 2 is a diagram showing an embodiment of a switch used in the system of FIG. 1, and FIG. 3 is a diagram showing an information processing section of the system according to the present invention. FIG. 4 is a truth table of the D flip-flop shown in FIG. 3. FIGS. , FIGS. 7 and 8 are diagrams showing other embodiments in which the transmission range is expanded using multiple exchanges and cables or optical fibers in the system according to the present invention, and FIG. 9 is a diagram showing a conventional space propagation optical transmission/reception system. Fig. 10 is an explanatory diagram of a conventional TV remote control position detection device.Explanation of symbols of main parts Exchanger Light transmitter/receiver section Light receiving element array Light emitting element array Half mirror Lens Information processing section Control circuit Switching circuit Data register D flip-flop 5, microcomputer analog switch, exchange, repeater cable, optical fiber, signal detection circuit section

Claims (1)

【特許請求の範囲】 1、一つの交換機と複数の端末間を、空間を伝搬する光
により接続した光データ伝送システムにおいて、 前記複数の端末は、それぞれ一組の送受光素子を有し、 前記交換機は、受光素子が面状に配置された受信手段と
、指向性のある発光素子が面状に配置された送信手段と
、送信光および受信光を導くための光学手段と、前記受
信手段および送信手段間の送受信信号および前記端末の
位置情報を処理する処理手段とを有することを特徴とす
る光データ伝送システム。 2、請求項1に記載のシステムにおいて、前記交換機は
、前記受光素子と発光素子とが同一平面上に交互に配置
されていることを特徴とする光データ伝送システム。 3、請求項1に記載のシステムにおいて、前記交換機は
、前記受光素子上に光学フィルタが設けられ、さらに該
光学フィルタ上に面状に透過性の発光素子が設けられて
いることを特徴とする光データ伝送システム。
[Claims] 1. In an optical data transmission system in which one exchange and a plurality of terminals are connected by light propagating in space, each of the plurality of terminals has a set of light transmitting/receiving elements; The exchange includes a receiving means in which light receiving elements are arranged in a planar manner, a transmitting means in which directional light emitting elements are arranged in a planar manner, an optical means for guiding the transmitted light and the received light, the receiving means and An optical data transmission system comprising processing means for processing transmitted and received signals between transmitting means and position information of the terminal. 2. The optical data transmission system according to claim 1, wherein in the exchange, the light receiving elements and the light emitting elements are alternately arranged on the same plane. 3. In the system according to claim 1, the exchanger is characterized in that an optical filter is provided on the light receiving element, and a planarly transparent light emitting element is further provided on the optical filter. Optical data transmission system.
JP1246529A 1989-09-25 1989-09-25 Optical data transmission system Pending JPH03109837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246529A JPH03109837A (en) 1989-09-25 1989-09-25 Optical data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246529A JPH03109837A (en) 1989-09-25 1989-09-25 Optical data transmission system

Publications (1)

Publication Number Publication Date
JPH03109837A true JPH03109837A (en) 1991-05-09

Family

ID=17149765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246529A Pending JPH03109837A (en) 1989-09-25 1989-09-25 Optical data transmission system

Country Status (1)

Country Link
JP (1) JPH03109837A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056416A1 (en) * 1998-04-24 1999-11-04 Sharp Kabushiki Kaisha Space-division multiplex full-duplex local area network
JP2007068158A (en) * 2005-08-05 2007-03-15 Matsushita Electric Ind Co Ltd Space optical transmission apparatus and space optical transmission system
WO2009096405A1 (en) * 2008-01-28 2009-08-06 National Institute Of Information And Communications Technology Space optical communication device and method thereof
JP2011061782A (en) * 2009-09-07 2011-03-24 Micro-Star Internatl Co Ltd Transmission module, and electronic system using the same
JP2012186662A (en) * 2011-03-07 2012-09-27 Nec Corp Optical space communication device, communication method thereof, and optical space communication system
JP2023102412A (en) * 2022-01-12 2023-07-25 日本電気株式会社 Laser ranging device, method and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056416A1 (en) * 1998-04-24 1999-11-04 Sharp Kabushiki Kaisha Space-division multiplex full-duplex local area network
KR100394201B1 (en) * 1998-04-24 2003-08-06 샤프 가부시키가이샤 Space-division multiplex local area network
US7099589B1 (en) 1998-04-24 2006-08-29 Sharp Kabushiki Kaisha Space-division multiplex full-duplex local area network
JP2007068158A (en) * 2005-08-05 2007-03-15 Matsushita Electric Ind Co Ltd Space optical transmission apparatus and space optical transmission system
WO2009096405A1 (en) * 2008-01-28 2009-08-06 National Institute Of Information And Communications Technology Space optical communication device and method thereof
JP2011061782A (en) * 2009-09-07 2011-03-24 Micro-Star Internatl Co Ltd Transmission module, and electronic system using the same
JP2012186662A (en) * 2011-03-07 2012-09-27 Nec Corp Optical space communication device, communication method thereof, and optical space communication system
JP2023102412A (en) * 2022-01-12 2023-07-25 日本電気株式会社 Laser ranging device, method and program

Similar Documents

Publication Publication Date Title
US10938476B2 (en) System for optical free-space transmission of a string of binary data
JP6959316B2 (en) High-speed free space optical communication
EP0965190B1 (en) Point-to-multipoint wide area telecommunications network via atmospheric laser transmission through a remote optical router
US6570692B2 (en) Communication network based on the atmospheric transmission of light
US6795655B1 (en) Free-space optical communication system with spatial multiplexing
JPH10233740A (en) Radio communication equipment using free space optical communication link
JPH03109837A (en) Optical data transmission system
EP1166469B1 (en) Atmospheric optical communication
Zhang et al. 50Gb/s Optical Wireless Data Center Network Architecture Using SOA-based Wavelength Selector and AWGR
JP3007494B2 (en) Mobile communication base station equipment
FI933985A (en) DIGITALT TELESYSTEM MED FOERMEDLINGSTEKNISKA SERVERS
US11956009B2 (en) Optical communication system and optical communication method
JP3401750B2 (en) Infrared repeater and transmission system using the same
JPS6210073B2 (en)
JPH0364136A (en) Bidirectional optical communication system
CN107404352A (en) A kind of laser communication gear
JPS60153239A (en) Data communication system
JP2001054161A (en) Optical communication system