JPH0310657B2 - - Google Patents

Info

Publication number
JPH0310657B2
JPH0310657B2 JP57147778A JP14777882A JPH0310657B2 JP H0310657 B2 JPH0310657 B2 JP H0310657B2 JP 57147778 A JP57147778 A JP 57147778A JP 14777882 A JP14777882 A JP 14777882A JP H0310657 B2 JPH0310657 B2 JP H0310657B2
Authority
JP
Japan
Prior art keywords
anion exchange
membrane
film
thin layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57147778A
Other languages
Japanese (ja)
Other versions
JPS5938234A (en
Inventor
Kuniaki Takada
Takeo Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57147778A priority Critical patent/JPS5938234A/en
Publication of JPS5938234A publication Critical patent/JPS5938234A/en
Publication of JPH0310657B2 publication Critical patent/JPH0310657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な陰イオン交換膜に関する。詳し
くは、優れた耐有機汚染性を有し、且つ膜の電気
抵抗(以下、膜抵抗という。)が極めて低い陰イ
オン交換膜である。 イオン交換膜法電気透析(以下EDともいう。)
によつて海水、河川水、工場排水等の被処理液を
脱塩する場合、該被処理液中に含まれる巨大分子
の有機陰イオン物質、例えばフミン酸、ドデシル
ベンゼンスルホン酸等が陰イオン交換膜に付着し
て膜の性能を低下させる、所謂膜の有機汚染とい
う問題が生じる。 従来、耐有機汚染性を目的とした陰イオン交換
膜として、陰イオン交換基を有する樹脂膜の表層
部にスルホン酸基を導入した陰イオン交換膜(特
公昭51−40556号)、ハロアルキル基を有する膜状
高分子体の表層部を過マンガン酸塩水溶液で処理
し、次いでアミノ化処理した陰イオン交換膜(特
開昭52−6386号)、陰イオン交換膜の表層部にN
−オキシド基を導入した陰イオン交換膜(特公昭
56−47213号)等が提案されている。 しかしながら、これらの陰イオン交換膜は、あ
る程度の耐有機汚染性を有しているものの、前記
樹脂膜の表層部に設ける層により膜抵抗が著しく
増大するという欠点を有する。 本発明者等は、従来の耐有機汚染性を有する陰
イオン交換膜の上記欠点を改良すべく鋭意研究を
重ねた。その結果、陰イオン交換基を有する樹脂
膜の表面を、イオン交換基を持たない特定の微多
孔性薄層で覆うことにより、該樹脂膜の膜抵抗の
増加を極めて微少に抑えながら、優れた耐有機汚
染性を付与できることを見い出し本発明を完成す
るに至つた。 本発明は、陰イオン交換基を有する樹脂膜の少
なくとも一方の表面に、イオン交換基を持たな
い、厚み0.005〜10μ、開孔率10〜90%の無機物質
よりなる微多孔性薄層を有する陰イオン交換膜で
ある。 特に微多孔性薄層として金属、金属酸化物及び
金属窒化物より選ばれた少なくとも1種を用いる
ことが好ましい。 本発明において、陰イオン交換基を有する樹脂
膜は、公知のものが特に制限なく使用される。例
えば、樹脂膜中に第4級、第3級、第2級、第1
級アミノ基、ホスホニウム塩基、スルホニウム塩
基の一種又は二種以上が存在し、陰イオン交換容
量が0.01〜5ミリ当量/乾燥樹脂膜1gのものが
一般に使用される。また、該樹脂膜はいかなる方
法で得られたものでもよい。例えば、陰イオン交
換樹脂の微粉体と結合剤を混合し製膜して得られ
るもの(不均質膜状物)、陰イオン交換基となり
うる官能基を有するか、陰イオン交換基を導入可
能なモノマー例えばスチレン、クロルメチルスチ
レン、ビニルナフタレン、グリシジルメタクリレ
ート等の一種又は二種以上と、ジビニルベンゼ
ン、ジビニルスルホン、ジビニルエーテル等の一
種又は二種以上と、ニトリルゴム、ブタジエンゴ
ム、ポリスチレン、ポリ塩化ビニル、ポリエチレ
ン等の一種又は二種以上と、過酸化ベンゾイル等
の過酸化物との混合液をポリ塩化ビニルあるい
は、ポリプロピレン等の布に塗布し加熱重合して
膜状とし、前記官能基を陰イオン交換基に変換し
て得られるもの(均質膜状物)、ポリエチレン、
ポリプロピレン等のフイルムにクロルメチルスチ
レン、スチレン、ビニルピリジン等の一種又は二
種以上を、ジビニルベンゼン等の架橋剤の存在下
に含浸し重合した膜状物に陰イオン交換基を導入
して得られるもの(含浸膜状物)、ポリエチレン
イミンとポリビニルアルコールの水溶液をガラス
板上に塗布乾燥後グルタルアルデヒドで架橋して
得られるもの(キヤスト膜状物)、ポリ塩化ビニ
ルからなるフイルムを第1級、第2級、第3級の
いずれかのアミノ化合物でアミノ化して得られる
もの等が挙げられる。 本発明の陰イオン交換膜の特徴は、前記樹脂膜
の少なくとも一方の面に、イオン交換基を持たな
い、厚み0.005〜10μ、好ましくは0.01〜5μ、開孔
率10〜90%、好ましくは30〜90%の微多孔性薄層
を設けたことにある。上記微多孔性薄層は、先ず
イオン交換基を実質的に持たないことが重要であ
る。即ち、該薄層が陰イオン交換基を有する場
合、耐有機汚染性は全く改善されない。一方、陽
イオン交換基を有する場合、耐有機汚染性はある
程度改善されるが、膜抵抗の経時的上昇が起こ
り、例えばEDに用いた場合電力原単位の増加を
招き不経済である。該薄層は無機物であれば、特
に制限されないが、イオン交換基を持たないもの
である。特にアルミニウム、ビスマス、カドミウ
ム、ゲルマニウム、金、インジウム、鉄、鉛、モ
リブデン、ニツケル、白金、セレン、ケイ素、
銀、チタン等の金属、アルミナ、酸化マグネシウ
ム、酸化ケイ素、酸化スズ、酸化チタン等の金属
酸化物、窒化ジルコニウム、窒化チタン、窒化タ
ンタル、窒化ホウ素、窒化ニオブ、窒化バナジウ
ム等の金属窒化物その他カルシウムフルオライ
ド、硫化カドミウム等の一種以上が好ましい。就
中、薄層表面に有機汚染物質の付着が少ないニツ
ケル、チタン、白金、が該有機汚染物質による二
次的な膜性能の低下を招くおそれがなく好まし
い。また、該薄層の厚みが前記範囲より薄いと、
該薄層による有機汚染物質の付着防止効果が低下
し、充分な耐有機汚染性が得られず、該薄層の厚
みが前記範囲より厚くても、最早より以上の効果
はなく、取扱い時に剥離しやすいうえ、場合によ
つては膜抵抗が急激に上昇する。更に、該薄層の
開孔率が前記範囲より低くても膜抵抗の上昇を招
く。また、前記範囲より高い開口率を有する薄層
は強度的に弱いだけでなく、耐有機汚染性も低下
する。従つて、前述した要件を全て満足する微多
孔性薄層を、陰イオン交換基を有する樹脂膜に設
けることにより優れた耐有機汚染性を有すると共
に膜抵抗が極めて低い陰イオン交換膜となり得
る。 また、本発明において、微多孔性薄層に存在す
る孔の形状は円状に限定されるものではなく任意
の形状をとり得る。場合によつては、網状に連な
る形状をとることもある。該孔の大きさは円状等
のように小さく独立した孔の場合、相当径(D=
√開口面積)が30〜300A、網状のようにあ
る程度連続した孔の場合、その巾が30〜300Aと
なるよう設定することが、被処理液中の有機汚染
物質と樹脂膜との接触を良好に防止し、耐有機汚
染性を向上でき特に好ましい。 本発明において、陰イオン交換基を有する樹脂
膜に微多孔性薄層を形成させる手段は、前記要件
を満足できる手段であれば、公知の方法が特に制
限なく採用される。代表的な方法を挙げれば、真
空蒸着法、スパツタリング法、化学気相メツキ
法、無電解メツキ、比較的分解し易い有機金属等
の溶液を塗布後熱分解する方法等があり、前記し
た微多孔性薄層の材質に応じて適宜実施すればよ
い。一般に真空蒸着法は、10-4〜10-7Torrの減
圧下で、金属あるいは化合物を加熱蒸発させてこ
れを膜面に蒸着させることによつて実施される。
スパツタリング法は10-1〜10-3Torrの減圧下で
1対の電極に直流あるいは交流電圧を加え、グロ
ー放電を起こさせ、陰極のスパツタリング現象を
利用して膜面に前記金属あるいは化合物を付着さ
せることによつて実施される。また、化学気相メ
ツキは加熱されている、被処理膜の表面に前記金
属あるいは化合物の蒸気を送り、膜表面における
反応によつて膜表面に薄膜を形成することによつ
て実施される。更に、無電解メツキは金属塩水溶
液と可溶性還元剤を主成分とする浴に膜面を接触
させ、金属イオンの還元により膜表面に金属を折
出させることによつて実施される。 上記微多孔性薄層を設ける際、予め前記樹脂膜
の表面を研摩処理、サンドブラスト処理等により
粗面化することは、該樹脂膜に対する薄膜の接着
性を向上でき好ましい。また、微多孔性薄膜は前
述した要件を満足する範囲において、異なる材質
よりなる複数の層で形成されていてもよい。 以下実施例により本発明をさらに具体的に説明
するが、本発明はこれになんら拘束されるもので
はない。実施例中に使用する記号と測定方法の説
明を以下の通り行う。 (1) 膜抵抗(単位 Ω−cm2) 処理して得た膜をコンデイシヨニングした後
0.5N NaCl溶液に平衝させ1000サイクルのホ
ーイストンブリツジを用い25℃の温度で測定し
た。 (2) 選択透過係数(PSO4 Cl) PSO4 ClはCl-イオンに対するSO4 2-イオンの透過
性を示す。処理して得た陰イオン交換膜をコン
デイシヨニングした後、銀・塩化銀電極を有す
る二室式セルで選択透過性を測定した。陽極室
には100c.c.の0.5N NaCl溶液を入れ、測定しよ
うとする陰イオン交換膜(有効面積10cm2)を挾
んで、陰極室には0.25NのNaClと0.25Nの
Na2SO4の混合溶液を入れ、両室とも1500rpm
の回転速度で撹拌し、2A/dm2の電流密度で
30分〜60分透析後の両室のイオンを分析するこ
とにより、陰イオン交換膜に対する各イオンの
輪率を求めた。 SO4 2-イオンの陰イオン交換膜に対する輪率
SO4、Cl-イオンの陰イオン交換膜に対する
輪率をClとし、陰極室のSO4 2-イオン濃度を
CSO4(N)、Clイオン濃度をCCl(N)とすると
PSO4 Clは次の様に定義される。 PSO4 Cl=(SO4Cl)/(CSO4/CCl) (3) 拡散係数(D/δ)(単位、10-6cm・sec-1
処理して得た陰イオン交換膜をコンデイシヨニ
ングし充分水洗して二室セルに該陰イオン交換
膜を挾み、一方のセルに100c.c.の純水を入れ他
方のセルには4N NaCl溶液300c.c.を入れ両室と
も1500rpmで撹拌させた。120分間透析後の
NaClの純水への透過量から拡散係数を求めた。
D/δは次の様に定義される。 D/δ=q/△C・A・t D:拡散係数(cm2・sec-1) δ:膜厚(cm) q:t秒後のNaClの透過量(eq) △C:溶液濃度差(eq/cm2) A:膜面積(cm2) t:透析時間(sec) (4) 耐汚染性の測定 処理して得た陰イオン交換膜をコンデイシヨ
ニングした後、銀、塩化銀電極を有する二室式
セルに該陰イオン交換膜を挾み、その陽極室に
は0.05N NaCl100c.c.を入れ、陰極室には
100ppmのドデシルベンゼンスルホンナトリウ
ムと0.05N NaClの混合溶液を入れた。両室と
も1500rpmの回転速度で撹拌し、0.2A/dm2
電流密度で電気透析を行なつた。その時、両膜
表面の2mmの所に銀−塩化銀の線を固定し、膜
間電圧の経時変化を測定した。通電して24時間
経過後膜間電圧がほとんど変化しない膜を耐汚
染性があると判断した。また、通電を開始して
すぐ膜間電圧が上昇する膜は通電開始から5分
後の膜抵抗で耐汚染性を表示した。 実施例 1 クロルメチルスチレン80部、工業用ジビニルベ
ンゼン20部、過酸化ベンゾイル3部、エポキシエ
チルベンゼン3部、スチレン−ブタジエン−アク
リロニトリルゴム5部よりなる混合溶液をポリ塩
化ビニル製のテビロン 布(帝人(株)製)にポリエ
ステルフイルムを剥離フイルムとして使用しなが
ら塗布した。 これを80℃8時間重合した後、ポリエステルフ
イルムを取り去り合成樹脂マトリツクスを得、こ
れをトリメチルアミンでアミノ化することにより
強塩基性陰イオン交換基を化学結合した樹脂膜を
得た。 更に、0.5N NaCl水溶液、純水で洗浄して、
一昼夜風乾し、真空乾燥器で16時間乾燥した。こ
の膜状物を日本電子(株)製のJEOL JEE4Bにセツ
トし、Ni線25mgを使用して3×10-5Torrの真空
度でNiを蒸着し、本発明の陰イオン交換膜を得
た。Ni薄層は、厚み0.1μ、開孔率70%、平均孔
径120Åであつた。比較のためNiの蒸着処理を施
さない比較例の膜も合成した。 これらの膜の性質を第1表に示す。
The present invention relates to a novel anion exchange membrane. Specifically, it is an anion exchange membrane that has excellent resistance to organic contamination and extremely low membrane electrical resistance (hereinafter referred to as membrane resistance). Ion exchange membrane electrodialysis (hereinafter also referred to as ED)
When desalinating a liquid to be treated such as seawater, river water, or industrial wastewater, organic anionic substances with large molecules such as humic acid, dodecylbenzenesulfonic acid, etc. contained in the liquid to be treated undergo anion exchange. The problem arises of so-called organic contamination of the membrane, which adheres to the membrane and degrades the performance of the membrane. Conventionally, as anion exchange membranes for the purpose of organic contamination resistance, anion exchange membranes with sulfonic acid groups introduced into the surface layer of a resin membrane having anion exchange groups (Japanese Patent Publication No. 40556/1983), and haloalkyl groups The surface layer of the membranous polymer is treated with a permanganate aqueous solution, and then an aminated anion exchange membrane (Japanese Patent Application Laid-Open No. 1986-6386) is used.
-Anion exchange membrane with oxide groups introduced (Tokuko Sho)
56-47213) etc. have been proposed. However, although these anion exchange membranes have some degree of resistance to organic contamination, they have the disadvantage that membrane resistance increases significantly due to the layer provided on the surface layer of the resin membrane. The present inventors have conducted extensive research in order to improve the above-mentioned drawbacks of conventional anion exchange membranes having resistance to organic contamination. As a result, by covering the surface of a resin membrane that has anion exchange groups with a specific microporous thin layer that does not have ion exchange groups, we have succeeded in achieving excellent The present invention was completed by discovering that organic stain resistance can be imparted. The present invention has a microporous thin layer made of an inorganic material, which does not have an ion exchange group, has a thickness of 0.005 to 10 μm, and has a porosity of 10 to 90%, on at least one surface of a resin membrane that has an anion exchange group. It is an anion exchange membrane. In particular, it is preferable to use at least one selected from metals, metal oxides, and metal nitrides as the microporous thin layer. In the present invention, known resin membranes having anion exchange groups can be used without particular limitation. For example, in the resin film, quaternary, tertiary, secondary, primary
One or more of a class amino group, a phosphonium base, and a sulfonium base are present, and an anion exchange capacity of 0.01 to 5 milliequivalents/g of dry resin membrane is generally used. Further, the resin film may be obtained by any method. For example, those obtained by mixing fine powder of anion exchange resin and a binder to form a film (heterogeneous film-like material), which have a functional group that can become an anion exchange group, or can introduce an anion exchange group. Monomers such as one or more of styrene, chloromethylstyrene, vinylnaphthalene, glycidyl methacrylate, one or more of divinylbenzene, divinyl sulfone, divinyl ether, etc., nitrile rubber, butadiene rubber, polystyrene, polyvinyl chloride. A mixture of one or more types of polyethylene, etc., and peroxides such as benzoyl peroxide is applied to a cloth made of polyvinyl chloride or polypropylene, and heated and polymerized to form a film, and the functional groups are converted into anions. Those obtained by converting into exchange groups (homogeneous film-like material), polyethylene,
Obtained by impregnating a film such as polypropylene with one or more of chloromethylstyrene, styrene, vinylpyridine, etc. in the presence of a crosslinking agent such as divinylbenzene, and introducing an anion exchange group into the polymerized film. (impregnated film-like material), film obtained by coating an aqueous solution of polyethyleneimine and polyvinyl alcohol on a glass plate, drying it, and then crosslinking with glutaraldehyde (cast film-like material), film made of polyvinyl chloride, Examples include those obtained by amination with either a secondary or tertiary amino compound. The anion exchange membrane of the present invention is characterized by having no ion exchange group on at least one surface of the resin membrane, having a thickness of 0.005 to 10μ, preferably 0.01 to 5μ, and a porosity of 10 to 90%, preferably 30%. ~90% microporous thin layer is provided. It is important that the microporous thin layer has substantially no ion exchange groups. That is, if the thin layer has anion exchange groups, the organic stain resistance is not improved at all. On the other hand, when it has a cation exchange group, the organic contamination resistance is improved to some extent, but the membrane resistance increases over time, and when used for example in ED, the electric power consumption increases and is uneconomical. The thin layer is not particularly limited as long as it is inorganic, but it does not have ion exchange groups. Especially aluminum, bismuth, cadmium, germanium, gold, indium, iron, lead, molybdenum, nickel, platinum, selenium, silicon,
Metals such as silver and titanium, metal oxides such as alumina, magnesium oxide, silicon oxide, tin oxide, and titanium oxide, metal nitrides such as zirconium nitride, titanium nitride, tantalum nitride, boron nitride, niobium nitride, vanadium nitride, and other calcium. One or more of fluoride, cadmium sulfide, etc. is preferred. Among these, nickel, titanium, and platinum, which have less adhesion of organic contaminants to the thin layer surface, are preferable since there is no risk of secondary deterioration of film performance due to the organic contaminants. Further, if the thickness of the thin layer is thinner than the above range,
The effect of the thin layer on preventing the adhesion of organic contaminants is reduced, and sufficient organic contamination resistance cannot be obtained, and even if the thickness of the thin layer is thicker than the above range, it will no longer be more effective and will peel off during handling. In some cases, membrane resistance increases rapidly. Furthermore, even if the porosity of the thin layer is lower than the above range, the membrane resistance will increase. Further, a thin layer having an aperture ratio higher than the above range not only has weak strength but also has low organic contamination resistance. Therefore, by providing a microporous thin layer that satisfies all of the above-mentioned requirements on a resin membrane having anion exchange groups, an anion exchange membrane can be obtained which has excellent organic contamination resistance and extremely low membrane resistance. Furthermore, in the present invention, the shape of the pores present in the microporous thin layer is not limited to a circular shape, but can take any shape. In some cases, they may take the form of a network. In the case of a small independent hole such as a circular hole, the size of the hole is the equivalent diameter (D=
√ Opening area) is 30 to 300A, and if the holes are continuous to some extent like a net, setting the width to 30 to 300A will improve the contact between organic contaminants in the liquid to be treated and the resin film. It is particularly preferable because it can prevent organic staining and improve organic stain resistance. In the present invention, as a means for forming a microporous thin layer on a resin membrane having an anion exchange group, any known method can be employed without particular restriction as long as it satisfies the above requirements. Typical methods include vacuum evaporation, sputtering, chemical vapor plating, electroless plating, and a method in which a solution of relatively easily decomposed organic metal is applied and then thermally decomposed. This may be carried out as appropriate depending on the material of the thin layer. Generally, the vacuum evaporation method is carried out by heating and vaporizing a metal or a compound under a reduced pressure of 10 -4 to 10 -7 Torr and depositing it on a film surface.
In the sputtering method, a DC or AC voltage is applied to a pair of electrodes under a reduced pressure of 10 -1 to 10 -3 Torr to cause glow discharge, and the metal or compound is attached to the film surface using the sputtering phenomenon of the cathode. It is implemented by letting Further, chemical vapor plating is carried out by sending the vapor of the metal or compound onto the heated surface of the film to be treated, and forming a thin film on the film surface through a reaction on the film surface. Furthermore, electroless plating is carried out by bringing the membrane surface into contact with a bath containing an aqueous metal salt solution and a soluble reducing agent as main components, and depositing metal on the membrane surface by reduction of metal ions. When providing the microporous thin layer, it is preferable to roughen the surface of the resin film in advance by polishing, sandblasting, etc., since this can improve the adhesion of the thin film to the resin film. Further, the microporous thin film may be formed of a plurality of layers made of different materials within a range that satisfies the above-mentioned requirements. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. The symbols and measurement methods used in the examples will be explained as follows. (1) Membrane resistance (unit: Ω-cm 2 ) After conditioning the treated membrane
Measurements were made at a temperature of 25°C using a Wheatstone bridge equilibrated with a 0.5N NaCl solution for 1000 cycles. (2) Selective permeability coefficient (P SO4 Cl ) P SO4 Cl indicates the permeability of SO 4 2- ions to Cl - ions. After conditioning the anion exchange membrane obtained by the treatment, the permselectivity was measured in a two-chamber cell having silver/silver chloride electrodes. 100 c.c. of 0.5N NaCl solution is placed in the anode chamber, sandwiching the anion exchange membrane to be measured (effective area 10cm 2 ), and 0.25N NaCl and 0.25N NaCl are placed in the cathode chamber.
Add a mixed solution of Na 2 SO 4 and set both chambers at 1500 rpm.
Stir at a rotational speed of 2 A/dm 2 and a current density of 2 A/dm
By analyzing the ions in both chambers after dialysis for 30 to 60 minutes, the ring ratio of each ion to the anion exchange membrane was determined. The ring ratio of SO 4 2- ions to the anion exchange membrane is SO4 , the ring ratio of Cl - ions to the anion exchange membrane is Cl , and the SO 4 2- ion concentration in the cathode chamber is
If C SO4 (N) and Cl ion concentration are C Cl (N),
P SO4 Cl is defined as follows. P SO4 Cl = ( SO4 / Cl ) / (C SO4 /C Cl ) (3) Diffusion coefficient (D/δ) (unit, 10 -6 cm・sec -1 )
The anion exchange membrane obtained by the treatment is conditioned and thoroughly washed with water, and the anion exchange membrane is placed in a two-chamber cell. One cell is filled with 100 c.c. of pure water, and the other cell is filled with 100 c.c. of pure water. 300 c.c. of 4N NaCl solution was added and both chambers were stirred at 1500 rpm. After 120 minutes of dialysis
The diffusion coefficient was determined from the amount of NaCl permeated into pure water.
D/δ is defined as follows. D/δ=q/△C・A・t D: Diffusion coefficient (cm 2・sec -1 ) δ: Film thickness (cm) q: NaCl permeation amount after t seconds (eq) △C: Solution concentration difference (eq/cm 2 ) A: Membrane area (cm 2 ) t: Dialysis time (sec) (4) Measurement of contamination resistance After conditioning the anion exchange membrane obtained by treatment, it was treated with silver and silver chloride. The anion exchange membrane is placed in a two-chamber cell with electrodes, and the anode chamber is filled with 0.05N NaCl100c.c., and the cathode chamber is filled with 0.05N NaCl100c.c.
A mixed solution of 100 ppm sodium dodecylbenzenesulfone and 0.05N NaCl was added. Both chambers were stirred at a rotational speed of 1500 rpm and electrodialysis was performed at a current density of 0.2 A/dm 2 . At that time, a silver-silver chloride wire was fixed at a distance of 2 mm from the surface of both films, and the change in intermembrane voltage over time was measured. A membrane with almost no change in intermembrane voltage after 24 hours of being energized was judged to have contamination resistance. In addition, for membranes whose intermembrane voltage increased immediately after starting energization, the contamination resistance was indicated by the membrane resistance 5 minutes after starting energization. Example 1 A mixed solution consisting of 80 parts of chloromethylstyrene, 20 parts of industrial divinylbenzene, 3 parts of benzoyl peroxide, 3 parts of epoxyethylbenzene, and 5 parts of styrene-butadiene-acrylonitrile rubber was mixed with polyvinyl chloride Teviron cloth (Teijin). Co., Ltd.) using a polyester film as a release film. After polymerizing this at 80° C. for 8 hours, the polyester film was removed to obtain a synthetic resin matrix, which was aminated with trimethylamine to obtain a resin membrane chemically bonded with strong basic anion exchange groups. Furthermore, wash with 0.5N NaCl aqueous solution and pure water,
It was air-dried all day and night, and then dried in a vacuum dryer for 16 hours. This film-like material was set in JEOL JEE4B manufactured by JEOL Ltd., and Ni was evaporated using 25 mg of Ni wire at a vacuum level of 3 × 10 -5 Torr to obtain the anion exchange membrane of the present invention. . The Ni thin layer had a thickness of 0.1 μm, a porosity of 70%, and an average pore diameter of 120 Å. For comparison, a comparative film without Ni vapor deposition treatment was also synthesized. The properties of these films are shown in Table 1.

【表】 実施例 2 実施例1で得られた樹脂膜を5%ジメチルアミ
ン水溶液中で30℃、8時間反応を行なつた後、ト
リメチルアミンのメタノール溶液でアミノ化し
た。この膜を水洗、風乾、減圧乾燥した後、実施
例1と同じ条件下でチタン線20mgを使用して片面
にチタンを真真空蒸着した。チタン薄膜は厚み
0.15μ、開孔率80%、平均孔径150Åであつた。な
お、チタンの蒸着処理を施さない比較例の膜も合
成した。これら陰イオン交換膜の耐汚染性を調べ
る際、陽極室のPHが2となる様に塩酸を添加して
実験した。これらの結果を第2表に示す。
[Table] Example 2 The resin film obtained in Example 1 was reacted in a 5% dimethylamine aqueous solution at 30°C for 8 hours, and then aminated with a methanol solution of trimethylamine. After washing this membrane with water, air drying, and drying under reduced pressure, titanium was vacuum-deposited on one side using 20 mg of titanium wire under the same conditions as in Example 1. The thickness of the titanium thin film
The pore size was 0.15 μ, the pore size was 80%, and the average pore diameter was 150 Å. Note that a comparative film without titanium vapor deposition treatment was also synthesized. When examining the contamination resistance of these anion exchange membranes, experiments were carried out by adding hydrochloric acid so that the pH of the anode chamber was 2. These results are shown in Table 2.

【表】 実施例 3 実施例1で得られた強塩基性陰イオン交換基を
有する樹脂膜を風乾し減圧乾燥した後、日本電子
(株)製のJEOL JEE4Bにセツトし、酸化スズ粉末
30mgを使用して、3×10-5Torrの真空度で、該
樹脂膜の片面に酸化スズを蒸着した。酸化スズ薄
層は厚み0.12μ、開孔率78%、平均孔径90Åであ
つた。この陰イオン交換膜の性質を第3表に示
す。
[Table] Example 3 After air-drying the resin film having a strong basic anion exchange group obtained in Example 1 and drying it under reduced pressure,
Set in JEOL JEE4B manufactured by Co., Ltd., tin oxide powder
Tin oxide was deposited on one side of the resin film using 30 mg at a vacuum level of 3×10 −5 Torr. The tin oxide thin layer had a thickness of 0.12 μm, a porosity of 78%, and an average pore diameter of 90 Å. The properties of this anion exchange membrane are shown in Table 3.

【表】 実施例 4 実施例1で得られた強塩基性陰イオン交換基を
有する樹脂膜を風乾し減圧乾燥した後、エイコー
エンジニアリング(株)製のEIKO/B.Bイオンコー
ターを用いて、5×10-2Torrの真空度でイオン
電流5mAの条件で金をターゲツトとして、該樹
脂膜に10分間スパツタリングした。金薄層は厚み
1μ、開孔率60%、孔径80Åであつた。この陰イ
オン交換膜の性質を第4表に示す。
[Table] Example 4 After air-drying the resin film having a strong basic anion exchange group obtained in Example 1 and drying it under reduced pressure, it was coated with 5× The resin film was sputtered for 10 minutes using gold as a target under the conditions of a vacuum of 10 -2 Torr and an ion current of 5 mA. Gold thin layer is thick
The pore size was 1 μ, the pore size was 60%, and the pore diameter was 80 Å. The properties of this anion exchange membrane are shown in Table 4.

【表】 実施例 5 実施例1において微多孔性薄層を形成させる物
質及び真空蒸着によつて形成される該薄層の性状
を第5表に示す如く変えて陰イオン交換膜を製造
した。得られた陰イオン交換膜の性能を第5表に
併せて示す。
[Table] Example 5 Anion exchange membranes were manufactured by changing the substance forming the microporous thin layer in Example 1 and the properties of the thin layer formed by vacuum deposition as shown in Table 5. The performance of the obtained anion exchange membrane is also shown in Table 5.

【表】 比較例 実施例1の樹脂膜の表層部(片面)0.5μをスル
ホン酸基に変換して陰イオン交換膜を得、これに
ついて性能を測定した結果、膜抵抗2.7Ωcm2、塩
の拡散係数3.3×10-6cmsec-1、PSO4 Cl0.19、耐有機汚
染性2.8Ωcm2であつた。
[Table] Comparative Example An anion exchange membrane was obtained by converting 0.5μ of the surface layer (one side) of the resin membrane of Example 1 into a sulfonic acid group, and its performance was measured. As a result, the membrane resistance was 2.7Ωcm 2 and the salt It had a diffusion coefficient of 3.3×10 -6 cmsec -1 , P SO4 Cl 0.19, and organic contamination resistance of 2.8 Ωcm 2 .

Claims (1)

【特許請求の範囲】 1 陰イオン交換基を有する樹脂膜の少なくとも
一方の表面に、イオン交換基を持たない、厚み
0.005〜10μ、開孔率10〜90%の無機物質よりなる
微多孔性薄層を有する陰イオン交換膜。 2 微多孔性薄層が金属、金属酸化物及び金属窒
化物より選ばれた少なくとも1種よりなる特許請
求の範囲第1項記載の陰イオン交換膜。
[Scope of Claims] 1. A resin membrane having an anion exchange group, at least one surface of which does not have an ion exchange group, and has a thickness
Anion exchange membrane having a microporous thin layer made of an inorganic material with a porosity of 0.005 to 10μ and a porosity of 10 to 90%. 2. The anion exchange membrane according to claim 1, wherein the microporous thin layer is made of at least one selected from metals, metal oxides, and metal nitrides.
JP57147778A 1982-08-27 1982-08-27 Anion exchange membrane Granted JPS5938234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147778A JPS5938234A (en) 1982-08-27 1982-08-27 Anion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147778A JPS5938234A (en) 1982-08-27 1982-08-27 Anion exchange membrane

Publications (2)

Publication Number Publication Date
JPS5938234A JPS5938234A (en) 1984-03-02
JPH0310657B2 true JPH0310657B2 (en) 1991-02-14

Family

ID=15437968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147778A Granted JPS5938234A (en) 1982-08-27 1982-08-27 Anion exchange membrane

Country Status (1)

Country Link
JP (1) JPS5938234A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103089A (en) * 1975-03-07 1976-09-11 Asahi Glass Co Ltd SUISOIONNANTOKASEIINIONKOKANJUSHIMAKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103089A (en) * 1975-03-07 1976-09-11 Asahi Glass Co Ltd SUISOIONNANTOKASEIINIONKOKANJUSHIMAKU

Also Published As

Publication number Publication date
JPS5938234A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
Pang et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers
US3945927A (en) Ion-exchange group bearing composite membranes
KR100999048B1 (en) Method for preparing anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer
US4012324A (en) Crosslinked, interpolymer fixed-charge membranes
US3808305A (en) Crosslinked,interpolymer fixed-charge membranes
US4262041A (en) Process for preparing a composite amphoteric ion exchange membrane
US5221455A (en) Bipolar membrane and method for its production
EP0600470A2 (en) Bipolar membrane
JPS62196390A (en) Ion permeable diaphragm for improved electrolytic cell
CN105251372B (en) A kind of preparation method of anti-soil chlorine-resistant aromatic polyamides composite membrane
US3297595A (en) Semi-permeable membrane and production thereof
JPH0310657B2 (en)
JP5271485B2 (en) Composite anion exchange membrane and method for producing the same
US2838045A (en) Microbicidal bandage
Sata et al. Electrodialytic transport properties of cation exchange membranes in the presence of cyclodextrins
Sata et al. Properties of composite membranes from ion exchange membranes and conducting polymers. III. Changes in acid transport
US3004909A (en) Electropositive selective permeable membrane and method of production
Yoo et al. Crosslinkable layer-by-layer assembled sulfonated poly (phenylene oxide) membrane based on Nafion for vanadium redox flow battery
JPS63118338A (en) Modified ion exchange membrane
JPS6028849B2 (en) Manufacturing method of composite ion exchange membrane
JPS62266103A (en) Composite semipermeable membrane
JP2624424B2 (en) Bipolar membrane
JP2801469B2 (en) Bipolar membrane
JPH07265864A (en) Fluorine-ion removing method
JPH0553530B2 (en)