JPH03105833A - Electron source - Google Patents

Electron source

Info

Publication number
JPH03105833A
JPH03105833A JP2239803A JP23980390A JPH03105833A JP H03105833 A JPH03105833 A JP H03105833A JP 2239803 A JP2239803 A JP 2239803A JP 23980390 A JP23980390 A JP 23980390A JP H03105833 A JPH03105833 A JP H03105833A
Authority
JP
Japan
Prior art keywords
electron source
electron
cathode
source according
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2239803A
Other languages
Japanese (ja)
Inventor
Hermann Schaefer
ヘルマン、シエーフアー
Karl-Heinz Herrmann
カールハインツ、ヘルマン
Joerg Droemer
イエルク、ドレーマー
Peter Schaeffer
ペーター、シエーフアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH03105833A publication Critical patent/JPH03105833A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current
    • H01J1/16Cathodes heated directly by an electric current characterised by the shape

Abstract

PURPOSE: To emit electrons with circular angle distribution by forming an elec tron emitter into a rectangular parallelopiped shape for holding electrons to be emitted only from the side into a vacuum. CONSTITUTION: A cathode is formed with a thin LaB6 crystal plate KP, which is held between two cubes G, G' formed of thermally decomposed graphite, to be used as heating elements or adhered to the cubes, as required. The graphite cubes G, G' constitute a completely flat equipotential surface together with the cathode, so that electrons being held are emitted only from a side EF of the crystal plate KP into a vacuum. In this way, circular angle distribution for electron emission required to uniformly radiate a linear hole pattern is ensured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電子源,特に線形電子源に関する.[従来の
技術] 「マイクロエレクトロニク エンジニアリング(Mic
roelectronic Engineering)
 J第9巻(1989年)、第199〜203ページか
ら、リングラフィ装1(’?t子ビーム描画装置)が知
られており、この装置の電子光学的鏡筒は多数の個々に
偏向又はプランキング可能な電子ゾンデを発生させるた
めの制御ユニットを内蔵する.この「マイクロエレクト
ロニク エンジニアリング(Nicroeiectro
nic Engineering ) J第9巻(19
89年)、第205〜208ページに記載の制御装忍は
主として開口板及び偏向板から成り、その際ゾンデ発生
に用いられる開口板は片持ちの膜として構成され正方形
の貫通孔の線形配置を備える.この線形の孔パターンを
一様に照射するために,同様に線形の電子源(LaB6
製ナイフエッジ形放出体)を開口絞り上に拡大して結像
し、その際照射光学系により発生させられた帯状ビーム
の軸平行性及び均−性に対して非常に高い要求が物体面
上で課せられる. 公知の線形電子源は,ビーム発生器中での電子源のwR
t15が重大な問題をもたらす(「マイ?ロエレクトロ
ニク エンジニアリンク(Jicra−electro
nie Engineering) J第9巻(198
9年)、第259〜262ページ参照)という欠点を有
する.更に従来用いられたLaBb製ナイフエッジ形放
出体は不利な電子光学的特性をイIし、このことは大き
い縦横比をイ{する線形物体の一様な照射を困難にする
(「マイクロエレクトロニク エンジニアリング■Ii
croelectronicEngineering 
) J ?fi 9 巻( 1 9 8 9年)、第2
09〜212ページ、及び欧州特許出願公開第0207
772号公報参照). [発明が解決しようとする課題] この発明の課題は、線形物体を一様に照射するために円
形の角度分春を持って放出する電子源を提供することに
ある.特に電子源をくし形ゾンデ描画装置の中で用いる
ことができかつ簡単に構成されるようにしようとするも
のである.[課題を解決するための手段] この課題はこの発明に基づき、電子放出体が直方体形に
構成され、電子が側面だけから真空中へ放出されるよう
に保持される電子源、及び平らな放出面を備えた陰極と
陰極材料より高い仕事関数を有し電子放出を制限するた
めの材料を平らな面内の所定の領域上に有する被膜とを
備える電子源により解決される. [発明の効果] この発明により得られる長所は特に、大きい縦横比を有
する線形電子源を作ることができるということにある. [実施例] 次にこの発明に基づく電子源の複数の実施例を示す図而
により,この発明を詳細に説明する.第1図に示され線
形電子源を備える電子ビーム発生器は、例えば開口板上
に存在する孔パターンを一様に照射するために公知のく
し形ゾンデ描画装置の中で用いることができる.電子ビ
ーム発生器は主として大地電位にある陽極A,制御電極
W(ウェーネルト電極)及び加熱される六ホウ化ランタ
ン製陰極Kから戒り、この陰極は合金鋼製保持体Hによ
り,スリー71状貫通孔を右し陰極Kに対して負にバイ
アスされた制御電極Wに関して心合わせされて配置され
ている.P3極保持体Hは2木の調節ボル}S,51 
 とクランブKL.KL’から成る挟み込み装置とを備
え、この挟み込み装置はボルトs.s’ により発生さ
せられた保持力を、加熱要素G.Gl の間に配置され
たホウ化物陰極K上に伝達する.8的に有利な保持体に
基づき,  i o. −b−t i O−1 }ルの
高真空中に配置された陰極Kを約1200〜1800’
Cの必要な運転温度に加熱するために、僅かな加熱電力
を必要とするにすぎない.その際加熱電圧は陰極電位に
4かれた接続端子HV,HVI を経てビーム発生器に
供給される. 第2r54に示すように、陰極は薄いLaB6結晶板K
Pから成り、この結晶板は例えば1〜5+nmの辺長で
約0.5〜20ILmのnさを有する.ここで結晶板K
Pは,熱分解グラファイトから成り加熱要素として用い
られる二つの立方体G,Glの間に挟み込まれ,場合に
よってはこの立方体に接着される.グラファイト立方休
G,Gl は陰極と共に完全に平らな等電位面を形威し
、゛准子は保持に基づき結晶板KPの側面EFだけから
真空中に放出されるので、線形孔パターンの一様な照射
のために必要な電子放出の円形の角度分春が保証される
。その−1ニホウ化物陰極の適当な加工及び挟み込みに
より、放出する側面の一つEFは100−鮎晶而に相応
し、その際この鮎晶面はグンプアイト製立方体と共にリ
ングラフィ装轟のビーノ、軸線に対しほぼ直角に向けら
れるというご.l゛が保証される.そのと陰極の簡単な
41I威により、例えば2000:1の非常に大きい縦
横比な備える線形電子源の製造が可能となる.この電子
源の別の長所は、長期の運転の後にグラファイト!lJ
立力体G,G’  と結晶板KPとの間の接会領域にた
またま生じる凹凸を、組み立てられた陰極の研削により
除大できるということにある.別の実施例によれば、放
出領域Eを画成する材料による平らな陰極Kの被覆によ
っても線形電子源を製込することが’tFきる.第3図
に示されたLaB6単結晶陰極Kの端而Bを被覆するた
めに、例えば耐熱性かつ耐真空性材料すなわち炭素、タ
ングステン,レニウム又は酸化アルミニウムが考慮され
る.これらの材料は陰極材料より著しく高い仕事関数を
右し、放出特性に影響を与えない.前記材料のうちの一
つによる陰極Kの被覆は更に,放射領域Eを自由に選択
でき照射しようとする物体パターンに適合させることが
できるPいう長所を事える.更に電子放出の促進のため
に、領域Eを補助的に例えばカルシウム又はバリウムの
ような仕事関数を低下させる材料により被覆するのが有
利である. この発明は自明のように前記実施例には制限されない.
それで前記陰極を他の粒子ビーム装欝の中で細長い物体
の照射のために用いることが容易に可能である,LaB
6結函を他f)醜極材料例スばタングステン又はBaO
とSrOとから成る混合物によりttls替えることが
できる。線形電子源として自明のように平面のpn接合
又は金嵐・絶縁体争金属の組み合わせを備えた電界放出
形論極を用いることもできる.
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an electron source, particularly a linear electron source. [Conventional technology] “Microelectronic engineering (Mic
roelectronic engineering)
J Vol. 9 (1989), pages 199-203, a phosphorography device 1 ('?t-beam writing device) is known, in which the electro-optical column has a large number of individually deflected or It has a built-in control unit to generate an electronic sonde that can plank. This “Microelectronic Engineering”
nic Engineering) J Volume 9 (19
1989), pages 205 to 208, the control device mainly consists of an aperture plate and a deflection plate, where the aperture plate used for sonde generation is configured as a cantilevered membrane and has a linear arrangement of square through holes. Prepare. In order to uniformly illuminate this linear hole pattern, a similarly linear electron source (LaB6
A knife-edge shaped emitter (made by a manufacturer) is expanded and imaged on an aperture diaphragm, in which very high requirements are placed on the axis parallelism and homogeneity of the strip beam generated by the illumination optical system on the object plane. It is imposed by The known linear electron source has a wR of the electron source in the beam generator.
t15 poses serious problems ("My? Electronic Engineering Link (Jicra-electro)
nie Engineering) J Volume 9 (198
9), pp. 259-262). Furthermore, the conventionally used LaBb knife-edge emitters exhibit unfavorable electro-optical properties, which make uniform illumination of linear objects with large aspect ratios difficult ("microelectronic"). Engineering■Ii
croelectronic engineering
) J? fi Volume 9 (1989), No. 2
Pages 09-212 and European Patent Application Publication No. 0207
(See Publication No. 772). [Problem to be Solved by the Invention] An object of the present invention is to provide an electron source that emits electrons with circular angular separation in order to uniformly irradiate a linear object. In particular, the aim is to make the electron source usable and easily constructed in a comb-shaped sonde drawing device. [Means for Solving the Problem] This problem is based on the present invention, and includes an electron source in which the electron emitter is configured in the shape of a rectangular parallelepiped and held so that electrons are emitted into vacuum only from the sides, and The problem is solved by an electron source with a cathode with a surface and a coating with a material having a higher work function than the cathode material and on a predetermined area in the plane to limit electron emission. [Effects of the Invention] The advantage obtained by this invention is, in particular, that it is possible to create a linear electron source with a large aspect ratio. [Examples] Next, the present invention will be explained in detail with reference to figures showing a plurality of embodiments of electron sources based on the present invention. The electron beam generator shown in FIG. 1 and equipped with a linear electron source can be used, for example, in a known comb sonde writing device to uniformly illuminate a pattern of holes present on an aperture plate. The electron beam generator is mainly connected to an anode A at ground potential, a control electrode W (Wehnelt electrode), and a heated cathode K made of lanthanum hexaboride. The control electrode W is placed to the right of the hole and aligned with respect to the control electrode W which is negatively biased with respect to the cathode K. P3 pole holder H has two adjustment bolts}S, 51
and Kramb KL. a clamping device consisting of a bolt s. The holding force generated by s' is applied to the heating element G. It transmits on a boride cathode K placed between Gl. Based on the 8 most advantageous carrier, io. -b-t i O-1 } The cathode K placed in a high vacuum of
Only a small heating power is required to heat the C to the required operating temperature. At this time, the heating voltage is supplied to the beam generator via the connection terminals HV and HVI connected to the cathode potential. As shown in No. 2r54, the cathode is a thin LaB6 crystal plate K
This crystal plate has a side length of, for example, 1 to 5+ nm and a length of about 0.5 to 20 ILm. Here, crystal plate K
P is sandwiched between two cubes G and Gl made of pyrolytic graphite and used as heating elements, and is sometimes glued to these cubes. The graphite cubic cells G,Gl form a completely flat equipotential surface with the cathode, and the quasitons are emitted into vacuum only from the side surface EF of the crystal plate KP due to retention, resulting in a uniform linear hole pattern. The circular angular decentralization of electron emission required for accurate irradiation is guaranteed. By appropriate processing and sandwiching of the -1 diboride cathode, the EF of one of the emitting sides corresponds to the 100-Ayu crystal surface, in which case this Ayu crystal surface is the same as the Gunpuite cube as well as the axis of the phosphorography equipment. It is said that it is oriented almost at right angles to the l゛ is guaranteed. The simple 41I power of the cathode allows the production of linear electron sources with very large aspect ratios, for example 2000:1. Another advantage of this electron source is that graphite after long-term operation! lJ
The reason is that the unevenness that happens to occur in the contact area between the cubic bodies G, G' and the crystal plate KP can be reduced by grinding the assembled cathode. According to a further embodiment, it is also possible to fabricate a linear electron source by covering the flat cathode K with a material that defines the emission region E. For coating the layer B of the LaB6 single-crystal cathode K shown in FIG. 3, heat-resistant and vacuum-resistant materials, such as carbon, tungsten, rhenium or aluminum oxide, come into consideration, for example. These materials have a significantly higher work function than the cathode material and do not affect the emission properties. The coating of the cathode K with one of the aforementioned materials has the further advantage that the radiation area E can be freely selected and adapted to the pattern of the object to be irradiated. Furthermore, in order to promote electron emission, it is advantageous to additionally coat region E with a material that lowers the work function, such as calcium or barium. This invention is obviously not limited to the embodiments described above.
It is therefore readily possible to use the cathode for irradiation of elongated objects in other particle beam arrangements, such as LaB.
Other f) Ugly electrode materials such as tungsten or BaO
and SrO. As a linear electron source, it is obvious that a field emission type pole with a planar p-n junction or a combination of metal and insulator metals can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に基づく電子源の一実施例の断面図、
第2図は第1図に示す電子源の要部斜視図、第3図は別
の実施例の要部斜視図である.B・・・平らな放出面 E・・・釦域 EF・・・側面 G.G’ ・・・加熱要素 K.KP・・・電子放出体(陰極)
FIG. 1 is a sectional view of an embodiment of an electron source based on the present invention;
FIG. 2 is a perspective view of the main part of the electron source shown in FIG. 1, and FIG. 3 is a perspective view of the main part of another embodiment. B...Flat emission surface E...Button area EF...Side surface G. G'... Heating element K. KP...electron emitter (cathode)

Claims (1)

【特許請求の範囲】 1)電子放出体(K、KP)が直方体形に構成され、電
子が側面(EF)だけから真空中へ放出されるように保
持されることを特徴とする電子源。 2)電子放出体(K、KP)が二つの加熱要素(G、G
′)の間に配置され、その際これらの加熱要素(G、G
′)と電子放出体(K、KP)の側面(EF)とが平ら
な等電位面を形成することを特徴とする請求項1記載の
電子源。 3)六ホウ化ランタン結晶板(KP)が電子放出体(K
)として用いられることを特徴とする請求項1又は2記
載の電子源。 4)結晶板(KP)が0.5〜20μmの厚さを有する
ことを特徴とする請求項3記載の電子源。 5)1000:1より大きい側面の縦横比が選ばれるこ
とを特徴とする請求項1ないし4の一つに記載の電子源
。 6)平らな放出面(B)を備えた陰極(K)と、陰極材
料より高い仕事関数を有し電子放出を制限するための材
料を平らな面(B)内の所定の領域(E)上に有する被
膜とを備えることを特徴とする電子源。 7)平らな面内の線形の放出領域(E)を備えることを
特徴とする請求項6記載の電子源。 8)六ホウ化ランタン単結晶陰極(K)を備えることを
特徴とする請求項6又は7記載の電子源。 8)所定の領域(E)が仕事関数を低減する材料で被覆
されていることを特徴とする請求項6ないし8の一つに
記載の電子源。
[Scope of Claims] 1) An electron source characterized in that the electron emitters (K, KP) are configured in the shape of a rectangular parallelepiped and are held so that electrons are emitted into vacuum only from the side faces (EF). 2) Electron emitters (K, KP) are connected to two heating elements (G, G
), then these heating elements (G, G
2. Electron source according to claim 1, characterized in that the side surfaces (EF) of the electron emitters (K, KP) form flat equipotential surfaces. 3) Lanthanum hexaboride crystal plate (KP) is an electron emitter (K
3. The electron source according to claim 1, wherein the electron source is used as an electron source. 4) The electron source according to claim 3, characterized in that the crystal plate (KP) has a thickness of 0.5 to 20 μm. 5) Electron source according to one of claims 1 to 4, characterized in that a lateral aspect ratio of greater than 1000:1 is chosen. 6) A cathode (K) with a flat emission surface (B) and a material with a higher work function than the cathode material to limit electron emission in a predetermined area (E) within the flat surface (B). An electron source comprising: a coating having a coating on the electron source; 7) Electron source according to claim 6, characterized in that it comprises a linear emission region (E) in a flat plane. 8) The electron source according to claim 6 or 7, comprising a lanthanum hexaboride single crystal cathode (K). 8) Electron source according to one of claims 6 to 8, characterized in that the predetermined region (E) is coated with a material that reduces the work function.
JP2239803A 1989-09-12 1990-09-10 Electron source Pending JPH03105833A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP89116881.7 1989-09-12
EP89116881A EP0417340A1 (en) 1989-09-12 1989-09-12 Electron source

Publications (1)

Publication Number Publication Date
JPH03105833A true JPH03105833A (en) 1991-05-02

Family

ID=8201884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239803A Pending JPH03105833A (en) 1989-09-12 1990-09-10 Electron source

Country Status (2)

Country Link
EP (1) EP0417340A1 (en)
JP (1) JPH03105833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069335A1 (en) * 2007-11-30 2009-06-04 Denki Kagaku Kogyo Kabushiki Kaisha Electron emitting source and manufacturing method of electron emitting source

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR903976A (en) * 1942-08-19 1945-10-23 Fides Gmbh Improvements to cathodes intended for the production of an electron beam
US4528474A (en) * 1982-03-05 1985-07-09 Kim Jason J Method and apparatus for producing an electron beam from a thermionic cathode
US4551649A (en) * 1983-12-08 1985-11-05 Rockwell International Corporation Rounded-end protuberances for field-emission cathodes
EP0207772A3 (en) * 1985-07-02 1987-11-19 Wilhelm Heinrich Dr. Brünger Electron source of lanthanum hexaboride and method of constructing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069335A1 (en) * 2007-11-30 2009-06-04 Denki Kagaku Kogyo Kabushiki Kaisha Electron emitting source and manufacturing method of electron emitting source
US8456076B2 (en) 2007-11-30 2013-06-04 Denki Kagaku Kogyo Kabushiki Kaisha Electron emitting source and manufacturing method of electron emitting source

Also Published As

Publication number Publication date
EP0417340A1 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
CN1954402B (en) A large-area shower electron beam irradiator with field emitters as an electron source
Xu et al. Field-dependence of the area-density of ‘cold’electron emission sites on broad-area CVD diamond films
US7728504B2 (en) Field emitting light source and method for making the same
US7868850B2 (en) Field emitter array with split gates and method for operating the same
JP5102968B2 (en) Conductive needle and method of manufacturing the same
Jarvis et al. Emittance measurements of electron beams from diamond field emitter arrays
JPS5916255A (en) Electron gun
JPH03105833A (en) Electron source
WO1996042101A1 (en) Electron source and applications of the same
JP2607251B2 (en) Field emission cathode
US6060839A (en) Thin diamond electron beam amplifier
JPH0777116B2 (en) Semiconductor device
CN111326378B (en) Multi-floating grid cathode structure, electron gun, electron accelerator and irradiation device
US4980558A (en) Electron beam generator
JPS61193346A (en) Electron beam apparatus having semiconductor electron emitting body
US4091306A (en) Area electron gun employing focused circular beams
JP2610414B2 (en) Display device
JPH0131256B2 (en)
JP5709922B2 (en) Electron gun and electron beam device
JPS63185025A (en) Electron emitting apparatus
KR101818079B1 (en) Micro-electron column having nano structure tip with easily aligning
KR101188533B1 (en) Cnt cathode assembly and electron beam generating apparatus having the same
KR101182508B1 (en) Cathode assembly and electron beam iradiation laboratory apparatus having the same
Tang et al. Field emission study of small number of carbon fiber field emitters
JP2001166100A (en) Electron source