JPH03108620A - Detecting apparatus of radiant heat - Google Patents

Detecting apparatus of radiant heat

Info

Publication number
JPH03108620A
JPH03108620A JP1247631A JP24763189A JPH03108620A JP H03108620 A JPH03108620 A JP H03108620A JP 1247631 A JP1247631 A JP 1247631A JP 24763189 A JP24763189 A JP 24763189A JP H03108620 A JPH03108620 A JP H03108620A
Authority
JP
Japan
Prior art keywords
temperature
heat
sensor
radiant heat
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247631A
Other languages
Japanese (ja)
Other versions
JPH076842B2 (en
Inventor
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1247631A priority Critical patent/JPH076842B2/en
Publication of JPH03108620A publication Critical patent/JPH03108620A/en
Publication of JPH076842B2 publication Critical patent/JPH076842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent deterioration of the detecting accuracy by providing an operating means for calculating quantities of radiant heat based on the heat generating amount of a heat generating means and a temperature signal of a radiation sensor upon receipt of outputs of a heat generating amount controlling means and the radiation sensor. CONSTITUTION:A controller 5 controls the heat generating amount q0 of a thermoelectric element 2A so that a sensor temperature Ts detected by a surface temperature sensor 1 becomes equal to a peripheral air temperature Ta detected by an air temperature sensor 3. A wall temperature or a floor temperature Tr is obtained based on the sensor temperature Ts detected by the sensor 1 and heat generating amount q0 by an operating device 7. A warm heat or cool heat is added to the sensor 1 at this time so that the temperature Ts becomes equal to the temperature Ta, and therefore, a radiant heat qa from the air therearound to the sensor 1 is replaced with a supplied heat q0 of the element 2A. Accordingly, the temperature Tr can be detected from the amount of heat q0 and temperature signal of the sensor 1 without consideration taken into the conductivity of the thermal convection of the wind. As a result, the detecting accuracy of the radiant heat is prevented from being deteriorated by influences of the wind velocity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、輻射センサの特性変化に基づき輻射熱を検知
するようにした輻射熱検知装置に係り、特に、風の影響
による輻射熱検知精度の劣化防止対策に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a radiant heat detection device that detects radiant heat based on changes in the characteristics of a radiant sensor, and in particular, to prevent deterioration of radiant heat detection accuracy due to the influence of wind. Regarding countermeasures.

(従来の技術) 従来より、輻射熱検知装置として、例えば実開昭61−
197465号公報に開示される如く、第9図に示すよ
うに、温度己より電気抵抗特性が変化する温度センサ(
a)を断熱材(b)で囲まれた空間(C)内に配置し、
さらにその前面を赤外線透過板(d)により閉塞して、
温度センサが直接風にさらされない構造とすることによ
り、周囲の風の影響による輻射熱検知精度の劣化を防止
して、特に精度の低い点て問題のあった壁面又は床面温
度の検知精度を改善しようとするものは公知の技術であ
る。
(Prior art) Conventionally, as a radiant heat detection device, for example,
As disclosed in Japanese Patent No. 197465, as shown in FIG. 9, a temperature sensor (
a) is placed in a space (C) surrounded by a heat insulating material (b),
Furthermore, the front surface is closed with an infrared transmitting plate (d),
By adopting a structure in which the temperature sensor is not directly exposed to the wind, it prevents deterioration of radiant heat detection accuracy due to the influence of surrounding wind, and improves the detection accuracy of wall or floor surface temperatures, which had a problem with low accuracy. What is attempted is a known technique.

(発明が解決しようとする課題) しかしながら、上記従来のもので輻射温度を検知しよう
とすると、次のような問題が生じる。
(Problems to be Solved by the Invention) However, when attempting to detect the radiant temperature using the above-mentioned conventional method, the following problems arise.

すなわち、例えば暖房運転時を例にとり、センサ温度を
TS%周囲空気温度をTa、壁面又は床面温度をTr%
センサ表面と周囲との輻射熱量をqrs風からの輻射熱
量をqaとすると、熱バランスから、 qa=qr                   (
11ha  (Ta −Ts ) =hr  (Ts 
−Tr )  (21したがって、 Tr −Ts  −(ha/hr )  (Ta −T
s )   (3)(ただし、hrは輻射熱伝達率、h
aは風の対流熱伝達率)となり、センサ温度Tsから壁
面又は床面の温度Trが検知されることになる。
That is, taking heating operation as an example, the sensor temperature is TS%, the ambient air temperature is Ta, and the wall or floor temperature is Tr%.
If the amount of radiant heat between the sensor surface and the surroundings is qrs, and the amount of radiant heat from the wind is qa, then from the heat balance, qa=qr (
11ha (Ta - Ts) = hr (Ts
−Tr ) (21 Therefore, Tr −Ts −(ha/hr ) (Ta −T
s ) (3) (where hr is the radiant heat transfer coefficient, h
a is the convective heat transfer coefficient of the wind), and the temperature Tr of the wall or floor surface is detected from the sensor temperature Ts.

ところが、上記(3)式において、T s s h r
 、Ta、Tsは一定の値として定められるが、haは
風速によって変化するものである。したがって、このよ
うに密閉して風に直接さらされないようにしてもなお、
風の影響で輻射熱の検知精度の劣化生じるという問題が
あった。
However, in the above equation (3), T s s h r
, Ta, and Ts are determined as constant values, but ha changes depending on the wind speed. Therefore, even if it is sealed and not exposed directly to the wind,
There was a problem in that the detection accuracy of radiant heat deteriorated due to the influence of wind.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、輻射センサで壁面又は床面温度を検知する際、輻
射センサに対する周囲空気からの輻射熱を無視しうる手
段を講することにより、風速の影響をなくし、もって、
輻射熱検知精度の向上を図ることにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a means for ignoring the radiant heat from the surrounding air to the radiant sensor when detecting wall or floor temperature using the radiant sensor. , by eliminating the influence of wind speed,
The purpose is to improve the accuracy of radiant heat detection.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、輻射セン
サの温度を周囲空気温度に一致させることにある。
(Means for Solving the Problem) In order to achieve the above object, the solution of the present invention is to match the temperature of the radiation sensor with the ambient air temperature.

具体的には、第1の解決手段は、第1図に示すように、
輻射熱検知装置として、壁面又は床面(W)からの輻射
熱に応じた温度信号を出力する輻射センサ(1)と、上
記輻射センサ(1)に熱伝導可能に設けられ、冷熱又は
暖熱を発生する熱発生手段(2)と、周囲の空気温度を
検出する空気温度検出手段(3)と、該空気温度検出手
段(3)の出力を受け、上記輻射センサ(1)の温度が
周囲の空気温度に等しくなるよう上記熱発生手段(2)
の発熱量を制御する発熱量制御手段(5)と、該発熱量
制御手段(5)及び上記輻射センサ(1)の出力を受け
、上記熱発生手段(2)の発熱量と輻射センサ(1)の
温度信号とに基づき輻射熱量を演算する演算手段(7)
とを設ける構成としたものである。
Specifically, the first solution is as shown in FIG.
The radiant heat detection device includes a radiant sensor (1) that outputs a temperature signal according to the radiant heat from the wall or floor (W), and a radiant sensor (1) that is installed in a heat conductive manner to generate cold or warm heat. a heat generating means (2) for detecting the temperature of the surrounding air; an air temperature detecting means (3) for detecting the temperature of the surrounding air; The heat generating means (2) so that the temperature is equal to
A calorific value control means (5) that controls the calorific value of the heat generating means (2) and the radiation sensor (1) receives the outputs of the calorific value controller (5) and the radiation sensor (1). ) calculation means (7) for calculating the amount of radiant heat based on the temperature signal of
This is a configuration in which the following is provided.

第2の解決手段は、上記第1の解決手段における熱発生
手段(2)を、ペルチェ効果に基づき暖熱又は冷熱を発
生する熱雷素子(2A)で構成したものである。
In the second solution, the heat generating means (2) in the first solution is configured with a thermal lightning element (2A) that generates warm or cold heat based on the Peltier effect.

第3の解決手段は、上記第1の解決手段における熱発生
手段(2)を、抵抗加熱体により発熱する電気ヒータ(
2B)で構成したものである。
A third solution is to replace the heat generating means (2) in the first solution with an electric heater (
2B).

(作用) 以上の構成により、請求項(1)の発明では、熱量制御
手段(5)により、輻射センサ(1)の温度(センサ温
度)が空気温度検出手段(3)で検出される周囲空気温
度に等しくなるように、熱発生手段(2)の発熱量が制
御され、演算手段(7)により、輻射センサ(1)で検
出されるセンサ温度と上記発熱量とに基づき、壁面又は
床面lH度が求められる。
(Function) With the above configuration, in the invention of claim (1), the temperature of the radiation sensor (1) (sensor temperature) is adjusted by the heat amount control means (5) to the ambient air detected by the air temperature detection means (3). The calorific value of the heat generating means (2) is controlled so as to be equal to the temperature, and the calculation means (7) determines whether the wall or floor surface The lH degree is determined.

その場合、センサ温度が周囲空気温度に等しくなるよう
に、表面温度センサ(1)か暖熱又は冷熱を付与される
ので、周囲の空気から輻射センサ(1)への輻射熱がほ
ぼ「0」とみなぜることになり、風の対流熱伝達率を考
慮することなく、壁面又は床面温度が検知される。した
がって、風速の影響による輻射熱検知精度の悪化が防止
されることになる。
In that case, since warm or cold heat is applied to the surface temperature sensor (1) so that the sensor temperature is equal to the ambient air temperature, the radiant heat from the surrounding air to the radiation sensor (1) is considered to be almost "0". As a result, the wall or floor temperature is detected without considering the convective heat transfer coefficient of the wind. Therefore, deterioration of radiant heat detection accuracy due to the influence of wind speed is prevented.

請求項(2)の発明では、上記請求項(1)の発明にお
いて、熱発生手段としての熱雷素子(2A)により、ペ
ルチェ効果に基づいて電流の方向に応して暖熱及び冷熱
の付与が可能となり、センサ温度が周囲空気温度よりも
高い場合及び低い場合の双方において、センサ温度が周
囲空気温度に等しく制御され、空気調和装置の冷房運転
時及び暖房運転時いずれにおいても、上記請求項(1)
の発明の作用が得られることになる。
In the invention of claim (2), in the invention of claim (1), heating and cooling are applied according to the direction of the current based on the Peltier effect by the thermal lightning element (2A) as the heat generating means. The sensor temperature is controlled to be equal to the ambient air temperature both when the sensor temperature is higher and lower than the ambient air temperature, and when the air conditioner is in a cooling operation and a heating operation. (1)
The effect of the invention will be obtained.

請求項(3)の発明では、熱発生手段としての電気ヒー
タ(2B)により、周囲空気温度よりもセンサ温度か低
いときに、センサ温度が周囲空気温度に等しくなるよう
制御される。よって、安価な電気ヒータを利用しながら
、暖房運転時に、上記請求項(1)の発明の作用を得る
ことができることになる。
In the invention of claim (3), the electric heater (2B) as the heat generating means controls the sensor temperature to be equal to the ambient air temperature when the sensor temperature is lower than the ambient air temperature. Therefore, it is possible to obtain the effect of the invention of claim (1) during heating operation while using an inexpensive electric heater.

(実施例) 以下、本発明の実施例について、第2図〜第8図に基づ
き説明する。
(Example) Examples of the present invention will be described below with reference to FIGS. 2 to 8.

第2図は本発明の第1実施例に係る輻射熱検知装置の構
成を示し、(1)は壁面又は床面(W)に対峙して配置
され、温度により物理的特性たる電気抵抗が変化する輻
射センサとしての表面温度センサ、(2A)は該表面温
度センサ(1)に接触して配置され、直列に設けられた
半導体素子のP−N−P−N−・・・接合の繰返しによ
り、その両端に印加される電流の方向に応じて冷熱又は
暖熱を発生する熱発生手段としての熱電素子、(3)は
周囲の空気温度Taを検出する空気温度検出手段として
の空気温度センサ、(4)は上記表面温度センサ(1)
と空気温度センサ(3)の出力を受け、表面温度センサ
(1)の温度(以下、センサ温度という)Tsと周囲空
気温度Taとの温度偏差(Ta −Ts )を演算する
温度比較器、(5)は該温度比較器(4)の出力を受け
、サーミスタ温度Tsと周囲空気温度Taとの温度偏差
(Ta−Ts)に応じて、温度偏差(Ta −Ts )
が「0」になるよう熱電素子(2A)に暖熱又は冷熱発
生させるための供給電力を制御するコントローラ、(6
)は上記熱電素子(2A)の電ff1iを検出する電流
計、(7)は該電流計(6)及びと記表面温度センサ(
1)の出力を受け、壁面又は床面(W)の温度Trを演
算する演算手段としての演算器である。
FIG. 2 shows the configuration of the radiant heat detection device according to the first embodiment of the present invention, in which (1) is placed facing a wall or floor (W), and the electrical resistance, which is a physical property, changes depending on the temperature. The surface temperature sensor (2A) as a radiation sensor is placed in contact with the surface temperature sensor (1), and by repeating P-N-P-N-... junction of semiconductor elements provided in series, (3) is a thermoelectric element as a heat generation means that generates cold or warm heat depending on the direction of the current applied to both ends; (3) is an air temperature sensor as an air temperature detection means that detects the ambient air temperature Ta; 4) is the above surface temperature sensor (1)
a temperature comparator that receives the output of the air temperature sensor (3) and calculates the temperature deviation (Ta - Ts) between the temperature Ts of the surface temperature sensor (1) (hereinafter referred to as sensor temperature) and the ambient air temperature Ta; 5) receives the output of the temperature comparator (4) and calculates the temperature deviation (Ta - Ts ) according to the temperature deviation (Ta - Ts) between the thermistor temperature Ts and the ambient air temperature Ta.
a controller that controls the power supplied to the thermoelectric element (2A) to generate warm or cold heat so that
) is an ammeter that detects the electric current ff1i of the thermoelectric element (2A), and (7) is the ammeter (6) and the surface temperature sensor (
This is an arithmetic unit as an arithmetic means that receives the output of 1) and calculates the temperature Tr of the wall surface or floor surface (W).

ここで、上記演算器(7)による壁面又は床面温度Tr
の演算過程を説明するに、熱電素子(2A)からの発熱
量をqo、表面温度センサ(1)の表面と周囲との輻射
熱量をqr、輻射熱伝達率をhr、熱電素子(2A)の
表面積をAとすると、熱バランスより、 qo″″q r                 (
51−hr  (Ts −Tr ) A −hr  (Ta −Tr ) A したがって、 Tr −Ta −(qo /hr −A)      
 (6)上記(6)式において、輻射熱伝達率hrは予
め実験的に求められるので、qoか求まればT「が求ま
ることになる。
Here, the wall surface or floor surface temperature Tr determined by the arithmetic unit (7)
To explain the calculation process, the amount of heat generated from the thermoelectric element (2A) is qo, the amount of radiant heat between the surface of the surface temperature sensor (1) and the surroundings is qr, the radiant heat transfer coefficient is hr, and the surface area of the thermoelectric element (2A) is Let A be qo″″q r (
51-hr (Ts -Tr) A -hr (Ta -Tr) A Therefore, Tr -Ta -(qo /hr -A)
(6) In the above equation (6), since the radiation heat transfer coefficient hr is determined experimentally in advance, T'' can be determined if qo is determined.

ここで、qoは熱電素子(2A)に流れる電流iにほぼ
比例するので、予め実験により、第3図のような電流i
に対する発熱mqOの関係を調べておけばその関係が求
まる。また、上記(6)式より、発熱mqoに対する壁
面又は床面温度Trの特性は、第4図に示すような負の
リニアな特性となっている。上記第3図及び第4図の特
性から、電流1に対してセンサ温度Trか、第5図に示
すような関係として求まることになる。
Here, since qo is approximately proportional to the current i flowing through the thermoelectric element (2A), we have previously determined that the current i as shown in Fig. 3 is
The relationship can be found by investigating the relationship between the heat generation mqO and the temperature. Further, from the above equation (6), the characteristic of the wall surface or floor surface temperature Tr with respect to the heat generation mqo is a negative linear characteristic as shown in FIG. 4. From the characteristics shown in FIGS. 3 and 4 above, the relationship between the current 1 and the sensor temperature Tr can be determined as shown in FIG.

一方、冷房運転時には、いっばんにTr<Taとなり、
熱電素子(2A)は表面温度センサ(1)を冷却するこ
とにより、Ts=Taとなるように表面温度センサ(1
)の温度Tsを維持する。
On the other hand, during cooling operation, Tr<Ta immediately becomes
The thermoelectric element (2A) cools the surface temperature sensor (1) so that Ts=Ta.
) is maintained at the temperature Ts.

すなわち、上記と同様に、熱バランスから、Tr −T
a + (qo /hr A)となり、第6図に示すよ
うに、熱電素子(2A)の電流iと壁面又は床面温度T
rの関係か求まることになる。
That is, as above, from the thermal balance, Tr −T
a + (qo /hr A), and as shown in Figure 6, the current i of the thermoelectric element (2A) and the wall or floor temperature T
The relationship of r can be found.

したがって、請求項(1)の発明では、コントローラ(
熱量制御手段)(5)により、表面温度センサ(1)で
検出されるセンサ温度Tsが空気温度センサ(3)で検
出される周囲空気温度Taに等しくなるように、熱電素
子(熱発生手段)(2A)の発熱量qoが制御され、演
算器(演算手段)(7)により、表面温度センサ(1)
で検出されるセンサ温度Tsと上記発熱mqoとに基づ
き、壁面又は床面温度T「が求められる。
Therefore, in the invention of claim (1), the controller (
The thermoelectric element (heat generating means) is controlled so that the sensor temperature Ts detected by the surface temperature sensor (1) becomes equal to the ambient air temperature Ta detected by the air temperature sensor (3) by the heat amount control means) (5). The calorific value qo of (2A) is controlled, and the surface temperature sensor (1) is controlled by the computing unit (computing means) (7).
Based on the sensor temperature Ts detected by the sensor temperature Ts and the heat generation mqo, the wall or floor temperature T'' is determined.

その場合、従来のものでは、上記(3)式に示すように
、壁面又は床面温度T「を検知するには、風の対流熱伝
達率haを考慮しなければならないために、風速で対流
熱伝達率か変化すると、壁面又は床面温度Trの検知精
度が劣化するのを有効に防止することができなかった。
In that case, in the conventional system, as shown in equation (3) above, in order to detect the wall or floor surface temperature T, the convective heat transfer coefficient ha of the wind must be taken into consideration. When the heat transfer coefficient changes, it has not been possible to effectively prevent the detection accuracy of the wall or floor temperature Tr from deteriorating.

しかし、本発明では、センサ温度Tsが周囲の空気温度
Taに等しくなるように、表面温度センサ(1)が暖熱
又は冷熱を付与されるので、周囲の空気から表面温度セ
ンサ(1)への輻射熱qaが熱電素子(熱発生手段)(
2A)の供給熱QqOて置き換えられることになり、こ
の供給熱QqOと表面温度センサ(輻射センサ)(1)
の温度信号とから、風の対流熱伝達率haを考慮するこ
となく、壁面又は床面温度Trか検知され、よって、風
速の影響による輻射熱検知精度の悪化をrイ効に防止す
ることができるのである。
However, in the present invention, the surface temperature sensor (1) is given warm or cold heat so that the sensor temperature Ts becomes equal to the surrounding air temperature Ta, so that the surface temperature sensor (1) is heated from the surrounding air to the surface temperature sensor (1). Radiant heat qa is generated by thermoelectric element (heat generation means) (
2A) will be replaced by the supplied heat QqO, and this supplied heat QqO and the surface temperature sensor (radiation sensor) (1)
From the temperature signal, the wall or floor temperature Tr is detected without considering the convective heat transfer coefficient ha of the wind. Therefore, deterioration of radiant heat detection accuracy due to the influence of wind speed can be effectively prevented. It is.

請求項(2)の発明では、上記請求項(1)の発明にお
いて、熱発生手段としての熱雷素子(2A)により、ペ
ルチェ効果に基づいて電流の方向に応じて暖熱及び冷熱
の付与が可能となり、センサ温度TSが周囲空気温度T
aよりも高い場合及び低い場合の双方で、センサ温度T
sを周囲空気温度Taに等しく制御することができる。
In the invention of claim (2), in the invention of claim (1), heating and cooling can be applied according to the direction of the current based on the Peltier effect by the thermal lightning element (2A) as the heat generating means. The sensor temperature TS becomes equal to the ambient air temperature T.
The sensor temperature T is both higher and lower than a.
s can be controlled to be equal to the ambient air temperature Ta.

よって、空気調和装置の冷房運転時及び暖房運転時いず
れにおいても、上記請求項(1)の発明の実効を図るこ
とができるのである。
Therefore, the invention of claim (1) can be effectively achieved both during cooling operation and heating operation of the air conditioner.

次に、本発明の第2実施例について説明する。Next, a second embodiment of the present invention will be described.

第7図は第2実施例に係る輻射熱検知装置の構成を示し
、(2B)は熱発生手段としての電気ヒータであって、
該電気ヒータ(2B)は、断熱材(13)と該断熱材(
13)の下面に埋設され、表面温度でンサ(1)と接触
する面状発熱体(12)とからなる。また、(5B)は
表面温度センサ(1)と空気温度センサ(3)の出力を
受け、センサ温度Tsが周囲空気温度Taに等しくなる
よう上記面状発熱体(12)への供給熱Qqhを制御す
る発熱量制御手段としてのヒータ入力制御器、(7)は
上記ヒータ入力制御器(5B)の出力及び該ヒータ入力
制御器(5B)を介して表面温度センサ(1)の出力を
受け、電気ヒータ(2B)への供給熱mqhとセンサ温
度Tsとに基づき壁面又は床面温度T「を演算する演算
手段としての演算器である。
FIG. 7 shows the configuration of a radiant heat detection device according to a second embodiment, and (2B) is an electric heater as a heat generating means,
The electric heater (2B) includes a heat insulating material (13) and a heat insulating material (
It consists of a planar heating element (12) that is buried in the lower surface of the sensor (13) and comes into contact with the sensor (1) at a surface temperature. Further, (5B) receives the outputs of the surface temperature sensor (1) and the air temperature sensor (3), and calculates the heat Qqh supplied to the planar heating element (12) so that the sensor temperature Ts becomes equal to the ambient air temperature Ta. A heater input controller (7) as a calorific value control means to control receives the output of the heater input controller (5B) and the output of the surface temperature sensor (1) via the heater input controller (5B), This is a computing unit as a computing means that computes the wall or floor temperature T' based on the heat mqh supplied to the electric heater (2B) and the sensor temperature Ts.

上記実施例では、電気ヒータ(2B)への入力Qhと、
表面温度センサ(1)の表面と壁面又は床面との輻射熱
ff1qrとの熱バランスから、qh −qr −hr  (Ts −Tr ) A −hr  (Ta −Tr ) A すなわち、 Tr −Ta −(qh /hr −A)となって、第
8図に示すように、発熱mqhに対する壁面又は床面温
度Trの変化特性が求まり、よって、上記第1実施例と
同様に、風速により変化する対流熱伝達率haの影響を
受けることなく、壁面又は床面温度T「が求められる。
In the above embodiment, the input Qh to the electric heater (2B),
From the heat balance between the radiant heat ff1qr between the surface of the surface temperature sensor (1) and the wall or floor, qh - qr - hr (Ts - Tr) A - hr (Ta - Tr) A, that is, Tr - Ta - (qh /hr -A), and as shown in Fig. 8, the change characteristics of the wall or floor temperature Tr with respect to the heat generation mqh are determined, and therefore, as in the first embodiment, convection heat transfer that changes depending on the wind speed is determined. The wall or floor temperature T' is determined without being affected by the rate ha.

したがって、請求項(3)の発明では、熱発生手段とし
ての電気ヒータ(2B)により、周囲空気温度Taより
もセンサ温度Tsが低いときには表面温度センサ(1)
が加熱され、センサ温度Tsが周囲空気温度Taに等し
くなるよう制御される。
Therefore, in the invention of claim (3), when the sensor temperature Ts is lower than the ambient air temperature Ta, the surface temperature sensor (1) is
is heated and controlled so that the sensor temperature Ts is equal to the ambient air temperature Ta.

よって、安価な電気ヒータ(2B)を利用しなから、暖
房運転時、風速の影響を受けることなく輻射温度を検知
することができ、輻射熱検知精度の悪化を有効に防止す
ることができるのである。
Therefore, without using an inexpensive electric heater (2B), the radiant temperature can be detected during heating operation without being affected by wind speed, and deterioration of the radiant heat detection accuracy can be effectively prevented. .

なお、上記実施例では、輻射センサとして、温度により
電気抵抗値が変化するサーミスタで構成された表面温度
センサ(1)を配置したが、必ずしもこのよ・うなサー
ミスタだけでなく、例えばサーモバイル等を使用しても
よいことはいうまでもない。
In the above embodiment, a surface temperature sensor (1) consisting of a thermistor whose electrical resistance value changes depending on the temperature is arranged as a radiation sensor, but it is not necessary to use only such a thermistor, for example, a thermomobile etc. Needless to say, it may be used.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、輻
射センサで壁面又は床面温度を検知する場合、輻射セン
サに接触して加熱又は冷却する熱発生手段を設ける一方
、周囲空気温度を検出し、輻射センサの温度が周囲空気
温度になるよう熱発生手段への供給熱量を制御して、供
給熱量とセンサ温度に基づき壁面又は床面温度を検知す
るようにしたので、風速による検知精度の劣化を招くこ
となく、輻射熱を検知することができ、よって、検知精
度の低下を有効に防止することがある。
(Effect of the invention) As explained above, according to the invention of claim (1), when the radiation sensor detects the wall surface or floor surface temperature, a heat generating means for heating or cooling the radiation sensor is provided. On the other hand, the ambient air temperature is detected, the amount of heat supplied to the heat generating means is controlled so that the temperature of the radiation sensor becomes the ambient air temperature, and the wall or floor temperature is detected based on the amount of heat supplied and the sensor temperature. Therefore, radiant heat can be detected without deterioration of detection accuracy due to wind speed, and therefore, deterioration of detection accuracy may be effectively prevented.

請求項(2)の発明では、上記請求項(1)の発明にお
ける熱発生手段としCの熱電素子により、輻射センサが
加熱及び冷却を受けて、センサ温度と周囲空気温度とを
一致させる制御が行われ、よって、空気調和装置の冷房
運転時及び暖房運転時のいずれにわいても、上記請求項
(1)の発明の効果を発揮することができる。
In the invention of claim (2), the radiation sensor is heated and cooled by the thermoelectric element C as the heat generating means in the invention of claim (1), and control is performed to match the sensor temperature and the ambient air temperature. Therefore, the effect of the invention according to claim (1) above can be exhibited both during cooling operation and heating operation of the air conditioner.

請求項(3)の発明では、上記請求項(1)の発明にお
ける熱発生手段としての電気ヒータの加熱を利用して、
センサ温度が周囲空気温度よりも低い場合に両者を一致
させる制御を行うことができ、よって、空気調和装置の
暖房運転時に上記請求項(1)の発明の実効を図ること
かできる。
The invention of claim (3) utilizes the heating of the electric heater as the heat generating means in the invention of claim (1),
When the sensor temperature is lower than the ambient air temperature, control can be performed to match the two, so that the invention of claim (1) can be carried out effectively during heating operation of the air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図〜第6図は本発明の第1実施例を示し、第2図は
輻射熱検知装置の構成を示す図、第3図は熱雷素子の電
流値に対する熱雷素子の発熱量の変化特性を示す特性図
、第4図は熱電素子の発熱量に対する壁面又は床面温度
の変化特性を示す特性図、第5図は熱電素子の電流値に
対する壁面又は床面温度の変化特性を示す特性図、第6
図は冷房運転時における熱電素子の電流値に対する壁面
又は床面温度の変化特性を示す特性図、第7図及び第8
図は第2実施例を示し、第7図は輻射熱検知装置の構成
を示す図、第8図はヒータ人力値に対する壁面又は床面
温度の変化特性を示す特性図である。第9図は従来の輻
射熱検知装置の構成を示す図である。 1  表面温度センサ (輻射センサ) 2A 熱電素子 (熱発生手段) 2B 電気ヒータ (熱発生手段) 3  空気温度センサ (空気温度検出手段) 5  コントローラ (発熱量制御手段) 演算器 (演算手段) 菊7囮 −〉。 +o (A) 第5図 “io (A) 第6図 第3図 −〉 qo   (W) 婢4図
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 6 show the first embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a radiant heat detection device, and FIG. 3 is a change in the amount of heat generated by the thermal lightning element with respect to the current value of the thermal lightning element. Figure 4 is a characteristic diagram showing the change in wall or floor temperature with respect to the heat generation amount of the thermoelectric element. Figure 5 is a characteristic diagram showing the change in wall or floor temperature with respect to the current value of the thermoelectric element. Figure, 6th
Figures 7 and 8 are characteristic diagrams showing the change characteristics of the wall or floor temperature with respect to the current value of the thermoelectric element during cooling operation.
The figure shows the second embodiment, FIG. 7 is a diagram showing the configuration of the radiant heat detection device, and FIG. 8 is a characteristic diagram showing the change characteristics of the wall surface or floor surface temperature with respect to the heater human power value. FIG. 9 is a diagram showing the configuration of a conventional radiant heat detection device. 1 Surface temperature sensor (radiation sensor) 2A Thermoelectric element (heat generation means) 2B Electric heater (heat generation means) 3 Air temperature sensor (air temperature detection means) 5 Controller (heat amount control means) Arithmetic unit (calculation means) Chrysanthemum 7 Decoy. +o (A) Figure 5 “io (A) Figure 6 Figure 3-> qo (W) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)壁面又は床面(W)からの輻射熱に応じた温度信
号を出力する輻射センサ(1)と、上記輻射センサ(1
)に熱伝導可能に設けられ、冷熱又は暖熱を発生する熱
発生手段(2)と、周囲の空気温度を検出する空気温度
検出手段(3)と、該空気温度検出手段(3)の出力を
受け、上記輻射センサ(1)の温度が周囲の空気温度に
等しくなるよう上記熱発生手段(2)の発熱量を制御す
る発熱量制御手段(5)と、該発熱量制御手段(5)及
び上記輻射センサ(1)の出力を受け、上記熱発生手段
(2)の発熱量と輻射センサ(1)の温度信号とに基づ
き輻射熱量を演算する演算手段(7)とを備えたことを
特徴とする輻射熱検知装置。
(1) A radiation sensor (1) that outputs a temperature signal according to the radiant heat from the wall or floor (W), and the radiation sensor (1)
) heat generating means (2) for generating cold or warm heat, air temperature detecting means (3) for detecting ambient air temperature, and output of the air temperature detecting means (3). a calorific value control means (5) for controlling the calorific value of the heat generating means (2) so that the temperature of the radiation sensor (1) is equal to the ambient air temperature; and calculation means (7) for receiving the output of the radiation sensor (1) and calculating the amount of radiant heat based on the calorific value of the heat generation means (2) and the temperature signal of the radiation sensor (1). Features a radiant heat detection device.
(2)熱発生手段(2)は、ペルチェ効果に基づき暖熱
又は冷熱を発生する熱電素子(2A)であることを特徴
とする請求項(1)記載の輻射熱検知装置。
(2) The radiant heat detection device according to claim (1), wherein the heat generating means (2) is a thermoelectric element (2A) that generates warm or cold heat based on the Peltier effect.
(3)熱発生手段(2)は、抵抗加熱体により発熱する
電気ヒータ(2B)であることを特徴とする請求項(1
)記載の輻射熱検知装置。
(3) Claim (1) characterized in that the heat generating means (2) is an electric heater (2B) that generates heat using a resistance heating element.
) Radiant heat detection device.
JP1247631A 1989-09-22 1989-09-22 Radiant heat detector Expired - Lifetime JPH076842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247631A JPH076842B2 (en) 1989-09-22 1989-09-22 Radiant heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247631A JPH076842B2 (en) 1989-09-22 1989-09-22 Radiant heat detector

Publications (2)

Publication Number Publication Date
JPH03108620A true JPH03108620A (en) 1991-05-08
JPH076842B2 JPH076842B2 (en) 1995-01-30

Family

ID=17166380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247631A Expired - Lifetime JPH076842B2 (en) 1989-09-22 1989-09-22 Radiant heat detector

Country Status (1)

Country Link
JP (1) JPH076842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372459A (en) * 2001-06-13 2002-12-26 Fuji Xerox Co Ltd Temperature detector and fixing apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401275B1 (en) * 2013-01-22 2014-05-29 한국표준과학연구원 Contactless temperature measuring apparatus and contactless temperature measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372459A (en) * 2001-06-13 2002-12-26 Fuji Xerox Co Ltd Temperature detector and fixing apparatus using the same

Also Published As

Publication number Publication date
JPH076842B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US5178464A (en) Balance infrared thermometer and method for measuring temperature
JP2918062B2 (en) Current meter
JP2013531248A (en) Infrared temperature measurement and stabilization
JPH10221183A (en) Method and device for compensating temperature for load cell load detector
JP3434694B2 (en) Differential scanning calorimeter
CN107607229A (en) Method for the temperature calibration instrument and progress temperature correction of thermosphere analysis probe
US20050092078A1 (en) Pulsed thermistor sensor
JPH03108620A (en) Detecting apparatus of radiant heat
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPH03273121A (en) Radiation thermometer
JP2952438B2 (en) Thermal flow meter
JP3570042B2 (en) Thermal analyzer
JPH10104214A (en) Temperature controlling device for measuring device
JPH09222403A (en) Measuring apparatus for physical property value
JPS625272B2 (en)
JPS62162565A (en) Temperature-detecting system for thermal head
JPS61288133A (en) Measuring instrument for radiation heating value
JPH0283451A (en) Apparatus and method for controlling temperature of reaction tank of automatic analyzer
JP3486511B2 (en) Flow sensor
JPS6136645A (en) Method and device for thermal circumstance control
JPH08171427A (en) Temperature controller
CN116793531A (en) Intelligent electronic skin device of robot
JPH05237892A (en) Method and apparatus for controlling temperature of heating cylinder of plasticizing device
JPS6348420A (en) Warmth detecting device
JPS6222494A (en) Stabilizing device for semiconductor laser