JPH0310921B2 - - Google Patents

Info

Publication number
JPH0310921B2
JPH0310921B2 JP55110310A JP11031080A JPH0310921B2 JP H0310921 B2 JPH0310921 B2 JP H0310921B2 JP 55110310 A JP55110310 A JP 55110310A JP 11031080 A JP11031080 A JP 11031080A JP H0310921 B2 JPH0310921 B2 JP H0310921B2
Authority
JP
Japan
Prior art keywords
cable
optical fiber
connection
cables
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55110310A
Other languages
Japanese (ja)
Other versions
JPS5735805A (en
Inventor
Tetsuo Yabuta
Shinya Kojima
Yukyasu Negishi
Kazuo Iwabuchi
Osamu Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11031080A priority Critical patent/JPS5735805A/en
Publication of JPS5735805A publication Critical patent/JPS5735805A/en
Publication of JPH0310921B2 publication Critical patent/JPH0310921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 本発明は海底光ケーブルの構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a submarine optical cable.

光フアイバを伝送媒体とした海底光伝送方式で
は、媒体の損失の低下に伴い、中継間隔が従来の
方式に比べて飛躍的に増大し、数10Kmから100Km
以上を中継器なしに信号伝送が可能になつてきて
いる。そのため海底光ケーブルにもそれだけの長
尺性が要求されるようになつている。
In submarine optical transmission systems that use optical fiber as a transmission medium, as the loss of the medium decreases, the repeater spacing increases dramatically compared to conventional systems, increasing from several tens of kilometers to 100 kilometers.
It is becoming possible to transmit the above signals without a repeater. For this reason, submarine optical cables are now required to be as long as possible.

しかし、ケーブル内に収容する光フアイバ心線
自体は、製造装置の問題や、海底ケーブルに要求
される強度補償のためのスクリーニングを通過さ
せると、せいぜい4〜5Kmから10Kmといつた連続
長のものしか得られない。そのため、従来の海底
ケーブルでは、先に述べた光フアイバ心線の製造
可能な長さに見合つた単長数Kmに合わせてケーブ
ルを製造し、ケーブル相互間の接続は接続部を設
けることで対処していた。そのケーブル接続部の
構成を第1図に示す。
However, the optical fiber itself accommodated in the cable has a continuous length of 4 to 5 km to 10 km at most, due to problems with manufacturing equipment and screening for strength compensation required for submarine cables. I can only get it. Therefore, with conventional submarine cables, the cables are manufactured to a single length of several kilometers, which corresponds to the length that can be manufactured with the optical fiber core mentioned above, and connections between cables are handled by providing connection parts. Was. The configuration of the cable connection section is shown in FIG.

図に示すように、光フアイバ心線1に接続部2
は心線1の接続作業のために余長が延びるが、余
長の処理はケーブルの接続部に設けた円筒状の接
続部スペーサ3に巻きつけることによつて対処し
ている。この余長処理では、光フアイバ心線1は
曲がりによつて光損失が増加するので、曲がりに
よる光損失の増加を抑えるためには、スペーサ3
の直径を60mm以上としなければならず、ケーブル
接続部はケーブル径に比較して非常に太くなる欠
点があつた。その上、布設中の側圧および海底で
の海水圧より保護するため、剛直な円筒殻4で被
覆されている。なお5は中心支持体、6は外装
線、7はブーツを示す。このような構造であるか
ら、布設船のドラムエンジンに巻きつけて布設す
るに際し、接続部が剛直な円筒殻4で保護されて
いるので曲がり難く、そのため剛直な円筒殻4か
らケーブルへの変移部で極端な曲がりが生じ、光
損失の増加と共に耐圧パイプが偏平化するため極
端な劣化等の問題が生じる欠点があつた。さら
に、布設に際しては非常に重く、且つ太い構造の
ため取り扱いが難かしく、布設船のスピードを落
して慎重に扱いながら布設する必要があつた。
As shown in the figure, a connection part 2 is attached to the optical fiber core 1.
The extra length is increased due to the connection work of the core wire 1, but this extra length is dealt with by winding it around a cylindrical connection spacer 3 provided at the connection part of the cable. In this extra length treatment, the optical fiber core 1 increases optical loss due to bending, so in order to suppress the increase in optical loss due to bending, spacer 3
The diameter of the cable had to be 60mm or more, and the cable connection part had the disadvantage of being extremely thick compared to the cable diameter. Moreover, it is covered with a rigid cylindrical shell 4 to protect it from lateral pressure during installation and from sea pressure on the seabed. Note that 5 indicates a center support, 6 indicates an exterior wire, and 7 indicates a boot. Because of this structure, when the cable is laid by wrapping it around the drum engine of a cable laying ship, the connection part is protected by the rigid cylindrical shell 4, so it is difficult to bend, and therefore the transition part from the rigid cylindrical shell 4 to the cable is This resulted in extreme bending, increased optical loss, and flattened pressure pipes, resulting in problems such as extreme deterioration. Furthermore, when laying the cable, it was difficult to handle because of its extremely heavy and thick structure, and it was necessary to slow down the speed of the laying vessel and handle the cable carefully.

本発明はこのような従来の欠点を除去するた
め、光フアイバ心線の接続部を長手方向に分布さ
せてケーブル内に収納して歩留り良く長尺の海底
光ケーブルの製造を可能とし、ケーブル相互間で
のケーブル接続部を除去することにより、布設時
の問題をなくすととも経済的な海底光ケーブル伝
送路の構成を可能としたものである。
In order to eliminate such conventional drawbacks, the present invention makes it possible to manufacture long submarine optical cables with high yield by distributing the connection parts of optical fiber cores in the longitudinal direction and storing them in the cable, and making it possible to manufacture long submarine optical cables with high yield. By eliminating cable connections at the cable terminal, problems during installation can be eliminated and an economical submarine optical cable transmission line can be constructed.

以下本発明の一実施例を図面により詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明海底光ケーブルの一実施例を示
す断面図で、第1図と同一の部品には同一の参照
符号を付した。図において、8は銅の耐圧パイ
プ、9はポリエチレン外被、10はP・Pヤーン
からなる座床、11は外部保護層、12はポリエ
チレンまたはゴム等からなる緩衝層である。
FIG. 2 is a sectional view showing an embodiment of the submarine optical cable of the present invention, and the same parts as in FIG. 1 are given the same reference numerals. In the figure, 8 is a pressure-resistant pipe made of copper, 9 is a polyethylene jacket, 10 is a seat made of P/P yarn, 11 is an external protective layer, and 12 is a buffer layer made of polyethylene, rubber, or the like.

光フアイバ線1はその接続部2とともに例えば
中心支持体5のまわりに撚り合わせ耐圧パイプ8
内に収容している。こうした構造を実現するため
に注意すべきことは、光フアイバの曲がりや、側
圧をできる限り低減するようにしなければならな
いことである。もし、接続部2の近傍の撚り合せ
構造が長手方向と異なることになると、そうした
接続部2やその近傍の光フアイバ心線1には極端
な曲がりが生じたり、耐圧パイプ8をかける際に
その圧縮力によつて側圧がかかり、伝送特性を劣
化させる危険性がある。こうしたことを避けるた
めには、光フアイバ心線1の接続部2が収容され
る部位の構造が他の長手方向の構造とほとんど変
らず極めて平滑に収納されていることが必要で、
したがつて、光フアイバ心線1の接続部2には、
(1)、他の光フアイバ心線1の接続部2の外径と同
等の寸法を有すること、(2)、同じく同等の可とう
性を有すること、(3)、同じく同等の強度を有する
ことが必要である。
The optical fiber 1 together with its connecting part 2 is twisted around a central support 5, for example, and is connected to a pressure-resistant pipe 8.
It is housed inside. In order to realize such a structure, care must be taken to reduce bending of the optical fiber and lateral pressure as much as possible. If the twisted structure near the connection part 2 is different from the longitudinal direction, extreme bends may occur in the connection part 2 and the optical fiber core 1 in the vicinity, and when the pressure-resistant pipe 8 is connected, There is a risk that lateral pressure will be applied due to the compression force, which will deteriorate the transmission characteristics. In order to avoid this, it is necessary that the structure of the part of the optical fiber core 1 in which the connecting part 2 is accommodated is very smooth and does not differ much from the other longitudinal structure.
Therefore, at the connection part 2 of the optical fiber core 1,
(1) It has the same dimensions as the outer diameter of the connection part 2 of the other optical fiber core 1, (2) It has the same flexibility, and (3) It has the same strength. It is necessary.

本発明ケーブルに用いる光フアイバ心線1の接
続部2の一実施例及び他の実施例を第3図及び第
4図に示す。一般に光フアイバは光フアイバ素線
2aにシリコンゴムの緩衝層2bナイロン被覆2
cなどの緩衝材等をかけて取り扱いを容易にした
心線で用いられる。
One embodiment and other embodiments of the connecting portion 2 of the optical fiber core 1 used in the cable of the present invention are shown in FIGS. 3 and 4. Generally, an optical fiber has a silicone rubber buffer layer 2b and a nylon coating 2a on an optical fiber strand 2a.
It is used with a core wire covered with a cushioning material such as c to make it easier to handle.

第3図の実施例は、前記の光フアイバ心線相互
について、まず光フアイバ素線2aを融着接続
し、心線部分のナイロン2cと同じ材料でモール
ド2dして補強したものである。このような構造
であるから接続部2の外径は、心線外径とほぼ同
一程度にでき、また可とう性に優れており、他の
心線部と全く同様に取扱うことが可能である。
In the embodiment shown in FIG. 3, the optical fiber cores 2a are first fusion-spliced and reinforced by molding 2d with the same material as the nylon 2c of the core wires. Because of this structure, the outer diameter of the connecting part 2 can be made almost the same as the outer diameter of the core wire, and it has excellent flexibility, so it can be handled in exactly the same way as other core wire parts. .

また、第4図の他の実施例は細径鉄パイプスリ
ーブ2eを用いた接続例で、パイプスリーブ2e
の両端をナイロン被覆2cに接着することで固定
している。さらに鉄パイプスリーブ2eの代わり
に、熱収縮チユーブを用いて接続を行うことも可
能である。
Further, another embodiment shown in FIG. 4 is a connection example using a small diameter iron pipe sleeve 2e.
It is fixed by adhering both ends to the nylon coating 2c. Furthermore, instead of the iron pipe sleeve 2e, it is also possible to make the connection using a heat shrink tube.

このように、外径変化が殆んどない心線接続が
達成できるので、心線接続部を他の心線と同時に
撚り合わせることなどによりユニツト集合化し容
易に耐圧パイプ8内に収容することができる。従
つて、あらかじめ光フアイバ心線1の接続を行つ
ておけば、本来の光フアイバ心線1の長さがどん
なに短くても、いかような長さの長尺の心線が得
られ、その長尺の心線を製造ラインに供給するこ
とで、心線接続部2を耐圧パイプ8内に収容した
長尺の海底光ケーブルができる。しかし、心線接
続部2は機械強度が弱いこと、また接続部2の外
径が心線1に比較して若干太くなること、さらに
使用される光フアイバの製造長にはもともとばら
つきが大きいことなどから、機械強度の弱い部分
の分散および耐圧パイプ8内の収容を容易にする
ためケーブル長手方向に分散させて心線接続部を
配置したものである。
In this way, it is possible to achieve a core wire connection with almost no change in the outer diameter, so by twisting the core wire connection portion at the same time as other core wires, etc., the unit can be assembled and easily accommodated in the pressure-resistant pipe 8. can. Therefore, if the optical fiber core wire 1 is connected in advance, no matter how short the original length of the optical fiber core wire 1 is, a long core wire of any length can be obtained and the length can be adjusted. By supplying the long core wire to the production line, a long submarine optical cable in which the core wire connection portion 2 is housed in the pressure-resistant pipe 8 can be produced. However, the mechanical strength of the fiber connection part 2 is weak, the outer diameter of the connection part 2 is slightly thicker than that of the fiber core 1, and furthermore, there is a large variation in the manufacturing length of the optical fiber used. For this reason, the core wire connection portions are arranged to be distributed in the longitudinal direction of the cable in order to disperse the portions with weak mechanical strength and facilitate accommodation within the pressure-resistant pipe 8.

このようにすると、ケーブル相互間に接続部を
設けることなく必要な長さ、例えば数10Km〜100
Km以上の中継距離に相当する長さのケーブルが一
連長で得られることになるばかりでなく、従来
は、ケーブルの製造単長に満たなければ使用でき
なかつた心線や、単長に合わずに廃棄されていた
端数なども全て、有効に利用できるようになりそ
の経済的メリツトは極めて大きいものになる。ま
たケーブル接続部に起因する欠点即ち、接続作用
の余長処理対策による接続部の大口径化、水圧保
護のための鋼直な円筒殻からケーブル変移部での
ドラムエンジン通過時に発生する極端な曲がりに
よる光損失増加及び耐圧パイプの偏平化による耐
圧の劣化等を防止し、また非常に重く、大口径に
なることによる布設作業の困難性の問題を容易に
除去することができる。
In this way, the required length, e.g. several tens of km to 100 km, can be achieved without providing connections between cables.
Not only is it possible to obtain cables with a length equivalent to a relay distance of Km or more in one continuous length, but it is also possible to use core wires that previously could not be used unless they were within the manufacturing unit length of the cable, and cables that did not fit the unit length. All the fractions that were previously discarded can now be used effectively, and the economic benefits are extremely large. In addition, there are drawbacks caused by the cable connection, such as the large diameter of the connection due to the extra length of the connection, and the extreme bending that occurs when the cable passes through the drum engine at the transition point from the straight cylindrical shell for water pressure protection. It is possible to prevent an increase in optical loss caused by the pipe and a deterioration in pressure resistance due to the flattening of the pressure-resistant pipe, and easily eliminate the problem of difficulty in installation work due to the extremely heavy weight and large diameter.

以上詳細に説明したように、光フアイバ心線の
接続部を海底光ケーブル耐圧パイプ内にその断面
構造がどこでも同等となるよう分布して収納する
ことにより、ケーブル相互間に接続部を設けるこ
となく、安定な特性を有し、かつ長尺のケーブル
を製作することができ、従つて大口径の重量の大
きい接続部に伴う布設の困難性の除去や使用フア
イバ心線の効率化、歩留り向上による経済的メリ
ツトの向上を図れる効果がある。
As explained in detail above, by distributing and storing the connecting parts of the optical fibers in the pressure-resistant submarine optical cable pipe so that the cross-sectional structure is the same everywhere, there is no need to provide connecting parts between the cables. It has stable characteristics and can be made into long cables, which eliminates installation difficulties associated with large-diameter and heavy connections, improves the efficiency of fiber cores used, and improves yields. This has the effect of improving economic benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の海底光ケーブル接続部の断面
図、第2図は本発明海底光ケーブルの一実施例を
示す断面図、第3図,第4図は本発明の実施例に
用いる心線接続部の断面図である。 1……光フアイバ心線、2……接続部、5……
中心支持体、6……外装線、8……耐圧パイプ、
9……ポリエチレン外被、10……座床、11…
…外部保護層、12……緩衝層。
Fig. 1 is a sectional view of a conventional submarine optical cable connection section, Fig. 2 is a sectional view showing an embodiment of the submarine optical cable of the present invention, and Figs. 3 and 4 are core connection sections used in the embodiment of the present invention. FIG. 1... Optical fiber core wire, 2... Connection part, 5...
Center support, 6... Exterior wire, 8... Pressure resistant pipe,
9... Polyethylene outer cover, 10... Seat floor, 11...
...Outer protective layer, 12...Buffer layer.

Claims (1)

【特許請求の範囲】[Claims] 1 製造可能な長さの光フアイバ心線を接続部の
外径が他のフアイバ部分とほぼ同じになるように
接続して長尺の光フアイバ心線とした多数本を、
その接続部をそれぞれ長手方向に分布させて集合
し、該接続部を含む部位の断面構造と接続部を含
まない部位の断面構造を同じにしケーブル内に収
納し、ケーブル同志の接続部を設けないでケーブ
ルを構成せしめたことを特徴とする海底光ケーブ
ル。
1 A large number of optical fiber cores of a manufacturable length are connected so that the outer diameter of the connecting part is approximately the same as that of other fiber parts to form a long optical fiber core wire,
The connection parts are distributed in the longitudinal direction and gathered together, and the cross-sectional structure of the part including the connection part is the same as the cross-sectional structure of the part not including the connection part, and it is housed in the cable, and there are no connection parts between cables. A submarine optical cable characterized in that the cable is constructed of:
JP11031080A 1980-08-13 1980-08-13 Submarine optical cable Granted JPS5735805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031080A JPS5735805A (en) 1980-08-13 1980-08-13 Submarine optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031080A JPS5735805A (en) 1980-08-13 1980-08-13 Submarine optical cable

Publications (2)

Publication Number Publication Date
JPS5735805A JPS5735805A (en) 1982-02-26
JPH0310921B2 true JPH0310921B2 (en) 1991-02-14

Family

ID=14532461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031080A Granted JPS5735805A (en) 1980-08-13 1980-08-13 Submarine optical cable

Country Status (1)

Country Link
JP (1) JPS5735805A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963308U (en) * 1982-10-20 1984-04-26 住友電気工業株式会社 Termination part of tape type optical fiber cable
JPH0753049Y2 (en) * 1987-05-14 1995-12-06 サンクス株式会社 Fiber unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022275A (en) * 1973-07-03 1975-03-10
JPS5437958U (en) * 1977-08-19 1979-03-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022275A (en) * 1973-07-03 1975-03-10
JPS5437958U (en) * 1977-08-19 1979-03-13

Also Published As

Publication number Publication date
JPS5735805A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
US4143942A (en) Fiber optic cable and method of making same
JPH0223845B2 (en)
KR100511116B1 (en) Loose tube optical cable having straight aggregation structure
CN1004519B (en) Under sea cable for optical-fiber communication
JP2001210150A (en) Cable in particular submarine cable and its manufacturing method
JPS581107A (en) Optical cable
CN105845257A (en) Easily assembled self-supporting cable
CN108389651A (en) Three core super flexible cables of one kind and preparation method thereof
GB1598540A (en) Electro-optical cables
CN209747202U (en) Underwater communication cable
JPH0310921B2 (en)
US6424770B1 (en) Optical cable
US5097526A (en) Connector for two optical cables
JPH0136328B2 (en)
CN215641986U (en) Novel super-strong rat-proof small-diameter optical cable with long service life
GB1583276A (en) Optical cables
KR20200112242A (en) Optical fiber and power line composite cable
KR101713980B1 (en) I Bolt Clamp and Bonding Method of Supporting Wire Using It
CN218728240U (en) Large-core-number anti-rodent compression-resistant optical cable
CN215813476U (en) Multi-core communication optical cable for indoor wiring
CN203643652U (en) A three-unit unidirectional spiral intertwist layer intertwist type optical cable
JP2557097Y2 (en) Optical composite submarine cable
JPH0214002Y2 (en)
JPH0524098Y2 (en)
JPH087363Y2 (en) Optical cable connection