JPH03104761A - Anti-lock control method for four-wheel drive car - Google Patents

Anti-lock control method for four-wheel drive car

Info

Publication number
JPH03104761A
JPH03104761A JP23987689A JP23987689A JPH03104761A JP H03104761 A JPH03104761 A JP H03104761A JP 23987689 A JP23987689 A JP 23987689A JP 23987689 A JP23987689 A JP 23987689A JP H03104761 A JPH03104761 A JP H03104761A
Authority
JP
Japan
Prior art keywords
wheel
speed
select
low speed
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23987689A
Other languages
Japanese (ja)
Other versions
JP2782365B2 (en
Inventor
Megumi Eguchi
恵 江口
Haruki Shimanuki
島貫 春樹
Yoshiaki Hirobe
広部 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP23987689A priority Critical patent/JP2782365B2/en
Publication of JPH03104761A publication Critical patent/JPH03104761A/en
Application granted granted Critical
Publication of JP2782365B2 publication Critical patent/JP2782365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To prevent over-decompression of brake liquid pressures for the left and right rear wheels and shorten the braking distance by limiting within a certain period the decompression time for the liquid pressure for the left and right rear wheels in each anti-lock control cycle in the case where the rear wheel select-low speed has become higher than the four-wheel select-low speed. CONSTITUTION:About the rear wheel system speed VS3 the wheel speed due to four-wheel select-low is selected by a circuit 11, and the rear wheel system is controlled so that its decompression does not continue over a specified period of time in the case where judgement after commencement of the decompression of the rear wheel system is such that the rear wheel select-low speed is higher than the four-wheel select-low speed, i.e., in the case where the decompression commencement of the rear wheel system does not depend upon the rear wheel select-low speed but upon the front wheel select-low speed either left or right which is identical to the four-wheel select-low speed. Thereby over- decompression is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は車両の制動時における車輪のロックを防止する
ためのアンチロック制御方法に関する.(従来技術) 一般に車両のアンチロック制御装置は、制動時における
車両の操舵性、走行安定性の確保および制動距離の短縮
を目的として、車輪速度センサで検出された車輪速度を
あらわず電気信号にもとづいてブレーキ液圧の制御モー
ドを決定して、常開型Ti磁弁よりなるホールドバルブ
および常閉[磁弁よりなるディケイバルプを開閉し、こ
れによりブレーキ液圧を加圧、保持または減圧するよう
にマイクロコンピュータを含むコントロールユニットで
制御している. 第5図はこのようなアンチロック制御における車輪速度
Vw、車輪加減速度dVw/dtおよびブレーキ液圧P
wの変化と、ホールドバルブおよびディケイバルブを開
閉するためのホールド信号1■Sおよびディケイfε号
DSを示す制御状態図である. 車両の走行中においてブレーキが操作されていない状態
では、ブレーキ液圧pwは加圧されておらず、かつホー
ルド信号H Sおよびディケイ信号DSがともにOFF
であるから、ホールドバルブは開、ディケイバルブは閉
の状態にあるが、ブレーキ操作に伴ってブレーキ液圧p
wは時点toから加圧されて急上昇し〈通常モード〉、
これにより車輪速度■wは減少して行く.この車輪速度
Vwに対して一定の速度Δ■だけ低い速度差をもって追
従する擬似車輪速度Vrが設定されており、この擬似車
輪速度Vrは、車輪の減速度(負の加速度)dVw/d
tが時点tlにおいて所定のしきい値、例えば−1Gに
達すると、この特点t1からアンチロック制jBが開始
される.この擬似車輪達度Vrは時点t1以降は−IG
の減速勾配θをもって直線的に減少して行くように設定
されている.そして車輪の減速度dVw/atが所定の
最大減速度をあらわすしきい値一G.,ウに達した時点
t2においてホールド信号HSをONにしてホールドバ
ルブを閉し、ブレーキ液圧Pwを保持する. このブレーキ液圧pwの保持により車輪速度Vwはさら
に減少して、時点L3において車輪速度Vwと擬似車輪
速度Vrとが等しくなるが、この時点
(Industrial Application Field) The present invention relates to an anti-lock control method for preventing wheels from locking during braking of a vehicle. (Prior art) In general, anti-lock control devices for vehicles convert wheel speeds detected by wheel speed sensors into electrical signals without discrepancies, with the aim of ensuring vehicle steering performance and running stability and shortening braking distance during braking. Based on this, the control mode of the brake fluid pressure is determined, and a hold valve made of a normally open Ti magnetic valve and a decay valve made of a normally closed magnetic valve are opened and closed to increase, maintain, or reduce the brake fluid pressure. It is controlled by a control unit containing a microcomputer. Figure 5 shows wheel speed Vw, wheel acceleration/deceleration dVw/dt, and brake fluid pressure P in such anti-lock control.
It is a control state diagram showing changes in w, a hold signal 1■S for opening and closing a hold valve and a decay valve, and a decay signal fε DS. When the vehicle is running and the brakes are not operated, the brake fluid pressure pw is not pressurized and both the hold signal HS and decay signal DS are OFF.
Therefore, the hold valve is open and the decay valve is closed, but as the brakes are operated, the brake fluid pressure p
w is pressurized from time to and increases rapidly (normal mode),
As a result, the wheel speed ■w decreases. A pseudo wheel speed Vr that follows this wheel speed Vw with a speed difference lower by a constant speed Δ■ is set, and this pseudo wheel speed Vr is a wheel deceleration (negative acceleration) dVw/d.
When t reaches a predetermined threshold value, for example -1G, at time tl, anti-lock control jB is started from this particular point t1. This pseudo wheel achievement level Vr is −IG after time t1.
It is set so that it decreases linearly with a deceleration gradient θ of . Then, the wheel deceleration dVw/at is a threshold value representing a predetermined maximum deceleration - G. , C is reached at time t2, the hold signal HS is turned ON, the hold valve is closed, and the brake fluid pressure Pw is maintained. By maintaining this brake fluid pressure pw, the wheel speed Vw further decreases, and the wheel speed Vw becomes equal to the pseudo wheel speed Vr at time L3, but at this point

【3においてディ
ケイ信qnsをONにしてディケ・イバルブを開き、ブ
レーキ液JT T’ wの減圧を開始する6この減圧に
より、車輪速度は時点t4におiJるロービークを境に
して加速に転じるが、このローピーク時点t4において
、ディケイ{δ弓DSをOFFとし、ディケイバルブを
閉してブレーギ液圧Pwの減圧を終了してプレ一一F液
圧1) wを保持する.時点し7で車輪速度Vwがハイ
ビークに達するが、この時点【7から再びブレーキ液圧
r)wの加圧を開始する。ここでの加圧は、ホール}′
信号+13を比較的小刻みにON・O F Fすること
により、ブレーキ液圧Pwの加圧と保持とを交瓦に反復
し、これによりブレーキ液Jf. P wを緩慢に上昇
させて軍輪速度Vwを減少させ、時点18(13対応)
から再び減圧モードを発生させる.ムお、減圧開始時点
t3における車輪速度Vaとロービーク速度Vlとの速
度差YのlO%に相当する星だけローピーク速度Vlか
ら増加した速度Vb(=VJ +0.IY) にまで回
復した時点t5と、上記速度差Yの80%に相当する量
だけIフーピーク速度VZから増加した速度Ve(一V
i’+0..8Y)にまで同復した時点t6とが検出さ
れ、時点t7から開始される最初の加圧の朋間Txは、
−L記時点t5とt6との間の期間ΔTにおける平均加
速度(Vc−Vh)/ΔTの算出にもとづく路面摩擦係
数μの判定によって決定され、その後の保持期間または
加圧期間は、これら保持または加圧の直n;]において
検出された車輪城速度dVw/dLにもとづいて決定さ
れる。以上のようなブレーキ液圧[)wの加圧、保持お
よび減圧の組合せによって、車輪をロノクさせることな
く車輪速度Vwを制御して車体速度を減少させることが
できる. ところで、上述したアンチ口ツタ制御方法を車両に適用
する場合には、−Cに左右前輪に関しては、左前輪、右
前輪の車輪速度をそれぞれ制J’8対象屯輪速度とし、
左右後輪に関しては2つの車輪速度のうち低速側の車輪
速度を選択して(後輪セレ多トrj−)これを後輪制御
対象車輪速度とし′て、それぞれ独立的にブレーキ液F
Lの制御を行なう3チャンネルアンチロノク制御方法が
広く用いられる。 この場合、前輪駆動1k、または後輪駆動車の31、う
に、前後輪が7−l一いに動力的に接続されていない構
造をもつ車両においては、1述のようにii輪後輪を独
脊的にアンチロノク制御しても、曲輪、後輪間の制動力
に関わる相互干渉が4,シることはムい。 ところが、上述した3チャンネルアンチロック制御方法
をそのまま4輪駆動車両に適用した場合、前後輪間の制
動力に関わる相互T渉が生し、円滑な制動特性が得られ
ず、いわゆるギクシャク感の在在を否定できないという
問題があった。 そこで本発明者は、先に特願平1−118722−月明
細書において、左右後輪に対しては、4つの車輪速度の
うちの最低速の車輪速度(4輪セレクトロー速度)を制
御列象車輪速度としてブレーキ液圧の制御を行なうよう
にした4輪駆動車のアンチロソク制御方法を提案した. この方法によれば、前輪系統に比べ後輪系統の制御液圧
が低< lrll制され、前輪の制動力が円滑に後輪に
伝達されるので、前後幅間の相互干渉が減少し、いわゆ
るギクシャク感を解消する効果がある。 しかしながら、第3図に示すように、4輪セレクトロー
速度として主として前輪セレクトロー速度が選択された
場合、その前輪セレクトロー速度にもとづいてブレーキ
液圧の減圧が行なわれるため、後輪に対しては過減圧と
なり、制動距離が増大するという問題を生しる. (発明の目的) そこで本発明は、左右前輪独立、左右後輪セレクト口一
による3チャンネルアンチロック制御方法を4輪駆動車
両に適用した場合における、前後輪間の制動に関わる相
互干渉を減少させ、円滑かつ十分な制動力を得ることが
できるアンチロック制御方法を提供することを目的とす
る.(発明の構或) 本発明は、左右後輪に対しては、4つの車輪速度のうち
の最低速の車輪速度を制御対象車輪速度としてブレーキ
液圧の制御を行なうとともに、左右後輪速度のうちの低
速側の車輪速度が上記4つの車輪速度のうちの最低速の
車輪速度よりも高速となった場合、各アンチロンク制御
サイクルにおける左右後輪に対するブレーキ液圧の減圧
時間を所定時間内に制限することを特徴とする.(実 
施 例) 以下図面を参照して本発明の実施例について詳細に説明
する. 第l図は本発明を適用した3系統(3チャンネル)アン
チロック制御装置を示すブロック図で、車輪速度センサ
l〜4の出力は演算回路5〜8に送られて演算され、各
車輸VW1”Vw4をそれぞれあらわす信号が得られる
.そして左前輪速度Vwlおよび右前輪速度Vw2はそ
のまま第1系統速度Vslおよび第2系統速度Vs2と
してそれぞれ第1および第2の制御ロジック回路9、1
0に送られる. また、左前輪速度Vwl、右前輪速度VW2、左後輪速
度Vw3および右後輪速度Vw4の4つの車輪速度のう
ちの最低速の車輪速度(4輪セレクトロー速度)が4輪
ローセレクト回路1lによって選択されて第3系統速度
Vs3、すなわち後輪系統速度とし第3の制御ロジック
回812に送られる。さらに、左後輪速度Vw3および
右後輪速度Vw4のうちの低速側の車輪速度(後輪セレ
クトロー速度)が後輪ローセレクト回路17で選択され
て、その出力は第3の制御ロジック回路12に送られる
.各制御ロジック回路9、10、12では、上記系統速
度Vsl〜Vs3をそれぞれ制1n対象車輪速度として
、これら系統連度Vsl〜Vs3を基準としてホールド
バルプHvおよびディケイバルブDVのON・OFF制
御を行なう.さらに各車輪速度Vwl〜Vw4をあらわ
す信号は擬似車体速度演算回路13に送られるが、この
/ji′!:t回路13は、4つの車輪速度VWl=V
w4をハイセレクトし、さらに最速車輪速度に対する追
従限界を±IGの範囲に限定した速度を擬似車体速度V
vとして各制御ロジック回路9、IO、12に出力する
. 各制御ロジック回路9、lO、l2には減圧終了決定回
路l4、15、16が設けられており、この減圧終了決
定回路14、I5、I6は、上記制御ロジック回m9、
lO、12とスイッチSWI、SW2、SW3を介して
接続されている.そして上記スイッチswt−sw3は
、制御ロジック回路9、lO、l2からの出力により、
各系統別に、第5図に示す時点t3から時点t4までの
期間はONになり、それ以外の期間はOFFになるよう
に制御されている. 次に第2図は、アンチロック制御の各系統におけるブレ
ーキ液圧の減圧終了点となる系統速度のローピーク点の
判定方法を示した図である.図において、系統達度■3
が減少してローピーク点に近づくに従って減速度dVs
/dtのカーブは上昇するが、この上昇時に−IGのラ
インを超えた時点から所定時間TM1の計時を開始し、
この所定時間TMIが経過した時点をもって系統速度が
ローピークに達したと判定している。 第3図は、前輪セレクトロー速度、後輪セレクト1′:
l−速度および4輪セレクトロー速度の変化と、後輪系
統のディケイバルブを開閉するためのディケイ信号およ
び後輪系統の液圧との関係を従来と比較して示す図であ
る。この図から明らかなように、本実施例では後輪セレ
クトロー速度が4輪セレクl− a一速度よりも高速の
場合は、ブレーキ液圧の減圧時間、すなわちディケイ信
号がON(ディケイバルブが間作動)になっている時間
を、系統速度のl:l−ピーク点をもって終了する減圧
時間よりも短い時間TIに短縮することにより、後輪系
統の液圧が高いレベルで保たれていることを示している
. 第4図は本実施例に係る後輪制御系統の減圧終了決定回
路16の動作を示すフローチ十−1である.まずステッ
プS1でブレーキ液圧の減圧開始特点(第5図に示す時
点t3)からの経過時間Tの計時を開始し、次のステッ
プS2へ進む.ステノブS2では、後輪系統速度の誠速
度d Vs3/ d tの勾配が所定の滅速度勾配(−
1 G)よりも緩やかか青かを判定し、d V9 3/
 d t 2:−IG(Vs3の減辻度勾配が− IG
の減速度勾配よりも緩やか)であればステノブS 3 
−C d V s 3 / d L l−I Gとなっ
た時・一モからの経過時間T Mの31時を開始し7、
ステノブS4へ進む。またスラーノプS2の判定におい
て、dVs3/dt<−IG (Vs3の減速度勾配が
−1. Gの減速度勾配よりノ)急)であれば、ステノ
ブS5で経過時間TMを計時せずステップS4へ進む。 ステップS4では、経過時間TMが所定時問TMIに達
しているか否かを判定し、TM2TM Iである場合は
、ステノブS5で系統速度Vs3がロービークに達した
との判定を下し、すなわち通常の減圧中IF条件が満足
されたと゛1゛11定して、ステノブS6においてホー
ルドバルブをON(閉)、ディケイバルブをOFF(閉
)にして左右後輪に対するブレーキ液圧の減圧を終了す
る。 一方、ステップS4において、経過時間TMが所定時間
TM1未満である間は、この判定結果はI− N O 
Jであるからステ・ノブS7へ進む。このステップS7
では、後輪セレクトロー速度と4輪セレクトロー速度を
比較し、後輪セレクトロー速度が4輪セレクトロー速度
よりも高速である場合は、ステップS8へ進み、さらに
ステソブS8を経てステップS6へ進み、後輪系統速度
Vs3が減圧を終了すべきローピークに達する以前に減
圧を終了する.すなわち、ステンブS8では、減圧開始
特点からの経過時間Tが所定時間T1に達したか否かを
判定し、TNT1であればステップS6へ進んで、ホー
ルドバルブをON,ディケイバルブをOFFにして減圧
を終了し、左右後輪に対するブレーキ液圧の減圧時間を
所定時間Tl内に制限する.また、ステソブS7の判定
において、後輪セレクトロー速度と4輪セレクトロー速
度が等しい場合は、ステップS9へ進みホールドバルブ
をON(閉)、ディケイバルブをON(開)の状態を保
ち、ローピークが判定されるまで左右後輪に対するブレ
ーキ液圧の減圧を継続する。なお、ステップS8の’l
’JI定においてTNT1の場合は、ステンブS9へ進
みu Il+Eを継続し、T≧TIとなった時点で滅圧
を終了ずるが、T≧Tlとなる以前に1コビークと判定
されれば、ローピーク点において減圧を柊Yずる. このように本実施例では後輪系統達度V s 3に関し
ては、回路l1におい−て4輪セレク]・ローによる屯
輪速度を3!沢ずるとともC、:,後輪系統の残圧開始
後に、後輪セレクトロー速度が4輪セレクトロー速度よ
りも高速であると−I’ll定された場合、すなわち後
輪系統の減圧開始が、後輪セレクl・「2−iJKにも
とづくものではなく4輪セレク1・ロー速度である左右
何れかの1?;1輸セI/クト口ー速度にもとづいてな
された場合番、1、第3図にその制御状態を示すように
、後輪系統の戚『は所定時間TI以上継続しないようl
4こ制限し、これにより過滅Iトを防止していろ。世し
、後輪セレク1・1j−速度が4輪セレク1・ロー速度
に等しい場合ら=は、後輪系統の減圧終了点は4輪セレ
ク}・ロー速度の+】−ビーク点をもって判定し、誠圧
に対する時間T1の制限は適用しないようにしている、 なお、前記したように、減圧開始時点からの経過時間が
所定時間T1未満であっても系統速度が口−ビークに達
したことが判定された場合には減圧を終了することはい
うまでもない。 (発明の効果) 以上の説明から明らかなように、本発明によれば、左右
後輪に対しては、4輪セレクトロー速度を後輪系統速度
としてブレーキ液圧の制御を行なうとともに、後輪セレ
クトロー速度が4輪セレクトロー速度よりも高速となっ
た場合、各アンチロツタ制御サイクルにおける左右後輪
に対する液圧の減圧時間を所定時間内に制限するように
しているので、3チャンネルアンチロック制御方法を4
輪駆動車に通用する場合における左右後輪に対するブレ
ーキ液圧の過減圧を防止し、制動距離の短縮を図ること
ができる.
[At step 3, turn on the decay signal qns, open the decay valve, and start reducing the pressure of the brake fluid JT T'w.6 Due to this pressure reduction, the wheel speed turns to acceleration after reaching the low peak at time t4. At this low peak time t4, the decay {δ bow DS is turned OFF, the decay valve is closed, and the pressure reduction of the Bregie hydraulic pressure Pw is completed, and the pre-11F hydraulic pressure 1) w is maintained. At time point 7, the wheel speed Vw reaches a high peak, but at this time point 7, the brake fluid pressure r)w starts to be increased again. The pressurization here is Hall}'
By turning signal +13 on and off in relatively small steps, pressurization and holding of brake fluid pressure Pw are repeated alternately, thereby increasing brake fluid Jf. Slowly increase Pw and decrease the military wheel speed Vw, at time 18 (corresponding to 13)
Activate decompression mode again. Well, at the time t5 when the speed has recovered from the low peak speed Vl to the increased speed Vb (=VJ +0.IY) by a star corresponding to 10% of the speed difference Y between the wheel speed Va and the low peak speed Vl at the decompression start time t3. , the speed Ve (1 V
i'+0. .. 8Y) is detected, and the first pressurization period Tx starting from time t7 is as follows:
-L is determined by determining the road surface friction coefficient μ based on the calculation of the average acceleration (Vc-Vh)/ΔT during the period ΔT between time t5 and t6, and the subsequent holding period or pressurizing period is determined by the holding or pressurizing period. It is determined based on the wheel castle speed dVw/dL detected immediately after pressurization. By combining pressurization, holding, and depressurization of the brake fluid pressure [)w as described above, it is possible to control the wheel speed Vw and reduce the vehicle speed without causing the wheels to spin. By the way, when applying the above-mentioned anti-drip control method to a vehicle, for the left and right front wheels in -C, the wheel speeds of the left front wheel and right front wheel are respectively set as the control J'8 target wheel speeds,
For the left and right rear wheels, select the lower wheel speed of the two wheel speeds (rear wheel selector rj-), set this as the rear wheel control target wheel speed, and apply brake fluid F independently to each wheel.
A three-channel anti-clockwise control method for controlling L is widely used. In this case, in a front wheel drive vehicle (1k) or a rear wheel drive vehicle (31), in a vehicle with a structure in which the front and rear wheels are not connected dynamically, the Even with independent anti-lock control, there will be no mutual interference between the curved wheels and the rear wheels in terms of braking force. However, when the above-mentioned three-channel anti-lock control method is applied as is to a four-wheel drive vehicle, mutual T-crossing occurs in relation to the braking force between the front and rear wheels, making it impossible to obtain smooth braking characteristics, resulting in a so-called jerky feeling. The problem was that its existence could not be denied. Therefore, in the specification of Japanese Patent Application No. 1-118722, the present inventor previously proposed that the lowest wheel speed among the four wheel speeds (four-wheel select low speed) is set in the control train for the left and right rear wheels. We proposed an anti-candle control method for four-wheel drive vehicles that controls brake fluid pressure based on wheel speed. According to this method, the control hydraulic pressure of the rear wheel system is controlled to be lower than that of the front wheel system, and the braking force of the front wheels is smoothly transmitted to the rear wheels, so mutual interference between the front and rear widths is reduced, and the so-called It has the effect of eliminating the jerky feeling. However, as shown in Figure 3, when the front wheel select low speed is mainly selected as the four wheel select low speed, the brake fluid pressure is reduced based on the front wheel select low speed, so the brake fluid pressure is reduced based on the front wheel select low speed. This causes the problem of over-decompression and increased braking distance. (Object of the Invention) Therefore, the present invention reduces mutual interference related to braking between front and rear wheels when a three-channel anti-lock control method with independent left and right front wheels and one select port for left and right rear wheels is applied to a four-wheel drive vehicle. The purpose is to provide an anti-lock control method that can obtain smooth and sufficient braking force. (Structure of the Invention) The present invention controls the brake fluid pressure for the left and right rear wheels by using the lowest wheel speed among the four wheel speeds as the controlled wheel speed, and also If the wheel speed on the low speed side becomes higher than the lowest wheel speed among the four wheel speeds mentioned above, the brake fluid pressure reduction time for the left and right rear wheels in each anti-long control cycle is limited to within a predetermined time. It is characterized by (fruit
Examples) Examples of the present invention will be described in detail below with reference to the drawings. Fig. 1 is a block diagram showing a three-system (three-channel) anti-lock control device to which the present invention is applied, in which the outputs of wheel speed sensors l to 4 are sent to calculation circuits 5 to 8 and calculated, and "Vw4, respectively, are obtained.Then, the left front wheel speed Vwl and the right front wheel speed Vw2 are directly transmitted as the first system speed Vsl and the second system speed Vs2 to the first and second control logic circuits 9, 1, respectively.
Sent to 0. In addition, the lowest wheel speed (4-wheel select low speed) among the four wheel speeds of left front wheel speed Vwl, right front wheel speed VW2, left rear wheel speed Vw3, and right rear wheel speed Vw4 is the 4-wheel low select circuit 1l. is selected as the third system speed Vs3, that is, the rear wheel system speed, and sent to the third control logic circuit 812. Further, the lower wheel speed (rear wheel select low speed) of the left rear wheel speed Vw3 and the right rear wheel speed Vw4 is selected by the rear wheel low select circuit 17, and its output is transmitted to the third control logic circuit 12. Sent to. In each of the control logic circuits 9, 10, and 12, the above-mentioned system speeds Vsl to Vs3 are respectively set as the wheel speeds to be controlled 1n, and ON/OFF control of the hold valve Hv and the decay valve DV is performed based on these system connections Vsl to Vs3. .. Furthermore, signals representing the respective wheel speeds Vwl to Vw4 are sent to the pseudo vehicle speed calculation circuit 13, but this /ji'! :t circuit 13 has four wheel speeds VWl=V
The speed where w4 is selected high and the following limit for the fastest wheel speed is limited to the range of ±IG is set as the pseudo vehicle speed V.
It is output to each control logic circuit 9, IO, 12 as v. Each control logic circuit 9, lO, l2 is provided with a decompression end determining circuit l4, 15, 16, and the depressurizing end determining circuit 14, I5, I6 is connected to the control logic circuit m9,
IO, 12 via switches SWI, SW2, SW3. The switch swt-sw3 is operated by the outputs from the control logic circuits 9, 1O, and 12.
Each system is controlled so that it is turned on during the period from time t3 to time t4 shown in FIG. 5, and turned off during the other periods. Next, FIG. 2 is a diagram showing a method for determining the low peak point of the system speed, which is the end point of brake fluid pressure reduction in each system of anti-lock control. In the diagram, system achievement ■3
The deceleration dVs decreases and approaches the low peak point.
The curve of /dt rises, but at the time of this rise, the measurement of a predetermined time TM1 is started from the point when it crosses the -IG line,
It is determined that the system speed has reached the low peak at the time when this predetermined time TMI has elapsed. Figure 3 shows front wheel select low speed, rear wheel select 1':
FIG. 7 is a diagram illustrating the relationship between changes in l-speed and four-wheel select low speed, a decay signal for opening and closing a decay valve in the rear wheel system, and a hydraulic pressure in the rear wheel system in comparison with a conventional one. As is clear from this figure, in this embodiment, when the rear wheel select low speed is higher than the 4 wheel select l-a speed, the brake fluid pressure reduction time, that is, the decay signal is ON (the decay valve is By shortening the time during which the rear wheel system is in operation) to a time TI that is shorter than the depressurization time that ends at the l:l-peak point of the system speed, it is confirmed that the hydraulic pressure in the rear wheel system is maintained at a high level. It shows. FIG. 4 is a flowchart 10-1 showing the operation of the depressurization end determination circuit 16 of the rear wheel control system according to this embodiment. First, in step S1, measurement of the elapsed time T from the brake fluid pressure reduction start point (time t3 shown in FIG. 5) is started, and the process proceeds to the next step S2. In the steno knob S2, the slope of the true speed dVs3/dt of the rear wheel system speed is a predetermined dead speed gradient (-
1 Determine whether it is gentler or bluer than G), and d V9 3/
d t 2: -IG (the gradient of Vs3 is -IG
(slower than the deceleration gradient), Stenob S3
- When it becomes C d V s 3 / d L l-I G ・The elapsed time from Imo starts at 31:00 TM 7,
Proceed to Stenobu S4. In addition, in the judgment of the steno knob S2, if dVs3/dt<-IG (the deceleration gradient of Vs3 is steeper than the deceleration gradient of -1.G), the process proceeds to step S4 without measuring the elapsed time TM with the steno knob S5. move on. In step S4, it is determined whether the elapsed time TM has reached the predetermined time TMI, and if TM2TMI, it is determined that the system speed Vs3 has reached the low peak at the steno knob S5, that is, the normal When the IF conditions are satisfied during pressure reduction, the hold valve is turned on (closed) and the decay valve is turned off (closed) at the steno knob S6 to complete the pressure reduction of the brake fluid pressure for the left and right rear wheels. On the other hand, in step S4, while the elapsed time TM is less than the predetermined time TM1, this determination result is I-NO.
Since it is J, proceed to Ste Nobu S7. This step S7
Now, compare the rear wheel select low speed and the 4 wheel select low speed, and if the rear wheel select low speed is higher than the 4 wheel select low speed, proceed to step S8, and then proceed to step S6 via step S8. , the pressure reduction is finished before the rear wheel system speed Vs3 reaches the low peak at which the pressure reduction should be finished. That is, in step S8, it is determined whether or not the elapsed time T from the pressure reduction start special point has reached a predetermined time T1. If TNT1, the process proceeds to step S6, and the hold valve is turned on and the decay valve is turned off to reduce the pressure. and limits the brake fluid pressure reduction time for the left and right rear wheels to within a predetermined time Tl. In addition, in the judgment of STESOBU S7, if the rear wheel select low speed and the 4 wheel select low speed are equal, the process proceeds to step S9, and the hold valve is kept ON (closed) and the decay valve is kept ON (open), so that the low peak is The brake fluid pressure for the left and right rear wheels continues to be reduced until the determination is made. Note that 'l' in step S8
'If TNT is 1 in the JI setting, proceed to step S9 and continue u Il+E, and stop decompression when T≧TI. However, if it is determined that 1 cobeak occurs before T≧Tl, the low peak Reduce the pressure at the point. As described above, in this embodiment, regarding the rear wheel system performance level V s 3, in the circuit 11, the 4 wheel speed is set to 3! Tomo SawazuruC:, After starting the residual pressure in the rear wheel system, if it is determined that the rear wheel select low speed is higher than the 4 wheel select low speed, that is, the pressure reduction in the rear wheel system starts. However, if it is not based on the rear wheel select l/'2-iJK, but on the basis of the four-wheel select 1/low speed, either left or right 1?; As shown in Fig. 3, the control status of the rear wheel system is controlled so that it does not continue for more than a predetermined time TI.
Limit it to 4 to prevent overkill. If rear wheel select 1, 1j-speed is equal to 4-wheel select 1, low speed, then the end point of decompression in the rear wheel system is determined by the +]-beak point of 4-wheel select}, low speed. , the time T1 restriction on true pressure is not applied. As mentioned above, even if the elapsed time from the start of depressurization is less than the predetermined time T1, the system speed may reach the mouth-beak. Needless to say, if it is determined, the depressurization is terminated. (Effects of the Invention) As is clear from the above description, according to the present invention, brake fluid pressure is controlled for the left and right rear wheels using the four-wheel select low speed as the rear wheel system speed, and the brake fluid pressure of the rear wheels is controlled using the four-wheel select low speed as the rear wheel system speed. When the select low speed becomes higher than the 4-wheel select low speed, the pressure reduction time of the hydraulic pressure for the left and right rear wheels in each anti-rotator control cycle is limited to within a predetermined time, so the 3-channel anti-lock control method 4
When applicable to wheel-drive vehicles, it is possible to prevent over-decreasing of brake fluid pressure for the left and right rear wheels and shorten braking distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した3系統アンチロック制御装置
のブロック図、第2図は系統速度のロービーク点の判定
方法の説明図、第3図は本発明によるアンチロック制御
の制御状態を従来例と比較して示す図、第4図は本発明
に係る減圧終了決定回路の動作を示す図、第5図は従来
の方法におけるアンチロック制御の制御状態図である。 1〜4一車輪速度センサ 5〜8−・・演算回路 9、10、12一制御ロジ,ク回路 ti・−4輪ローセレクト回路 13・一擬似車体速度演算回路 l4、15、16一減圧終了決定回路 17・一後輪ローセレクト回路
Fig. 1 is a block diagram of a three-system anti-lock control device to which the present invention is applied, Fig. 2 is an explanatory diagram of a method for determining the low peak point of the system speed, and Fig. 3 shows the control state of the anti-lock control according to the present invention in the conventional FIG. 4 is a diagram showing the operation of the decompression end determining circuit according to the present invention, and FIG. 5 is a control state diagram of anti-lock control in a conventional method. 1 to 4 Wheel speed sensors 5 to 8 - Calculation circuits 9, 10, 12 - Control logic, circuit ti - 4 wheel low select circuit 13, 1 Pseudo vehicle speed calculation circuit 1 4, 15, 16 - End of pressure reduction Decision circuit 17/One rear wheel low select circuit

Claims (1)

【特許請求の範囲】  左前輪、右前輪および左右後輪に対してそれぞれ独立
的にブレーキ液圧の制御を行なう3チャンネルアンチロ
ック制御方法を4輪駆動車に適用する場合において、 上記左右後輪に対しては、4つの車輪速度のうちの最低
速の車輪速度を制御対象車輪速度としてブレーキ液圧の
制御を行なうとともに、左右後輪速度のうちの低速側の
車輪速度が上記4つの車輪速度のうちの最低速の車輪速
度よりも高速となった場合、各アンチロック制御サイク
ルにおける左右後輪に対するブレーキ液圧の減圧時間を
所定時間内に制限することを特徴とする4輪駆動車のア
ンチロック制御方法。
[Scope of Claims] When applying a three-channel anti-lock control method to a four-wheel drive vehicle in which brake fluid pressure is independently controlled for the left front wheel, right front wheel, and left and right rear wheels, the left and right rear wheels In this case, the brake fluid pressure is controlled using the lowest wheel speed among the four wheel speeds as the control target wheel speed, and the lower wheel speed among the left and right rear wheel speeds is the same as the above four wheel speeds. The anti-lock system for four-wheel drive vehicles is characterized by limiting the brake fluid pressure reduction time for the left and right rear wheels in each anti-lock control cycle to within a predetermined time when the wheel speed becomes higher than the lowest speed of the wheels. Lock control method.
JP23987689A 1989-09-18 1989-09-18 Anti-lock control method for four-wheel drive vehicle Expired - Lifetime JP2782365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23987689A JP2782365B2 (en) 1989-09-18 1989-09-18 Anti-lock control method for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23987689A JP2782365B2 (en) 1989-09-18 1989-09-18 Anti-lock control method for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH03104761A true JPH03104761A (en) 1991-05-01
JP2782365B2 JP2782365B2 (en) 1998-07-30

Family

ID=17051195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23987689A Expired - Lifetime JP2782365B2 (en) 1989-09-18 1989-09-18 Anti-lock control method for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2782365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299900A (en) * 2006-04-28 2007-11-15 Kawasaki Microelectronics Kk Semiconductor device and method of preventing dielectric breakdown of semiconductor device
US7622792B2 (en) 2005-12-08 2009-11-24 Panasonic Corporation Semiconductor device and method of manufacturing the same
KR100937360B1 (en) * 2009-06-23 2010-01-20 김천운 Towel closet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622792B2 (en) 2005-12-08 2009-11-24 Panasonic Corporation Semiconductor device and method of manufacturing the same
JP2007299900A (en) * 2006-04-28 2007-11-15 Kawasaki Microelectronics Kk Semiconductor device and method of preventing dielectric breakdown of semiconductor device
KR100937360B1 (en) * 2009-06-23 2010-01-20 김천운 Towel closet

Also Published As

Publication number Publication date
JP2782365B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP2704623B2 (en) Anti-lock control method
JPS62261566A (en) Anti-skid control method
JPS62152957A (en) Antiskid controlling method
JP2688909B2 (en) Anti-lock control method
JP2688948B2 (en) Vehicle anti-lock control method
JPH0688531B2 (en) Anti-skidding control method
JPH02225169A (en) Anti-lock control method for vehicle
JPS62152958A (en) Antiskid controlling method
JPH03104761A (en) Anti-lock control method for four-wheel drive car
JPH0367770A (en) Anti-lock control method for vehicle
JPS60252058A (en) Antiskid controller
JP2756833B2 (en) Vehicle anti-lock control method
JPH0386670A (en) Antilock control for vehicle
JP2724862B2 (en) Vehicle anti-lock control method
JP2787480B2 (en) Vehicle anti-lock control method
JPH0367764A (en) Anti-lock control method for vehicle
JP2835739B2 (en) Vehicle anti-lock control method
JPH037648A (en) Anti-lock control device of vehicle
JP2799738B2 (en) Vehicle anti-lock control method
JPH02249752A (en) Antilock control method for vehicle
JP2688917B2 (en) Anti-lock control method
JPH01182154A (en) Antilock control method
JP2767275B2 (en) Vehicle anti-lock control method
JP2649713B2 (en) Vehicle anti-lock control method
JPH0316866A (en) Antilock control method