JPH03109208A - Production of high purity silicon nitride powder - Google Patents

Production of high purity silicon nitride powder

Info

Publication number
JPH03109208A
JPH03109208A JP24314589A JP24314589A JPH03109208A JP H03109208 A JPH03109208 A JP H03109208A JP 24314589 A JP24314589 A JP 24314589A JP 24314589 A JP24314589 A JP 24314589A JP H03109208 A JPH03109208 A JP H03109208A
Authority
JP
Japan
Prior art keywords
silicon nitride
laser beam
gas
reaction
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24314589A
Other languages
Japanese (ja)
Other versions
JP2784060B2 (en
Inventor
Yoshiyuki Nakamura
中村 美幸
Masahiko Nakajima
征彦 中島
Akio Yoshida
昭夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1243145A priority Critical patent/JP2784060B2/en
Publication of JPH03109208A publication Critical patent/JPH03109208A/en
Application granted granted Critical
Publication of JP2784060B2 publication Critical patent/JP2784060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain high purity isometric granules by effecting the reaction of silicon halide with ammonia under irradiation of CO2 gas laser beam to obtain an amorphous reaction product and then heating the product in a nonoxidative atmosphere. CONSTITUTION:Silicon halide (e.g. SiCl4) and ammonia are mixed with the molar ratio of NH3/silicon halide <=30 to prepare the gaseous starting material. The gaseous starting material is heated to 1000-1500 deg.C by irradiation of a CO2 gas laser beam having >=100w/cm<2> power from the perpendicular direction to the gas flow for >=0.01sec, which effects the reaction to obtain the amorphous product. The product is then heated in a nonoxidative atmosphere at 1400-1600 deg.C for 0.5-10 hours to obtain Si3N4 powder comprising isometric granules which contain <=1.5% oxygen, <=0.05% metal impurity, >=90% alpha-fraction and 0.5-3mum particle size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化ケイ素粉末の製法、特に、粒子径0.5
〜3μmの等軸的粒状粒子からなる高純度窒化ケイ素粉
末の製法に関する。このような窒化ケイ素は、高温構造
材料としてガスタービン部材、ノズル、軸受等に利用さ
れるものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing silicon nitride powder, particularly a method for producing silicon nitride powder with a particle size of 0.5.
The present invention relates to a method for producing high-purity silicon nitride powder consisting of equiaxed granular particles of ~3 μm. Such silicon nitride is used as a high-temperature structural material in gas turbine components, nozzles, bearings, and the like.

〔従来の技術〕[Conventional technology]

従来、化学的に高純度で、α型窒化ケイ素の含有率が高
く、粒子径が微細でかつその形状が等軸的粒状である窒
化ケイ素粉末は、もっばら、(水素化)ハロゲン化ケイ
素とアンモニアとを反応させてシリコンイミドもしくは
非晶質の反応生成物(非晶質窒化ケイ素とも言われてい
る。以下、そのように言うこともある。)を合成し、そ
れを窒素あるいはアンモニア雰囲気下で高温加熱して結
晶化する方法により製造されている。(例えば、特開昭
59−21506号公報、特開昭59−21507号公
報、窯業協会誌80 (3) 1972P114〜12
0等)。
Conventionally, silicon nitride powder, which is chemically highly pure, has a high content of α-type silicon nitride, has a fine particle size, and has an equiaxed granular shape, has mostly been composed of (hydrogenated) silicon halides. Silicon imide or an amorphous reaction product (also referred to as amorphous silicon nitride, hereinafter also referred to as such) is synthesized by reacting with ammonia, and then it is synthesized in a nitrogen or ammonia atmosphere. It is manufactured by a method of crystallization by heating at high temperatures. (For example, JP-A-59-21506, JP-A-59-21507, Ceramics Association Journal 80 (3) 1972P114-12
0 etc.).

しかしながら、この方法では、シリコンイミドもしくは
非晶質の反応生成物を一度系外に取出し、その後、等軸
状にせしめるべく操作、例えば種添加に伴う混合や摩砕
等を行なう必要があるため、工程が複雑になったり一部
大気暴露により窒化ケイ素粉末中の酸素や金属不純物が
増加する欠点があった・ (発明が解決しようとする課題〕 本発明者らは、これらの欠点を解決することを目的に種
々検討した結果、ハロゲン化ケイ素とアンモニアとを反
応させて得られた非晶質の反応生放物は、電子顕微鏡観
察によれば500〜1 、000人の球状の一次粒子の
かなりの強固な凝集粒子になっており、理由はよくわか
らないが、それが等軸的粒状窒化ケイ素を得るための重
要な要因になっていることをつきとめた。そこでそれを
系外に取出すことなしに何んらかの操作で解きほぐし、
そしてそこに何んらかの窒化ケイ素の種(核)を導入す
ることができないかという観点にたってさらに検討を進
めたところ、その手段としてC08ガスレーザビームを
用いればよいことを見い出し、本発明に到達したもので
ある。
However, in this method, it is necessary to take the silicon imide or amorphous reaction product out of the system and then perform operations to make it equiaxed, such as mixing and grinding due to seed addition. There were disadvantages in that the process became complicated and oxygen and metal impurities in the silicon nitride powder increased due to partial exposure to the atmosphere. As a result of various studies for the purpose of The reason for this is not clear, but we found that this is an important factor in obtaining equiaxed granular silicon nitride.Therefore, without taking it out of the system, we Unravel it by some operation,
After further investigation from the viewpoint of whether some kind of silicon nitride seed (nucleus) could be introduced there, it was discovered that a C08 gas laser beam could be used as a means to do so, and the present invention was developed. It has been reached.

CO□ガスレーザビームを用いて窒化ケイ素微粒子を合
成する方法は公知である(例えば、特開昭60−515
39号公報)が、この方法は、CO!ガスレーザビーム
の波長1O06μmと同波長の赤外吸収帯を持つSiH
4による超微粉に主眼を置いたものであり、本発明のよ
うに非晶質窒化ケイ素粉末の凝集・架橋を解きほぐすこ
とにより、窒化ケイ素の種(核)を導入し等軸状の窒化
ケイ素粉末を合成するという製法とは異なるものである
A method of synthesizing silicon nitride fine particles using a CO□ gas laser beam is known (for example, Japanese Patent Laid-Open No. 60-515
39), but this method is CO! SiH with an infrared absorption band of the same wavelength as the gas laser beam wavelength of 1006μm
The main focus is on ultrafine powder according to 4, and by loosening agglomeration and crosslinking of amorphous silicon nitride powder as in the present invention, silicon nitride seeds (nuclei) are introduced and equiaxed silicon nitride powder is produced. This is different from the manufacturing method of synthesizing.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、ハロゲン化ケイ素とアンモニアと
を、CO!ガスレーザビーム照射により反応させて、非
晶質の反応生成物を得、それを非酸化性雰囲気下、温度
1.400〜1.600℃で0.5〜10時間加熱する
ことを特徴とする等軸的粒状粒子からなる高純度窒化ケ
イ素粉末の製法である。
That is, the present invention combines silicon halide and ammonia with CO! The reaction is caused by gas laser beam irradiation to obtain an amorphous reaction product, which is then heated in a non-oxidizing atmosphere at a temperature of 1.400 to 1.600°C for 0.5 to 10 hours. This is a method for producing high purity silicon nitride powder consisting of axial granular particles.

以下、更に詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明は、先ず、第1段階として、ハロゲン化ケイ素と
アンモニアとを気相反応させるに際し、CO,ガスレー
ザビームを照射して、窒化ケイ素の種(核)を一部生じ
せしめた非晶質の反応生成物粉末(非晶質窒化ケイ素粉
末)を合成する。一般に、レーザビームで粉末を合成し
ようとする場合、レーザの固有波長に近い赤外吸収帯を
持つガスが必要であるが、本発明に用いたハロゲン化ケ
イ素にはそれがない、しかし、NH3の赤外吸収帯が1
0.5μmであることより(化学便覧(改訂3版)、日
本化学全編、ff−609(1984))、その赤外吸
収帯を利用できないか種々検討した結果、N11.流量
を増すに従ってレーザビーム照射特有の反応炎が生じる
ことを見い出すと共に、反応炎が生じないNH3置にお
いてもそこにハロゲン化ケイ素例えば5iC1aガスを
通過させて得られた非晶質の反応生成物(非晶質窒化ケ
イ素)粉末を加熱結晶化させると窒化ケイ素が等軸的粒
状粒子になることを確認した。つまり、超微粉が生成す
るような反応炎でなくても使用するレーザビーム固有波
長と同領域の赤外吸収帯を持つガス存在下で気相反応を
行なえば、前述した凝集粒子が解放され、更に、・微粒
の窒化ケイ素の種(核)が導入された形となることを見
い出したものである。
In the first step of the present invention, silicon halide and ammonia are reacted in a gas phase by irradiating CO and gas laser beams to form amorphous silicon nitride seeds (nuclei). A reaction product powder (amorphous silicon nitride powder) is synthesized. Generally, when attempting to synthesize powder using a laser beam, a gas with an infrared absorption band close to the laser's characteristic wavelength is required, but the silicon halide used in the present invention does not have this. Infrared absorption band is 1
Since it is 0.5 μm (Chemistry Handbook (revised 3rd edition), Nippon Kagaku Zenhen, ff-609 (1984)), we conducted various studies to see if we could utilize its infrared absorption band, and found that N11. It was discovered that as the flow rate was increased, a reaction flame peculiar to laser beam irradiation was generated, and even in an NH3 environment where a reaction flame was not generated, an amorphous reaction product obtained by passing silicon halide gas such as 5iC1a gas ( It was confirmed that silicon nitride becomes equiaxed granular particles when amorphous silicon nitride powder is heated and crystallized. In other words, even if the reaction flame does not produce ultrafine powder, if the gas phase reaction is carried out in the presence of a gas with an infrared absorption band in the same region as the specific wavelength of the laser beam used, the agglomerated particles mentioned above will be released. Furthermore, it has been discovered that fine particles of silicon nitride seeds (nuclei) are introduced.

ここで、非晶質の反応生成物(非晶質窒化ケイ素)とは
、前掲した窯業協会誌にも示されているように、X線回
折図において、2θ(CuKtt)がの特性回折が認め
られないものをいう。
Here, the amorphous reaction product (amorphous silicon nitride) is defined as having a characteristic diffraction of 2θ (CuKtt) in the X-ray diffraction diagram, as shown in the above-mentioned Ceramics Association magazine. refers to something that cannot be done.

以上のことより、本発明に用いるNlh/ハロゲン化ケ
イ素の反応ガスモル比は、温度により異なるが、下記反
応式のモル比並びに経済的事由を加味して30未満程度
で十分と考えられる。
From the above, although the reaction gas molar ratio of Nlh/silicon halide used in the present invention varies depending on the temperature, it is considered that a molar ratio of less than 30 is sufficient, taking into consideration the molar ratio of the reaction formula below and economic reasons.

SiX4+6NIlz=Si(NH)z +4NHJた
だし、Xはハロゲン また、その下限値については特別な制限はないが、1以
下になるとCO□ガスレーザビームの照射効果が小さく
なり、窒化ケイ素の粒径が大きくなったり一部針状晶が
生じて好ましくな(なる。
SiX4+6NIlz=Si(NH)z+4NHJ However, X is a halogen.Although there is no particular restriction on its lower limit, if it is less than 1, the irradiation effect of the CO□ gas laser beam will become smaller and the particle size of silicon nitride will increase. However, some needle-like crystals may be formed, which is not desirable.

本発明では、ハロゲン化ケイ素とCO□ガスレーザビー
ムとには何んらの結びつきがないので、本発明で使用さ
れるハロゲン化ケイ素としては、5iCIla 、5i
Braなどの他に5illzCII z 、5illi
Cl 。
In the present invention, since there is no connection between silicon halide and the CO□ gas laser beam, the silicon halides used in the present invention include 5iCIla, 5i
In addition to Bra, 5illzCII z, 5illi
Cl.

SiHzBrg 、5illJr等をも使用、できる。SiHzBrg, 5illJr, etc. can also be used.

これらは単独又は混合して用いられる。These may be used alone or in combination.

反応温度は1,000℃以下であるが好ましくは150
℃以下である。1.000℃を越える温度ではCO□ガ
スレーザビーム10.6μm波長と同領域の赤外吸収帯
を持つアンモニアガスの分解が生シる。
The reaction temperature is 1,000°C or less, preferably 150°C.
below ℃. At temperatures exceeding 1.000° C., decomposition of ammonia gas occurs, which has an infrared absorption band in the same region as the 10.6 μm wavelength of the CO□ gas laser beam.

co2ガスレーザビームは原料ガスの流れの方向と交差
する方向好ましくは直交する方向から照射する。レーザ
用の窓材としてはZn −Se等の材料が使用される。
The CO2 gas laser beam is irradiated from a direction intersecting, preferably perpendicular to, the flow direction of the raw material gas. Materials such as Zn-Se are used as the window material for the laser.

CO□ガスレーザビームの強度としてはI cd当り1
00ワット以上あれば十分であり、その時のガス流速は
レーザ照射部での滞留時間が0.01秒以上になるよう
に調整する。反応器としては温度にもよるが、SUS 
、石英、炭化ケイ素、黒鉛等の材質が使用される。
The intensity of the CO□ gas laser beam is 1 per I cd.
00 watts or more is sufficient, and the gas flow rate at that time is adjusted so that the residence time at the laser irradiation part is 0.01 seconds or more. Depending on the temperature, SUS can be used as a reactor.
, quartz, silicon carbide, graphite, etc. are used.

次に、第2工程の加熱結晶化について説明する。Next, the second step of heating crystallization will be explained.

CO□ガスレーザビームを照射して得られた非晶質の反
応生成物(非晶質窒化ケイ素)粉末は更に高温加熱し、
副生したNI!、(lを除去し結晶化される。結晶化の
ための加熱はN2、N2、^r11冒es N11z等
の非酸化性雰囲気下、温度1.400〜1.600℃で
0.5〜10時間行う。加熱温度が1.400℃未満で
は結晶化が十分に進まず、また、1,600℃を越える
とβ型窒化ケイ素が生成し高強度焼結体の原料としては
適当でなくなる。加熱時間は0.5時間以上でないと脱
ハロゲンが十分でなく、また、10時間を越えると粒成
長がおこり、得られる粉末粒子径が3μmを越え焼結性
が低下する。
The amorphous reaction product (amorphous silicon nitride) powder obtained by irradiation with a CO□ gas laser beam is further heated to a high temperature,
NI was born as a byproduct! , (l is removed and crystallized. Heating for crystallization is in a non-oxidizing atmosphere such as N2, N2, If the heating temperature is less than 1,400°C, crystallization will not proceed sufficiently, and if it exceeds 1,600°C, β-type silicon nitride will be produced, making it unsuitable as a raw material for high-strength sintered bodies. If the time is not 0.5 hours or more, dehalogenation will not be sufficient, and if it exceeds 10 hours, grain growth will occur and the resulting powder particle size will exceed 3 μm and sinterability will deteriorate.

加熱結晶化の方法には特に制限はなく、特開平l−10
0005号公報に示す連続炉でも良く、さらには、るつ
ぼ炉のようなバッチ式でも十分に本発明の目的は達せら
れる。
There are no particular restrictions on the method of heating crystallization, and there is no particular restriction on the heating crystallization method.
A continuous furnace as shown in Japanese Patent No. 0005 may be used, and even a batch type furnace such as a crucible furnace can sufficiently achieve the object of the present invention.

本発明の方法に従うとき、得られる窒化ケイ素粉末は酸
素量1.5%以下、Ca、Feなどの金属不純物10.
05%以下と非常に高純度で、α型窒化ケイ素の含有率
もα分率で90%以上と高く、しかもその粒子形状は等
軸的粒状で、その大きさも0.5〜3μmと細かいもの
で、焼結体原料として非常にすぐれたものである。なお
、窒化ケイ素粉末の等軸的粒状粒子の大きさは、NH3
/ハロゲン化ケイ素の反応ガスモル比、N113 it
、C0wガスレーザビームの強度がそれぞれ大であれば
ある程小さくなる。
When the method of the present invention is followed, the obtained silicon nitride powder has an oxygen content of 1.5% or less and a metal impurity such as Ca or Fe of 10%.
It has a very high purity of less than 0.05%, and the α-type silicon nitride content is high, with an alpha fraction of more than 90%.Moreover, its particle shape is equiaxed, and its size is as small as 0.5 to 3 μm. Therefore, it is an excellent raw material for sintered bodies. Note that the size of the equiaxed granular particles of silicon nitride powder is NH3
/ reaction gas molar ratio of silicon halide, N113 it
, C0w gas laser beam, the larger the intensity, the smaller the intensity becomes.

〔実施例〕〔Example〕

以下、実施例と比較例をあげてさらに具体的に説明する
Hereinafter, a more specific explanation will be given with reference to Examples and Comparative Examples.

実施例1〜6、比較例1〜5 窒素ガスをキャリヤーとして、市販の5iC1゜及びア
ンモニアガス(99,99%)を用い、第1表に示す非
晶質窒化ケイ素粉末を合成した。CO。
Examples 1 to 6, Comparative Examples 1 to 5 Amorphous silicon nitride powders shown in Table 1 were synthesized using commercially available 5iC1° and ammonia gas (99.99%) with nitrogen gas as a carrier. C.O.

ガスレーザビーム導入方法については、レーザ光入口及
び出口に相当する部分にZn −Se窓を備えた石英反
応管(401’X24OL)を用いた。また、CO□ガ
ス発振器は600Wのスペクトロフィジックス社製の装
置を用い、Zn −Seレンズとフィルターを通して1
−程度に集光し照射した。
As for the gas laser beam introduction method, a quartz reaction tube (401' x 24OL) was used, which was equipped with Zn-Se windows at the portions corresponding to the laser beam inlet and outlet. In addition, the CO□ gas oscillator uses a 600W device manufactured by Spectrophysics, and the CO□ gas oscillator is
The light was focused and irradiated to - degree.

得られた非晶質の反応生成物(非晶質窒化ケイ素)粉末
は、大気に十分注意し、グローボックス内で黒鉛製ルツ
ボに充填しビニール袋で覆い速かに電気炉に入れ、第1
表に示す条件で加熱結晶化した。
The obtained amorphous reaction product (amorphous silicon nitride) powder was filled into a graphite crucible in a glow box, covered with a plastic bag, and immediately placed in an electric furnace, paying careful attention to the atmosphere.
It was heated and crystallized under the conditions shown in the table.

得られた窒化ケイ素粉末について、酸素、金属不純物、
α分率、粒子形態及び粒子径の測定並びにSEM写真観
察を実施した。第1図及び第2図には、それぞれ実施例
1及び比較例1によって得られた窒化ケイ素粉末の粒子
構造を示す走査型電子顕微鏡写真を示した。
Regarding the obtained silicon nitride powder, oxygen, metal impurities,
Measurement of α fraction, particle morphology and particle diameter, and SEM photograph observation were carried out. FIGS. 1 and 2 show scanning electron micrographs showing the particle structures of silicon nitride powders obtained in Example 1 and Comparative Example 1, respectively.

(1)、酸素(重量%)jLECO社製TC−136型
0/N同時分析計による。
(1) Oxygen (wt%) by jLECO TC-136 type 0/N simultaneous analyzer.

(2)、金属不純物(ppm):J I S−G −1
322に準拠した0表にはFe5Al。
(2), Metal impurities (ppm): JIS-G-1
Fe5Al in the 0 table according to 322.

Cas Mgの合計を示した。Shows the total of Cas Mg.

(3)、α分率(%)  :理学電機社製のガイガーフ
ランクスRAD−■B型の X線回折による。
(3) α fraction (%): Based on X-ray diffraction using Geiger Franks RAD-■B type manufactured by Rigaku Denki Co., Ltd.

(4)1粒子形態及び粒子径:日本電子■製走査型電子
顕微鏡による。
(4) Single particle morphology and particle size: Based on a scanning electron microscope manufactured by JEOL ■.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ハロゲン化ケイ素とNi1sガスを原
料として合成された非晶質の反応生成物(非晶質窒化ケ
イ素)粉末に、種添加や摩砕等の操作を加えることなく
簡単に、酸素や金属不純物の含有量の小さい高純度な等
軸的粒状粒子を製造することができる。
According to the present invention, an amorphous reaction product (amorphous silicon nitride) powder synthesized using silicon halide and Ni1s gas as raw materials can be easily processed without adding seeds or milling. High purity equiaxed granular particles with low content of oxygen and metal impurities can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ実施例1及び比較例1で
得られた窒化ケイ素粉末の粒子構造を示す倍率s、 o
 o o倍及び10.000倍のSEM写真である。
Figures 1 and 2 show the particle structure of the silicon nitride powder obtained in Example 1 and Comparative Example 1, respectively, at magnifications s and o.
These are SEM photographs at 0x and 10.000x.

Claims (1)

【特許請求の範囲】[Claims] 1、ハロゲン化ケイ素とアンモニアとを、CO_2ガス
レーザビーム照射により反応させて、非晶質の反応生成
物を得、それを非酸化性雰囲気下、温度1,400〜1
,600℃で0.5〜10時間加熱することを特徴とす
る等軸的粒状粒子からなる高純度窒化ケイ素粉末の製法
1. Silicon halide and ammonia are reacted by CO_2 gas laser beam irradiation to obtain an amorphous reaction product, which is heated under a non-oxidizing atmosphere at a temperature of 1,400 to 1
, a method for producing high-purity silicon nitride powder consisting of equiaxed granular particles, characterized by heating at 600° C. for 0.5 to 10 hours.
JP1243145A 1989-09-19 1989-09-19 Manufacturing method of high purity silicon nitride powder Expired - Fee Related JP2784060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243145A JP2784060B2 (en) 1989-09-19 1989-09-19 Manufacturing method of high purity silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243145A JP2784060B2 (en) 1989-09-19 1989-09-19 Manufacturing method of high purity silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH03109208A true JPH03109208A (en) 1991-05-09
JP2784060B2 JP2784060B2 (en) 1998-08-06

Family

ID=17099459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243145A Expired - Fee Related JP2784060B2 (en) 1989-09-19 1989-09-19 Manufacturing method of high purity silicon nitride powder

Country Status (1)

Country Link
JP (1) JP2784060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432677A (en) * 2021-06-04 2022-12-06 中国科学院过程工程研究所 System and method for preparing high-quality silicon nitride powder by impinging stream coupling fluidized bed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432677A (en) * 2021-06-04 2022-12-06 中国科学院过程工程研究所 System and method for preparing high-quality silicon nitride powder by impinging stream coupling fluidized bed
CN115432677B (en) * 2021-06-04 2024-03-22 中国科学院过程工程研究所 System and method for preparing high-quality silicon nitride powder by impinging stream coupling fluidized bed

Also Published As

Publication number Publication date
JP2784060B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH0134925B2 (en)
USRE41575E1 (en) Crystalline turbostratic boron nitride powder and method for producing same
JPH08508000A (en) Method for producing ultrafine aluminum nitride powder
US4716028A (en) Process for preparation of high-type silicon nitride powder
JPS6111886B2 (en)
JPH03109208A (en) Production of high purity silicon nitride powder
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
US5665326A (en) Method for synthesizing titanium nitride whiskers
JPS621564B2 (en)
JPS6111885B2 (en)
JPS6042209A (en) Manufacture of fine isometric silicon nitride powder of high purity
JPH0829923B2 (en) Silicon nitride powder
JPS6132244B2 (en)
JPS60195008A (en) Production of silicon nitride powder
Li et al. Synthesis and characterization of ultrafine Si powders from laser induced SiH4 gas reactions
JPH05186211A (en) Production of fine powdery silicon carbide
JPS60155509A (en) Preparation of fine powder of high-purity silicon nitride of isometric system
JPH01290511A (en) Production of crystalline silicon nitride
JPS62148308A (en) Preparation of pulverous silicon nitride
JPS6259049B2 (en)
JPS60239316A (en) Manufacture of hyperfine sic powder
JPS6048446B2 (en) Method for manufacturing silicon nitride powder
JPS62105913A (en) Production of fine silicon carbide powder
JPH0492804A (en) Production of beta type silicon nitride powder
JPS60226404A (en) Production of isometric silicon nitride powder of high purity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees