JPH0310781A - Articulated type robot - Google Patents

Articulated type robot

Info

Publication number
JPH0310781A
JPH0310781A JP14580489A JP14580489A JPH0310781A JP H0310781 A JPH0310781 A JP H0310781A JP 14580489 A JP14580489 A JP 14580489A JP 14580489 A JP14580489 A JP 14580489A JP H0310781 A JPH0310781 A JP H0310781A
Authority
JP
Japan
Prior art keywords
order
rotation angle
posture
calculation means
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14580489A
Other languages
Japanese (ja)
Other versions
JP2823243B2 (en
Inventor
Hironobu Kawaguchi
川口 浩延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1145804A priority Critical patent/JP2823243B2/en
Publication of JPH0310781A publication Critical patent/JPH0310781A/en
Application granted granted Critical
Publication of JP2823243B2 publication Critical patent/JP2823243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To increase the speed of an orientation change by providing a selecting means to selects an order in which a motor rotation angle change amount calculated by a whole stroke calculating means is minimized. CONSTITUTION:A route through which a change of the rotation angle of a motor for joint rotation during movement between two orientations is minimized is determined by a means 7 to calculate a minimum route between two points. According to an order in which the orientations are taken, by using a result calculated by the means 7 to calculate a minimum route between two points, a total motor rotation angle change amount at an orientation change stroke is calculated by a whole stroke calculating means 8. Thereafter, an order in which a motor rotation angle change amount calculated by the whole stroke calculating means 8 is minimized is selected by a selecting means 9. According to the order selected by the selecting means 9, orientation is changed.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は多関節ロボットに関し、特に動作時のアクチュ
エータ変化量最小経路を決定するための経路決定装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an articulated robot, and more particularly to a path determining device for determining a path with a minimum amount of change in actuators during operation.

口)従来の技術 近年、生産工程の自動化にともない例えば特開昭61−
211704号に示すような多関節型ロボットが種々開
発されている。このような多関節型ロボットの使用方法
としては、先端部に設けたハンドあるはその他のツール
をいくつかの決められたポイント(姿勢あるいは位置)
に移動させ、各ポイントで作業をさせると云う使用法が
一般的である。このため、こうしたポイントの通過順序
を連続的に作業者が指示しておく必要があった。また、
作業者が順序を決定する際、実際の3次元の作業空間内
で手元位置の移動量等が最小になるように決めることは
可能であるが、それが各関節を回動させるモータの回転
量の合計が最小であることは必ずしも一致せず、効率的
な移動と云う点から今一つ問題があった。
(Example) Conventional technology In recent years, with the automation of production processes, for example, JP-A-61-
Various articulated robots as shown in No. 211704 have been developed. How to use such an articulated robot is to move the hand or other tool provided at the tip at several predetermined points (postures or positions).
The most common method is to move the robot to each point and have it work at each point. Therefore, it was necessary for the operator to continuously instruct the order in which these points should be passed. Also,
When a worker decides on the order, it is possible to do so in a way that minimizes the amount of movement of the hand position within the actual three-dimensional work space, but it is possible to do so in a way that minimizes the amount of movement of the hand position within the actual three-dimensional work space. It is not always the case that the sum of

ハ)発明が解決しようとする課題 本発明はこのような点に鑑みて為されたものであって、
自動的に各関節を回動させるモータの回転量が最小にな
る多関節型ロボットの動作を決定しようとしている。
c) Problems to be solved by the invention The present invention has been made in view of the above points, and
We are trying to determine the motion of an articulated robot that minimizes the amount of rotation of the motor that automatically rotates each joint.

(ニ)課題を解決するための手段 本発明では、各2つの姿勢間を移動するときの関節回転
用のモータ回転角の変化が最小となる経路を求める2点
間最小経路算出手段と、上記各姿勢をとる順序に応じ、
上記2点間最小経路算出手段で算出された結果を用いて
全姿勢変化行程での合計のモータ回転角変化量を算出す
る全行程算出手段と、この全行程算出手段で算出された
モータ回転角変化量が最小となる順序を選び出す選択手
段と、を有して成り、この選択手段で選び出された順序
に応じて姿勢を変化させている。
(d) Means for Solving the Problems The present invention includes a two-point minimum path calculating means for calculating a path that minimizes the change in the rotation angle of a motor for rotating a joint when moving between each two postures; Depending on the order in which each posture is taken,
A total stroke calculation means for calculating the total amount of motor rotation angle change in the entire posture change stroke using the results calculated by the two-point minimum path calculation means; and a motor rotation angle calculated by the total stroke calculation means. and a selection means for selecting an order in which the amount of change is minimum, and the posture is changed according to the order selected by the selection means.

ホ)作用 モータの回転角自身が最小となる姿勢変化が行われるの
で姿勢変化の高速化が図れる。
e) Since the posture change is performed such that the rotation angle of the operating motor is minimized, the speed of the posture change can be increased.

へ)実施例 第2図は、本発明多関節型ロボットの1例を示し、(1
1(2)はアームであって、夫々図示しないモータによ
り関節(3) (41を軸として回転する。(5)はア
ーム(2)先端部の手先位置を示し、対象物を試験する
ためのセンサあるいは作業等を行うツール等を取り付け
る。(6)は、このロボットの駆動を行うようモータの
回転を制御する制御部を示す。こうしたロボットは、第
3図のような作業空間を有する。第1図は本発明多関節
型ロボットの制御部の構成図であり、第2図の多関節型
ロボットを一般化したり自由度のものについて示してい
る。また、各アクチュエータの位置を軸としたn次元空
間をそのロボットの関節角空間と呼び、2次元関節かと
空間を第4図に示す、こうした制御部において、(7)
は与えられるi+1個の姿勢の内、各2つの姿勢間を移
動するときのn次元関節角空間内での2点間の直線距離
を計算する2点間最小経路算出手段であり、例えば各関
節の回転角がθ1.θ2.・・・θ、からθ、′、θ2
ρ=Σ1θ、−θ4′1としても良い、(8)は1個の
通過姿勢を順次通過するし1個の経路の距離を算出す全
行程算出手段、(9)はこの全行程算出手段(8)で算
出された距離が算小となる通過順序を選び出す選択手段
を示し、選択された順序に従うて、駆動制御手段(40
)がロボットを動作させる。
f) Embodiment FIG. 2 shows an example of the articulated robot of the present invention.
1 (2) is an arm, which is rotated around joints (3) (41) by motors (not shown). (5) indicates the position of the tip of the arm (2), and is used for testing the object. Attach sensors or tools for work, etc. (6) indicates a control unit that controls the rotation of the motor to drive this robot. Such a robot has a work space as shown in Fig. 3. Figure 1 is a block diagram of the control unit of the articulated robot of the present invention, and shows a generalized version of the articulated robot in Figure 2 with degrees of freedom. The dimensional space is called the robot's joint angle space, and the two-dimensional joint angle space is shown in Figure 4. In such a control unit, (7)
is a two-point minimum path calculation means that calculates the straight line distance between two points in the n-dimensional joint angle space when moving between each two postures among the given i+1 postures. The rotation angle is θ1. θ2. ...θ, to θ, ′, θ2
ρ=Σ1θ, -θ4'1 may also be used. (8) is a total stroke calculation means that sequentially passes through one passing attitude and calculates the distance of one route, and (9) is this total stroke calculation means ( The drive control means (40
) makes the robot move.

このような多関節型ロボットにおいて、ロボットの開始
姿勢及び、通過すべきi個(i≧2)の姿勢が、各々、
関節角空間内の1点すなわちn個関節を有する各関節回
転用のモータの回転位置を要素とする座標データで与え
られていて、ロボットは開始姿勢から出発し、i個の姿
勢を通過した後、開始姿勢に戻って来て終了するものと
してその動作を説明する。最初ロボットは開始姿勢にあ
り、通過すべきi個の姿勢が与えられたならば、開始姿
勢を含めた(i+1)個の姿勢のうちの2つの姿勢の組
み合せ(i+1)xi/2個の各々に着目する。2つの
姿勢間を移動する場合関節角空間内でその2つの座標を
直線で結んだ軌跡に従ってモータを回転させるのが、モ
ータ変化量最小経路である(第5図)、2つの姿勢の座
標データを(θ1.θ2.θ1.・・・、θ。)と(θ
、°、θ2′、03′、・・・、01′)とすると、上
述の直線の距wLgは前述の式で示される。2点間最小
経路算出手段(7)で(i+1)xi/2個の組み合わ
せに関する距離gを全て計算する。その後、i個のロボ
ットの通過姿勢を順次通過する11種類の経路の距離を
全行程算出手段(8)で算出す(第6図)0次いで、こ
うして算出された距離が最小となる通過順序を選択手段
(9)で選択し最小経路を決定する。このように選択さ
れる経路は各姿勢の通過順序が全く逆になる2種類が最
低存在する。
In such an articulated robot, the starting posture of the robot and the i (i≧2) postures to be passed through are each
It is given as coordinate data whose element is one point in the joint angle space, that is, the rotational position of the motor for rotating each joint with n joints, and the robot starts from the starting posture and after passing through i postures. The operation will be explained assuming that the robot returns to the starting position and ends. Initially, the robot is in the starting posture, and given i postures to pass through, each of the combinations (i+1)xi/2 of two postures out of the (i+1) postures including the starting posture. Focus on When moving between two postures, the motor is rotated according to a trajectory connecting the two coordinates with a straight line in the joint angle space, which is the minimum motor change path (Figure 5).Coordinate data of the two postures (θ1.θ2.θ1...., θ.) and (θ
, °, θ2', 03', . The two-point minimum path calculation means (7) calculates all distances g regarding the (i+1)xi/2 combinations. After that, the distances of the 11 types of paths that sequentially pass through the passing postures of the i robots are calculated by the total path calculation means (8) (Figure 6).Next, the passing order that minimizes the distances calculated in this way is calculated. The selection means (9) selects and determines the minimum route. There are at least two types of routes selected in this way, in which the order of passage of each posture is completely reversed.

そして選択された経路の内適切なものを作業者が入力装
置(11)等から指示すると、その経路が決定され、決
定された経路に沿って駆動制御手段+10)がロボット
の駆動を制御する。
Then, when the operator indicates an appropriate route among the selected routes using the input device (11) or the like, that route is determined, and the drive control means +10) controls the drive of the robot along the determined route.

ト)発明の効果 以上述べた如く、本発明多関節型ロボットはモータの回
転角自身が最小となる姿勢変化が行なわれるので、姿勢
変化の高速化が図れ、作業の効牢死が望める。
g) Effects of the Invention As described above, since the articulated robot of the present invention changes its posture so that the rotation angle of the motor itself is minimized, it is possible to speed up the posture change and improve the effectiveness of the work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明多関節型ロボットの制御部の構成図、第
2図は本発明多関節ロボットのブロック図、第3図は作
業空間の状態説明図、第4図乃至第6図は関節型空間の
状憩説明図である。 (11(2+・・・アーム、<3 ) (4)・・・関
節角、(5)・・・手先、(6)・・−制御部、(7)
・・−2点間最小経路算出手段、(8)・・・全行程算
出手段、(9)・・−選択手段、(10)・・・駆動制
御手段、+11)・・・入力装置。 第1図 第2図
Figure 1 is a block diagram of the control unit of the articulated robot of the present invention, Figure 2 is a block diagram of the articulated robot of the present invention, Figure 3 is an explanatory diagram of the state of the work space, and Figures 4 to 6 are the joints. FIG. 2 is an explanatory diagram of a situation in a mold space. (11 (2+...arm, <3) (4)...joint angle, (5)...hand, (6)...-control unit, (7)
...-minimum path calculation means between two points, (8) ... total stroke calculation means, (9) ... - selection means, (10) ... drive control means, +11) ... input device. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)予め定められた順序を問わない複数の姿勢情報を与
えることにより、その姿勢をとる順序及び経路を決定す
る多関節型ロボットにおいて、各2つの姿勢間を移動す
るときの関節回転用のモータ回転角の変化が最小となる
経路を求める2点間最小経路算出手段と、上記各姿勢を
とる順序に応じ、上記2点間最小経路算出手段で算出さ
れた結果を用いて全姿勢変化行程での合計のモータ回転
角変化量を算出する全行程算出手段と、この全行程算出
手段で算出されたモータ回転角変化量が最小となる順序
を選び出す選択手段と、を有して成り、この選択手段で
選び出された順序に応じて姿勢を変化させることを特徴
とした多関節型ロボット。
1) A motor for rotating joints when moving between each two postures in an articulated robot that determines the order and path of taking postures by providing multiple posture information in any predetermined order. A two-point minimum path calculation means that calculates a path with a minimum change in rotation angle, and a total posture change process using the results calculated by the two-point minimum path calculation means according to the order in which each posture is taken. a total stroke calculation means for calculating the total motor rotation angle change amount, and a selection means for selecting an order in which the motor rotation angle change amount calculated by the total stroke calculation means is the minimum, and this selection means An articulated robot that changes its posture according to the order selected by means.
JP1145804A 1989-06-08 1989-06-08 Articulated robot Expired - Lifetime JP2823243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145804A JP2823243B2 (en) 1989-06-08 1989-06-08 Articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145804A JP2823243B2 (en) 1989-06-08 1989-06-08 Articulated robot

Publications (2)

Publication Number Publication Date
JPH0310781A true JPH0310781A (en) 1991-01-18
JP2823243B2 JP2823243B2 (en) 1998-11-11

Family

ID=15393537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145804A Expired - Lifetime JP2823243B2 (en) 1989-06-08 1989-06-08 Articulated robot

Country Status (1)

Country Link
JP (1) JP2823243B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018051476A1 (en) * 2016-09-16 2019-06-27 株式会社Fuji Automatic work carrier
CN111230860A (en) * 2020-01-02 2020-06-05 腾讯科技(深圳)有限公司 Robot control method, robot control device, computer device, and storage medium
CN116330303A (en) * 2023-05-29 2023-06-27 广东隆崎机器人有限公司 SCARA robot motion control method, SCARA robot motion control device, SCARA robot motion control terminal equipment and SCARA robot motion control medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013766B2 (en) * 2017-09-22 2022-02-01 セイコーエプソン株式会社 Robot control device, robot system, and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274533A (en) * 1985-09-28 1987-04-06 Toshiba Corp Parts mounting method in automatic assembly device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274533A (en) * 1985-09-28 1987-04-06 Toshiba Corp Parts mounting method in automatic assembly device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018051476A1 (en) * 2016-09-16 2019-06-27 株式会社Fuji Automatic work carrier
CN111230860A (en) * 2020-01-02 2020-06-05 腾讯科技(深圳)有限公司 Robot control method, robot control device, computer device, and storage medium
CN111230860B (en) * 2020-01-02 2022-03-01 腾讯科技(深圳)有限公司 Robot control method, robot control device, computer device, and storage medium
CN116330303A (en) * 2023-05-29 2023-06-27 广东隆崎机器人有限公司 SCARA robot motion control method, SCARA robot motion control device, SCARA robot motion control terminal equipment and SCARA robot motion control medium
CN116330303B (en) * 2023-05-29 2023-08-01 广东隆崎机器人有限公司 SCARA robot motion control method, SCARA robot motion control device, SCARA robot motion control terminal equipment and SCARA robot motion control medium

Also Published As

Publication number Publication date
JP2823243B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
FI83176C (en) A method for controlling the movements of a robot and a piece manipulator during the learning phase of a robot cell
JP3207728B2 (en) Control method of redundant manipulator
US6845295B2 (en) Method of controlling a robot through a singularity
US8972056B2 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n&gt;5)
EP2660014B1 (en) Control device and teaching method for seven-shaft multi-joint robot
JPS59218513A (en) Arc control method of industrial robot
JPH0282302A (en) Robot controller
US6064168A (en) Method of controlling robot movement
JPS6125207A (en) Setting system of tool coordinate system
JPS63291104A (en) Control of terminal effector for industrial robot
EP2523786B1 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n&gt;5)
JP3639873B2 (en) Robot control method and robot control system
JPH0310781A (en) Articulated type robot
JPH01267706A (en) Method for controlling robot
JPH04227506A (en) Method for controlling position determining apparatus
JPH09314487A (en) Method for controlling manipulator having redundant axis
JP2005335010A (en) Gripping control device
JPH08155647A (en) Weaving controller of welding robot
JPS62199383A (en) Control system of robot
JP2676721B2 (en) Control device for articulated robot
JPS62154006A (en) Robot controller
KR20040034167A (en) The method of control- ling straight-line movement of vertical multi-joint six-axis manipulator
JPH05505893A (en) How to control the robot cell path
JPS5946758B2 (en) Operation control method for automatic working machines
US20210031369A1 (en) Apparatus, robot control device, robot system, and method of setting robot coordinate system