JPH03103351A - Preparation of bi-based oxide superconductor and wire thereof - Google Patents

Preparation of bi-based oxide superconductor and wire thereof

Info

Publication number
JPH03103351A
JPH03103351A JP1235794A JP23579489A JPH03103351A JP H03103351 A JPH03103351 A JP H03103351A JP 1235794 A JP1235794 A JP 1235794A JP 23579489 A JP23579489 A JP 23579489A JP H03103351 A JPH03103351 A JP H03103351A
Authority
JP
Japan
Prior art keywords
precursor
heat treatment
based oxide
oxide superconductor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1235794A
Other languages
Japanese (ja)
Other versions
JP2966442B2 (en
Inventor
Kyoji Tachikawa
恭治 太刀川
Tatsu Hirayama
平山 達
Takashi Asaka
淺香 隆
Yoshiyuki Okazawa
岡澤 喜幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP1235794A priority Critical patent/JP2966442B2/en
Publication of JPH03103351A publication Critical patent/JPH03103351A/en
Application granted granted Critical
Publication of JP2966442B2 publication Critical patent/JP2966442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve superconductive characteristics by dissolving compounds containing Bi, Sr, Ca and Cu in an inorganic acid, adding a hydroxy acid and a polyhydric alcohol to the solution, drying the prepared organic acids, pyrolyzing the dried product and subsequently subjecting the prepared precursor to a thermal treatment. CONSTITUTION:Bi2O3, SrCO3, CaCO3 and CuO are weighted in a Sr:Bi:Ca:Cu atomic ratio of 1:0.5-1.5:0.5-1.5:0.7-2.0, dissolved in an inorganic acid such as nitric acid, mixed with a hydroxy acid such as tartaric acid and a polyhydric alcohol such as ethylene glycol and subsequently heated to produce organic acid salts. The organic acid salt- containing solution is dried, cooled and pyrolyzed to produce a precursor. The precursor is pulverized, subjected to the first thermal treatment at 600-820 deg.C, again pulverized, molded and subjected to the second thermal treatment to provide a Bi-based oxide superconductor. The substitution of one part of the Bi with Pb in an atomic ratio of 1:0.05-0.5 provides superconductive characteristics for the superconductor. When the raw material subjected to the first thermal treatment is processed into a long wire and subjected to the second thermal treatment, a Bi-based oxide superconductor wire is prepared.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気共鳴断層影像装置(MHI−CT)等の
超電導マグネヅト線材、超電導送電等の導電材さらに磁
気シールド材等として有望視され、開発が進められてい
るBi基の高臨界温度酸化物超電導材の製造方法に関す
る. 〈従来の技術〉 最近、常電導状態から超電導状態に遷移する臨界温度T
cが液体窒素の沸m温度を越える値をもつY(イットリ
ウム)基、Bi(ビスマス)基、TI(タリウム)基等
の酸化物超電導体が発見されている.Bl基酸化物超電
導体では、Bi2 Sr2 CaCu2 0xで示され
る組成の相が約80KのTcを、また Bi2Sr2Ca2Cua Ovで示される#l戒の相
が約105KのTcをもつ相は、通常混合状態で生成さ
れるが、最近、Biの一部をPb″′C置換することに
より105Kの高いTcをもつ相の割合が大きくなるこ
とが知られている.これらの酸化物系超電導体は、′a
体ヘリウムで冷却することが必要であった従来のNb−
TiやNb3 Sn等の金属系超電導体に比較して格段
に有利な冷却条件で使用できることから、実用上極めて
有望な超電導材料として研究開発が進められている.特
にBi基酸化物超電専体はTIのように毒性を有する元
素を含まずにIOOK以上のTcが得られるため注目さ
れている.酸化物超電導体は、機械的性質が極めて脆い
ため、線材の形に加工する手法の一例として次のような
方法が行なわれている.即ち、酸化物超電導体を構成す
る元素を含む複数の原料粉末を仮焼して、不要成分を除
いた後にこの仮焼粉末を成型加工して所望の径の線ある
いは所望の厚さのテープとし、これに熱処理を施して固
相反応によって所望の組成をもつ酸化物超電導体を生成
させ、超電導線材を製造する方法である.(発明が解決
しようとする課題) しかしながら、従来の製造法では、原料粉末を完全に均
一に混合することが困難なことから、熱処理を施しても
超電導体全体が完全に均一な組成とならない問題があっ
た.特に長尺線材では線材全長にわたり均一な組成の超
電導体を生成することは事実上不可能であった.このた
め不適当な組成で不十分な超電導特性をもつ局部を形成
することとなり、この結果、線材全体の特性が局部の特
性で制限されてしまう問題点があった.また上記の線材
内部に形成されている酸化物超電導体は、粉末を圧縮し
た成型体を固相反応により焼結したもので、その内部に
微細な空孔が多数存在する.このことから、従来の合金
や金属間化合物に比較して緻密性に欠け、実用上重要な
臨界電流密度Jcを高めるのが困難な問題点かあった。
Detailed Description of the Invention (Industrial Application Field) The present invention is expected to be used as a superconducting magnetite wire for magnetic resonance tomography (MHI-CT), a conductive material for superconducting power transmission, and a magnetic shielding material. This article relates to a method for producing Bi-based high critical temperature oxide superconducting materials, which are currently being developed. <Prior art> Recently, the critical temperature T at which the normal conductive state transitions to the superconducting state has been
Oxide superconductors such as Y (yttrium), Bi (bismuth), and TI (thallium) groups have been discovered whose c exceeds the boiling temperature of liquid nitrogen. In a Bl-based oxide superconductor, the phase with the composition Bi2 Sr2 CaCu2 0x has a Tc of about 80 K, and the phase with the #l precept shown as Bi2 Sr2 Ca2 Cua Ov has a Tc of about 105 K, usually in a mixed state. However, it has recently been known that replacing a part of Bi with Pb'''C increases the proportion of the phase with a high Tc of 105K.
Conventional Nb-
Since it can be used under much more advantageous cooling conditions than metallic superconductors such as Ti and Nb3Sn, research and development is progressing as an extremely promising superconducting material for practical use. In particular, Bi-based oxide superelectric materials are attracting attention because they do not contain toxic elements like TI and can provide Tc higher than IOOK. Oxide superconductors have extremely fragile mechanical properties, so the following method is used as an example of a method for processing them into wire rods. That is, a plurality of raw material powders containing elements constituting an oxide superconductor are calcined, unnecessary components are removed, and then the calcined powder is molded into a wire of a desired diameter or a tape of a desired thickness. This is a method of manufacturing superconducting wire by subjecting it to heat treatment and producing an oxide superconductor with the desired composition through a solid-state reaction. (Problem to be solved by the invention) However, in conventional manufacturing methods, it is difficult to mix raw material powders completely uniformly, so even if heat treatment is performed, the entire superconductor does not have a completely uniform composition. was there. In particular, with long wires, it is virtually impossible to produce a superconductor with a uniform composition over the entire length of the wire. This results in the formation of localized areas with inadequate superconducting properties due to inappropriate composition, resulting in the problem that the properties of the entire wire are limited by the localized properties. Furthermore, the oxide superconductor formed inside the wire mentioned above is a compacted powder compacted by sintering through a solid phase reaction, and there are many fine pores inside it. For this reason, compared to conventional alloys and intermetallic compounds, it lacks compactness, making it difficult to increase the critical current density Jc, which is important for practical use.

更に、Bi基酸化物系超電専体では、高T c相を生成
させるためには、熱処理に数百時間といった長時間を要
する. 本発明は、均一な組成を持つ緻密な酸化物超電導体を得
ることを可能にし、かつ成分元素のm量調整や他元素の
添加も極めて簡単に制御でき、さらに短時間の熱処理で
高Tcを得ることができるBi基酸化物B電導体及びそ
の線材製造方法を提供するものである. 〈課題を解決するための手段〉 かかる目的を達成するため、本発明のBi基酸化物超電
導体の製造方法は、Bi,Sr,Ca,Cuを含む化合
物を無機酸に溶解し、蒸溜水で希釈しヒドロキシル酸、
多価アルコールを加えて、加熱撹拌して有機酸塩を生成
させた後、脱水、冷却して得たゲル状の反応生戒物を加
熱分解し、前駆体とした後に熱処理を行うようにしてい
る.また、本発明のBi基酸化物超電導体の製造方法は
、少なくともSr,Caを含む化合物を無機酸に溶解し
、ヒドロキシル酸と多価アルコールを加えて有機酸塩を
生成させたのち脱水して得た反応生成物を加熱分解処理
した前駆体Aと、少なくともBi.Cuを含む化合物に
同様な処理を行うて生成した前駆体Bを混合し、熱処理
を行うようにしている. ここで、前駆体とはゲル状の有機酸塩を熱分解によって
ゲル中に含まれている水分、残余ガスおよび有機分を除
去した後に得られる灰状の物質を指す.また、無機酸と
しては硝酸、塩酸、硫酸等が挙げられる.また、ヒドロ
キシル酸としては、クエン酸、酒石酸、ポリアクリル酸
等が挙げられ、クエン酸やポリアクリル酸の使用が好ま
しい。そして多価アルコールとしては、2価以上の多価
アルコール、例えばエチレングリコール、ジエチレング
リコール、ポリエチレングリコール、グリセリン、トリ
ヒドロキシベンゼン等が挙げられ、エチレングリコール
またはジエチレングリコールの使用が好ましい. 更に、本発明で製造するBi基酸化物超電導体は、先に
述べたBi2Sr2CaC,u20x、Bi2 Sr2
 Ca2 Cu3 0y及びBi並びに前駆体BのBi
の一部をPbで置換した組成を含む.更に、本発明のB
i基酸化物超電導体の製造方法においては、上述の製法
によって得られた前駆体あるいは前駆体Aと前駆体Bの
混合物に対して、600℃〜820℃の範囲にある一次
熱処理と、この熱処理の後に行う830℃〜870℃の
範囲にある二次熱処理からなる熱処理を施している.ま
た、本発明のBi基酸化物超電導線材の製造方法は、上
述の一次熱処理の後、その素材を線状物に形成してから
二次熱処理を行うことによって得られる. (実施例) 以下、本発明の製造方法を実施例に基づいて詳細に説明
する. 原料にはB i20s 、SrCOs 、CaCOa、
CuOそして必要に応じてB−i20aと置換するPb
304等の原料粉末を所定の組成比に秤量し、硝酸、塩
酸、硫酸等の無i酸に溶解した後、蒸溜水で希釈する。
Furthermore, in Bi-based oxide superelectric materials, heat treatment takes a long time, such as several hundred hours, in order to generate a high T c phase. The present invention makes it possible to obtain a dense oxide superconductor with a uniform composition, and it is also possible to extremely easily control the m amount adjustment of component elements and the addition of other elements, and furthermore, a high Tc can be achieved with a short heat treatment. The present invention provides a Bi-based oxide B conductor that can be obtained and a method for manufacturing the wire. <Means for Solving the Problems> In order to achieve the above object, the method for producing a Bi-based oxide superconductor of the present invention includes dissolving a compound containing Bi, Sr, Ca, and Cu in an inorganic acid, and dissolving the compound in distilled water. diluted hydroxyl acid,
After adding a polyhydric alcohol and heating and stirring to generate an organic acid salt, the resulting gel-like reaction product is dehydrated and cooled, which is then thermally decomposed to form a precursor, which is then subjected to heat treatment. There is. In addition, the method for producing a Bi-based oxide superconductor of the present invention includes dissolving a compound containing at least Sr and Ca in an inorganic acid, adding hydroxyl acid and a polyhydric alcohol to form an organic acid salt, and then dehydrating the compound. Precursor A obtained by thermally decomposing the obtained reaction product, and at least Bi. Precursor B produced by subjecting a Cu-containing compound to similar treatment is mixed and heat treated. Here, the precursor refers to an ash-like substance obtained after removing water, residual gas, and organic components contained in the gel by thermal decomposition of the gel-like organic acid salt. In addition, examples of inorganic acids include nitric acid, hydrochloric acid, and sulfuric acid. Further, examples of hydroxyl acids include citric acid, tartaric acid, polyacrylic acid, etc., and use of citric acid and polyacrylic acid is preferred. Examples of the polyhydric alcohol include polyhydric alcohols having a valence of two or more, such as ethylene glycol, diethylene glycol, polyethylene glycol, glycerin, trihydroxybenzene, etc., and it is preferable to use ethylene glycol or diethylene glycol. Furthermore, the Bi-based oxide superconductor produced in the present invention includes the aforementioned Bi2Sr2CaC, u20x, Bi2 Sr2
Ca2 Cu3 Oy and Bi and Bi of precursor B
Contains a composition in which part of is replaced with Pb. Furthermore, B of the present invention
In the method for producing an i-based oxide superconductor, the precursor obtained by the above-mentioned production method or the mixture of precursor A and precursor B is subjected to primary heat treatment in the range of 600°C to 820°C, and this heat treatment. After that, a heat treatment consisting of a secondary heat treatment in the range of 830°C to 870°C is performed. Further, in the method for producing a Bi-based oxide superconducting wire of the present invention, after the above-mentioned primary heat treatment, the material is formed into a linear product and then subjected to a secondary heat treatment. (Examples) Hereinafter, the manufacturing method of the present invention will be explained in detail based on Examples. Raw materials include B i20s, SrCOs, CaCOa,
CuO and optionally Pb replacing B-i20a
A raw material powder such as No. 304 is weighed to a predetermined composition ratio, dissolved in an ionic acid such as nitric acid, hydrochloric acid, sulfuric acid, etc., and then diluted with distilled water.

ここで、無機酸を用いる理由は、B i20s 、Sr
COa 、CaCO3 、CuO、PbsO4を水に可
溶な金属イオンの形にするためである.そして、所定量
のクエン酸、酒石酸、ボリアクリル酸等のヒドロキシル
酸およびエチレングリコール、ジエチレングリコール等
の多価アルコールを加えた後、約90℃で加熱撹拌して
有機酸塩を生成させる.ここでヒドロキシル酸は、金属
イオンとヒドロキシル酸との錯体化合物(キレート化合
物)を生成させるために用いる.また、多価アルコール
は、生成した金属イオンとヒドロキシル酸との錯体化合
物(キレート化合物)を高分子状に結合させるために用
いる。この有R酸塩の含まれた溶液を脱水、冷却しゲル
状の反応生成物を約350℃で加熱分解し、前駆体を得
る。ここで加熱分解をすることによって、ゲル中に含ま
れる水分や残余ガスを除去し、さらに有機酸塩の有機物
を分解する.この前駆体を粉砕した後、次熱処理を行い
、更に粉砕、成型した後に二次熱処理を行い超電導体を
得る. Bi−Sr−Ca−Cu−0系の場合、その組成比(原
子比)は、Srを1としてB i 0.5 〜1.5 
、C a0.5 〜1.5、C u 0.7 〜2.0
の範囲にあることが望ましい.ここで上記化合物は酸化
物の形態をとるため、Oの含有量は上記の元素の量によ
り理論的に計算される.また、有機酸塩を作製する場合
に用いる無機酸(硝酸、塩酸、硫酸等)、ヒドロキシル
酸(クエン酸、酒石酸、ポリアクリル酸等)及び多価ア
ルコール(エチレングリコール、ジエチレングリコール
等)の添加量も上記の元素の量から総イオン価数を算出
することにより理論的に計算される. 本発明では、組成比がこれら範囲がら外れると良好な超
電導特性を得ることが困難となる.尚、上記化合物にお
いてBiの一部を組成比(原子比)0.05〜0.5の
範囲でPbに置換すると優れた超電導特性を得る上に更
に有効である.ここで、前記有機酸塩のゲルを基材テー
プ上に印刷法等の手法で連続的に塗布したり、繊維状の
基材を前記有機酸塩のゲル中に浸漬、通過させて連続的
に被覆する等の方法をとれば、Bi基超電導体の線材を
作製することができる. また、前記前駆体の組成を直接目的とする超電導体の組
成とせずに、高融点成分(前駆体A)と低融点成分(前
駆体B)に分けて生成し、両者を混合して一次熱処理お
よび二次熱処理における両前駆体間の拡散反応により超
電導体を生成させることにより、一層均一で緻密なBi
基酸化物超電導体を得ることができる。この場合、前駆
体Aと前駆体Bの適当な組成の選択が、拡散反応によっ
て超電導体を生成する上に極めて重要な役割を果す. ここで、前記前駆体AはSr,CaまたはSr,Ca,
Cuの元素を含み、それらの原子比がSrをlとしてC
 a0.25 〜1.0 , C u O 〜1.5の
範囲にあり、また、前駆体BはBi,CuまたはBi,
Ca,Cuの元素を含み、それらの原子比がBiを1と
してC ao 〜1.0 、C u 0.25〜1.5
の範囲内にあることが望ましい. また、前駆体BのBiの−・部を、Bitに対して0.
1〜0.05の原子組成比でPbに置換すると優れた超
電導特性を得る上に更に有効である.更に、上述の前駆
体Aと前駆体Bの混各をモル比が、前駆体Aを1として
前駆体Bが0.5〜2.0の範囲にすることが優れた超
電導特性を得る上に更に有効である. この製法によると、低融点成分の前駆体Bの融点は70
0〜750℃と低いため、二次熱処理において融体とな
り二次熱処理における速やかな拡散反応により高Tc超
電導体を生成することができる.前駆体Aの融点は10
00℃以上であるため拡散反応は固一液相間の反応とな
る.また、本発明による前駆体が微細であることも前記
拡散反応を速めるのに効果である. 次に、上述のプロセスにおいて得られた前駆体(前駆体
Aと前駆体Bの混合物を含む)Bi基超電導体を生成さ
せるための熱処理を行う。この熱処理は、低い温度で一
次熱処理を行った後、次に高い温度で二次熱処理を行う
とより性能の良好な材料を提供することができる. 一次熱処理は、前駆体中に残留している残余ガス、水分
、そして有機物を分解し、完全に除去することを目的と
し、一次熱処理温度は600℃〜820℃、好ましくは
650℃〜800℃の範囲にある.尚、この前駆体は非
常に反応性が高いため、一次熱処理はAr気流等の不活
性雰囲気中で実施することが望ましい.また、一次熱処
理は前駆体の融点以下の温度で行うことが望ましい。
Here, the reason for using inorganic acids is B i20s , Sr
This is to convert COa, CaCO3, CuO, and PbsO4 into metal ion forms that are soluble in water. Then, after adding a predetermined amount of a hydroxyl acid such as citric acid, tartaric acid, or polyacrylic acid, and a polyhydric alcohol such as ethylene glycol or diethylene glycol, the mixture is heated and stirred at about 90°C to produce an organic acid salt. Here, hydroxyl acid is used to generate a complex compound (chelate compound) of metal ions and hydroxyl acid. Further, the polyhydric alcohol is used to bind the generated complex compound (chelate compound) of metal ions and hydroxyl acid into a polymer. The solution containing the R-containing salt is dehydrated and cooled, and the gel-like reaction product is thermally decomposed at about 350° C. to obtain a precursor. By thermally decomposing the gel, water and residual gas contained in the gel are removed, and the organic substances in the organic acid salt are further decomposed. After pulverizing this precursor, a second heat treatment is performed, and after further pulverization and molding, a second heat treatment is performed to obtain a superconductor. In the case of Bi-Sr-Ca-Cu-0 system, its composition ratio (atomic ratio) is B i 0.5 to 1.5 with Sr being 1.
, Ca0.5 ~ 1.5, Cu 0.7 ~ 2.0
It is desirable that the value be within the range of . Here, since the above compound takes the form of an oxide, the content of O is calculated theoretically from the amount of the above elements. Additionally, the amounts of inorganic acids (nitric acid, hydrochloric acid, sulfuric acid, etc.), hydroxyl acids (citric acid, tartaric acid, polyacrylic acid, etc.) and polyhydric alcohols (ethylene glycol, diethylene glycol, etc.) used when producing organic acid salts are also determined. It is calculated theoretically by calculating the total ion valence from the amounts of the above elements. In the present invention, if the composition ratio falls outside of these ranges, it becomes difficult to obtain good superconducting properties. In the above compound, it is more effective to replace a part of Bi with Pb in a composition ratio (atomic ratio) of 0.05 to 0.5 in order to obtain excellent superconducting properties. Here, the gel of the organic acid salt is continuously applied onto the base tape by a method such as printing, or the fibrous base material is immersed and passed through the gel of the organic acid salt. If a method such as coating is used, a wire of Bi-based superconductor can be produced. In addition, instead of making the composition of the precursor directly into the composition of the target superconductor, it is possible to separate the composition into a high melting point component (precursor A) and a low melting point component (precursor B), and then mix the two and perform the primary heat treatment. By producing a superconductor through a diffusion reaction between both precursors during secondary heat treatment, more uniform and dense Bi
A base oxide superconductor can be obtained. In this case, the selection of appropriate compositions of precursor A and precursor B plays a very important role in producing superconductors by diffusion reactions. Here, the precursor A is Sr, Ca or Sr, Ca,
Contains the element Cu, and their atomic ratio is C with Sr as l
a0.25 to 1.0, CuO to 1.5, and the precursor B is Bi, Cu or Bi,
Contains the elements Ca and Cu, and their atomic ratio is Cao ~ 1.0, Cu 0.25 ~ 1.5, with Bi being 1.
It is desirable that the value be within the range of . Further, the -. part of Bi in the precursor B was set to 0.
Substitution with Pb at an atomic composition ratio of 1 to 0.05 is more effective in obtaining excellent superconducting properties. Furthermore, in order to obtain excellent superconducting properties, the molar ratio of the mixture of precursor A and precursor B is in the range of 1 for precursor A and 0.5 to 2.0 for precursor B. It is even more effective. According to this manufacturing method, the melting point of precursor B, which is a low melting point component, is 70.
Since it is as low as 0 to 750°C, it becomes a melt in the secondary heat treatment, and a high Tc superconductor can be produced by a rapid diffusion reaction in the secondary heat treatment. The melting point of precursor A is 10
Since the temperature is above 00°C, the diffusion reaction is a reaction between solid and liquid phases. Furthermore, the fact that the precursor according to the present invention is fine is also effective in accelerating the diffusion reaction. Next, the precursor obtained in the above process (including a mixture of Precursor A and Precursor B) is subjected to heat treatment to produce a Bi-based superconductor. This heat treatment can provide a material with better performance by performing primary heat treatment at a low temperature and then performing secondary heat treatment at a higher temperature. The purpose of the primary heat treatment is to decompose and completely remove residual gas, moisture, and organic matter remaining in the precursor, and the primary heat treatment temperature is 600°C to 820°C, preferably 650°C to 800°C. It is within the range. Since this precursor is highly reactive, it is desirable that the primary heat treatment be carried out in an inert atmosphere such as an Ar stream. Further, it is desirable that the primary heat treatment be performed at a temperature below the melting point of the precursor.

次に、二次熱処理温度は830℃〜870℃、好ましく
は845℃〜865℃の範囲でBi基高臨界温度超電導
体の生成温度付近にあり、高い′rCをもつ結晶構造を
形成させる.一次熱処理を省略しても超電桿相を生成さ
せることが可能であるが、前駆体中に残留している残余
ガスや分解された有機物により炭酸ガスや水分が発生す
ることにより試料が急激に膨張あるいは収縮したり、多
孔質になったりし、クラックが発生ずることがある。
Next, the secondary heat treatment temperature is in the range of 830° C. to 870° C., preferably 845° C. to 865° C., which is near the formation temperature of the Bi-based high critical temperature superconductor, and forms a crystal structure with a high rC. Although it is possible to generate a superconductor phase even if the primary heat treatment is omitted, the sample may rapidly deteriorate due to the generation of carbon dioxide gas and moisture due to the residual gas remaining in the precursor and the decomposed organic matter. It may expand or contract, become porous, and cracks may occur.

したがって、一次熱処理を省略する場合には、二次熱処
理の際の昇温を400℃以上の温度域において400℃
未満のそれよりも遅く、好ましくは1゜C/分より遅く
行い、残余ガス等を除く必要がある.また、この二次熱
処理を約400℃で一旦昇温を停止させ、残余ガス等を
除いた後再び昇温するようにしても良い.この場合の昇
温速度は上述の如く遅くする必要はない. 更に、上述の二次熱処理を複数回に分けて実施し、先の
二次熱処理によって試料に超電導特性を持たせた後に更
にプレス、圧延、押出し等の加工工程を加え、再び二次
熱処理を行うと超電導特性の向上を図ることができる. また、本発明を超電導体の線材化に利用する別の態様と
して、一次熟処理後の素材を長尺線に加工した後、二次
熱処理を行うと高Tcの81基酸化物超電導線材を作製
することができる.一次熱処理後の素材は、Ag等の金
属シースに充填して加工したり、あるいは金属板の間に
挾んで加工したり、基板テープ上に線状に形成して加工
する.更に、前駆体Aと前駆体Bの間の拡散反応によっ
てBi基酸化物超電導体を生成させると、一層均一で緻
密な組織を得ることができ、超電導特性を向上させるこ
とができる. 実施例I B i2 C)3 、SrC03 、CaCO3 、C
uO、原料粉末をBi2 Sr2 Ca2 Cu3 0
Yの組成比とるように秤量し、これに蒸溜水を加え、濃
硝酸を加えて溶解し規定量のクエン酸一水和物とエチレ
ングリコールを加えた後ホットプレートスターラー上で
加熱撹拌した。反応が開始すると、液の色は青澄色とな
り、反応が進行するにつれて白色のrl1,mな沈澱が
生成し、NOxの発生と共に水分の蒸発が起こり、液量
が減少した.反応が終了すると、試料は粘性を帯びたゾ
ルとなり、NOxの発生によりスポンジ状に膨れ上がっ
た.これを冷却すると固化し、ゲルとなった.このゲル
を電気炉において350℃で1.5時間熱分解し、前駆
体を得た.この前駆体を粉砕し、一次熱処理として78
0”Cで8時間熱処理の後、粉砕を繰返し行った.粉砕
した前駆体の粒度分布を第1図に示す.前駆体は、ほぼ
粒径10+.on以下の微細な粒子からなっている.こ
の粉末を2 tonの荷重でプレスして幅4間、長さ3
0間、厚さ約1間のテープ状に戒型し、860℃で20
時間二次熱処理を施した.尚、本実施例の熱処理はいず
れも大気中で行った.この試料のTcを直流4端子法に
より測定したところ60Kのゼロ抵抗温度が得られた.
X腹透ユ B i20a 、SrCOs 、CaCOa 、Cub
,Pb3o4の原料粉末を B i +.s Pbo2Sr2 Ca2Cu,Ovの
組成比となるように秤量し、実施例1と同様な方法で前
駆体を作製した.この前駆体を粉砕し、一次熱処理とし
て780℃で8時間熱処理の後、粉砕を繰返し行った.
この粉末を2 tonの荷重でプレスして幅4LwwI
、長さ30w、厚さ約1fflIIのテープ状に成型し
、845℃〜865゜Cで20時間二次熱処理を施した
.尚、本実施例の熱処理はいずれも大気中で行った.8
55℃以上の温度で熱処理を施した場合に液体窒素温度
(−196℃=77K)以上で超電導性を示すことが直
流4端子法による測定の結果判明した.特に860℃の
場合、試料のゼロ抵抗温度は約102Kであった。
Therefore, if the primary heat treatment is omitted, the temperature during the secondary heat treatment should be increased to 400°C in the temperature range of 400°C or higher.
It is necessary to remove residual gas etc. at a slower rate than that of less than 1°C/min, preferably slower than 1°C/min. Alternatively, the secondary heat treatment may be performed by temporarily stopping the temperature rise at about 400°C, and after removing residual gas, etc., the temperature may be raised again. In this case, the heating rate does not need to be as slow as described above. Furthermore, the above-mentioned secondary heat treatment is performed in multiple steps, and after the sample is given superconducting properties by the previous secondary heat treatment, further processing steps such as pressing, rolling, and extrusion are added, and the secondary heat treatment is performed again. It is possible to improve the superconducting properties. In addition, as another aspect of utilizing the present invention for making superconductor wires, a high Tc 81-group oxide superconducting wire can be produced by processing the material after the primary ripening treatment into a long wire and then performing a secondary heat treatment. can do. After the primary heat treatment, the material is processed by filling it into a metal sheath such as Ag, by sandwiching it between metal plates, or by forming it into a line on a substrate tape. Furthermore, if a Bi-based oxide superconductor is produced by a diffusion reaction between precursor A and precursor B, a more uniform and dense structure can be obtained, and the superconducting properties can be improved. Example I B i2 C)3 , SrC03 , CaCO3 , C
uO, raw material powder Bi2 Sr2 Ca2 Cu3 0
The mixture was weighed to maintain the composition ratio of Y, and distilled water was added thereto. Concentrated nitric acid was added to dissolve the mixture. After adding specified amounts of citric acid monohydrate and ethylene glycol, the mixture was heated and stirred on a hot plate stirrer. When the reaction started, the color of the liquid became clear blue, and as the reaction proceeded, a white precipitate was formed, NOx was generated, water evaporated, and the liquid volume decreased. When the reaction was completed, the sample became a viscous sol, which swelled into a spongy shape due to the generation of NOx. When this was cooled, it solidified and became a gel. This gel was thermally decomposed in an electric furnace at 350°C for 1.5 hours to obtain a precursor. This precursor is pulverized and subjected to primary heat treatment at 78°C.
After heat treatment at 0''C for 8 hours, pulverization was repeated. The particle size distribution of the pulverized precursor is shown in Figure 1. The precursor consists of fine particles with a particle size of approximately 10+.on or less. Press this powder with a load of 2 tons to make a width of 4 and a length of 3.
It was molded into a tape with a thickness of about 1 mm and heated at 860℃ for 20 minutes.
Secondary heat treatment was performed. Note that all heat treatments in this example were performed in the atmosphere. When the Tc of this sample was measured using the DC 4-terminal method, a zero resistance temperature of 60K was obtained.
X-hara-toyu B i20a, SrCOs, CaCOa, Cub
, Pb3o4 raw material powder is B i +. A precursor was prepared in the same manner as in Example 1 by weighing so as to have a composition ratio of sPbo2Sr2Ca2Cu,Ov. This precursor was pulverized, and after a primary heat treatment at 780°C for 8 hours, pulverization was repeated.
Press this powder with a load of 2 tons to make a width of 4LwwI.
The tape was formed into a tape having a length of 30W and a thickness of about 1fflII, and was subjected to a secondary heat treatment at 845°C to 865°C for 20 hours. Note that all heat treatments in this example were performed in the atmosphere. 8
Measurements using the DC four-terminal method revealed that when heat-treated at a temperature of 55°C or higher, it exhibits superconductivity above the liquid nitrogen temperature (-196°C = 77K). In particular, at 860°C, the zero resistance temperature of the sample was approximately 102K.

実施例3 実施例2と同様な方法で作製した前駆体を一次熱処理と
して780℃で8時間熱処理の後、粉砕を繰返し行った
.この粉末を2 tonの荷重でプレスして幅4關、長
さ30I1fl、厚さ約1 amのテープ状に成型し、
860℃で20時間二次熱処理を施した.この試料に3
 tonの荷重でプレス加工を施して幅4lllI、長
さ30間、厚さ約1 nnのテープ状に成型し、860
℃で20時間二次熱処理を施した。尚、本実施例の熱処
理はいずれも大気中で行った.この試料のTcを直流4
@子法により測定したところ約105Kのゼロ抵抗温度
が得られた.従来の固相反応法では高Tcを得るために
数百時間の熱処理を要するが、この結果より本製造法に
よると熱処理は40時間に短縮できることが確認された
. X旌皿1 Bi2 03 、SrCO3 、CaCO3 、CuO
、Pb3 04の原料粉末を Bi +.a Pbo2Sr 2Ca+.a Cus 
Oyの組成比となるように秤量し、実施例1と同様な方
法で前駆体を作製した。この前駆体を粉砕し、一次熱処
理として780℃で8時間熱処理の後、粉砕を繰返し行
った.この粉末を2【Onの荷重でプレスして幅4間、
長さ30間、厚さ約1關のテーグ状に成型し、865℃
で20時間二次熱処理を胸した.この試料を再び3【O
nの荷重でプレス加工して860゜Cで20時間熱処理
を施した後、更に3 tonの荷重でプレス加工して、
860℃で20時間熟処理を施した.尚、本実施例の熱
処理はいずれも大気中で行った.この試料のTcを直流
4端子法により測定したところ約106Kのゼロ抵抗温
度が得られた.第2図にこの遷移曲線を示す.X腹皿互 SrCOa ,CaCOaの原料粉末をSr2 Ca2
 04の組戒となるように秤量し、実施例1と同様な方
法で前駆体を作製し、前駆体Aとした.また、Bi2 
0a ,CuOの原科粉末をB i2 Cu2 05の
組成となるように秤量し、実施例lと同様な方法で前駆
体を作製し、前駆体Bとした.両者を1=1、3のモル
比でよく混合し、一次熱処理を700℃で10時間行っ
た後、粉砕を繰返して行った. この混合粉末を内径5IIIIl、外径8間、長さ80
闘のAg管に充填して栓をし、清ロールによって2.5
1WII角の棒状に加工した後、平ロールにより熱さ1
 +n+、幅5 mmのテープに圧延した.ここで、8
60℃で10時間の二次熱処理を行った後、厚さ0.3
+mまで圧延して、再び860℃で10時間の熱処理を
行った。尚、本実施例の熱処理はいずれも大気中で行っ
た. この試料のTcを直流4端子法により測定したところ7
3Kのゼロ抵抗温度が得られた.また、その臨界電流密
度Jcを測定したところ4.2KでITの磁界下で実施
例1の試料に比べて約15倍の高い値が得られた. 哀亘班亙 SrCOs .CaCOa ,CuOの原料粉末をSr
2 CaCu20sの組成となるように秤量し、実施例
■と同様な方法で前駆体を作製し、前駆体Aとした.ま
た、Bi2 0s ,Pb304 ,CaCO3 ,C
uOの原料粉末を B i r.a P b 0.2C aC u +.s
 Os.sの組成となるように秤量し、実施例1と同様
な方法で前駆体を作製し、前駆体Bとした.両者を1=
1のモル比でよく混合し、一次熱処理を650゜Cで1
0時間行った後、粉砕を繰返して行った. この混合粉末を内径5叩、外径81lII、長さ80間
のAg管に充填して栓をし、清ロールによって2,5間
角の棒状に加工した後、平ロールにより熱さIIIII
l、幅5曲のテープに圧延した.ここで、855℃で1
0時間の二次熱処理を行った後、厚さ0.3a+nまで
圧延して、再び−855℃で10時間の二次熱処理を行
った.尚、本実施ρIの熱処理はいずれも大気中で行っ
た. この試料のTcを直流4端子法により測定したところ1
07Kのゼロ抵抗温度が得られた.また、その臨界電流
密度Jcを測定したところ77Kで実施例2の試料に比
べて約20倍の高い値が得られた. (発明の効果) 以上の説明より明らかなように、本発明のBi基酸化物
超電導体の製造方法によると、組成が非常に均一でしか
も緻密なBi基高Tc酸化物超電導体を作製し得る.特
に本発明は、適当な組成を有する高融点成分の前駆体A
と低融点成分の前駆体Bとを生威し、両者を混合して一
次熱処理及び/又は二次熱処理における両前駆体間の拡
散反応により超電導体を生成するようにしているので、
一層均一で緻密なBi基酸化物超電導体を提供すること
ができる.そのため、本製造法を線材作製に適用した場
合に、Jcが大きくしかも長さ方向に特性の均一なBi
基高Tea化物超電導体線材を製造することが可能とな
る.また、Bt基酸化物系超電導体では、高Tc相を生
或させるためには、熱処理に数百時間といった長時間を
要するが、本製造法では数十時間の熱処理により高Tc
相か得られることから、熱処理時間を短縮して製造工程
の能率を高めることができる。
Example 3 A precursor prepared in the same manner as in Example 2 was first heat treated at 780°C for 8 hours, and then pulverized repeatedly. This powder was pressed with a load of 2 tons and formed into a tape shape with a width of 4 mm, a length of 30 cm, and a thickness of about 1 am.
Secondary heat treatment was performed at 860°C for 20 hours. 3 for this sample
It was pressed under a load of 100 ton and formed into a tape shape with a width of 4 lll I, a length of 30 mm, and a thickness of about 1 nn.
A secondary heat treatment was performed at ℃ for 20 hours. Note that all heat treatments in this example were performed in the atmosphere. Tc of this sample is DC4
When measured using the @ko method, a zero resistance temperature of approximately 105K was obtained. Conventional solid phase reaction methods require several hundred hours of heat treatment to obtain a high Tc, but these results confirm that the heat treatment can be shortened to 40 hours using this production method. X dish 1 Bi2 03 , SrCO3 , CaCO3 , CuO
, Pb3 04 raw material powder is converted into Bi + . a Pbo2Sr 2Ca+. a Cus
A precursor was produced in the same manner as in Example 1 by weighing so as to have a composition ratio of Oy. This precursor was pulverized, and after a primary heat treatment at 780°C for 8 hours, pulverization was repeated. This powder was pressed with a load of 2 [On] to a width of 4.
Molded into a tag shape with a length of 30 cm and a thickness of about 1 cm, heated to 865℃
Then, a secondary heat treatment was performed for 20 hours. This sample was again 3[O
After pressing with a load of n and heat treatment at 860°C for 20 hours, further pressing with a load of 3 tons,
A ripening treatment was performed at 860°C for 20 hours. Note that all heat treatments in this example were performed in the atmosphere. When the Tc of this sample was measured using the DC 4-terminal method, a zero resistance temperature of approximately 106K was obtained. Figure 2 shows this transition curve. The raw material powders of SrCOa and CaCOa are mixed with Sr2Ca2
A precursor was prepared in the same manner as in Example 1 and designated as Precursor A. Also, Bi2
0a, CuO raw material powder was weighed so as to have a composition of B i2 Cu2 05, and a precursor was prepared in the same manner as in Example 1, and designated as Precursor B. Both were mixed well at a molar ratio of 1=1,3, and after primary heat treatment was performed at 700°C for 10 hours, pulverization was repeated. This mixed powder has an inner diameter of 5IIIl, an outer diameter of 8mm, and a length of 80mm.
Fill and stopper the Ag tube, and use a clean roll to remove 2.5
After processing it into a 1WII square rod shape, it is heated to 1W by a flat roll.
+n+, rolled into a tape with a width of 5 mm. Here, 8
After secondary heat treatment at 60℃ for 10 hours, the thickness is 0.3
After rolling to +m, heat treatment was performed again at 860° C. for 10 hours. Note that all heat treatments in this example were performed in the atmosphere. The Tc of this sample was measured using the DC 4-terminal method and was found to be 7
A zero resistance temperature of 3K was obtained. Furthermore, when the critical current density Jc was measured at 4.2K under the IT magnetic field, a value approximately 15 times higher than that of the sample of Example 1 was obtained. Ai Wataru SrCOs. Raw material powders of CaCOa and CuO are
2 CaCu20s was weighed, and a precursor was prepared in the same manner as in Example ①, which was designated as Precursor A. Also, Bi2 0s , Pb304 , CaCO3 , C
The raw material powder of uO was heated to B i r. a P b 0.2C aC u +. s
Os. A precursor was prepared in the same manner as in Example 1 and designated as Precursor B. Both = 1
Mix well at a molar ratio of 1:1 and perform primary heat treatment at 650°C.
After 0 hours, pulverization was repeated. This mixed powder was filled into an Ag tube with an inner diameter of 5 mm, an outer diameter of 81 l II, and a length of 80 mm, and the tube was plugged and processed into a rod shape of 2.5 mm square with a clear roll.
l, rolled into a tape of 5 widths. Here, 1 at 855℃
After performing secondary heat treatment for 0 hours, it was rolled to a thickness of 0.3a+n, and secondary heat treatment was performed again at -855°C for 10 hours. Note that all of the heat treatments in this ρI experiment were performed in the atmosphere. The Tc of this sample was measured using the DC 4-terminal method and was 1
A zero resistance temperature of 0.07K was obtained. Furthermore, when the critical current density Jc was measured, a value approximately 20 times higher than that of the sample of Example 2 was obtained at 77K. (Effects of the Invention) As is clear from the above explanation, according to the method for producing a Bi-based oxide superconductor of the present invention, it is possible to produce a Bi-based high Tc oxide superconductor that has a very uniform composition and is dense. .. In particular, the present invention provides a precursor A of a high melting point component having a suitable composition.
and a low-melting-point component precursor B are mixed, and a superconductor is produced by a diffusion reaction between both precursors in the primary heat treatment and/or the secondary heat treatment.
A more uniform and dense Bi-based oxide superconductor can be provided. Therefore, when this manufacturing method is applied to wire rod manufacturing, Bi
It becomes possible to manufacture base height Tea compound superconductor wire. In addition, Bt-based oxide-based superconductors require a long time of heat treatment, such as several hundred hours, to generate a high Tc phase, but with this manufacturing method, a high Tc phase can be achieved by heat treatment for several tens of hours.
Since a phase can be obtained, the heat treatment time can be shortened and the efficiency of the manufacturing process can be increased.

したがって、本製造法は従来の製造法における課題を解
決し、均一性と緻密性が優れたBi基高Tc酸化物超電
導体を提供することができる。
Therefore, this manufacturing method can solve the problems of conventional manufacturing methods and provide a Bi-based high Tc oxide superconductor with excellent uniformity and density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本製造法の実施例1により得られた有機酸塩前
駆体の粒度分布を示す図で、縦軸左側に図中の棒グラフ
(ヒストグラム)の粒子径に対する頻度%を表し、縦軸
右閘に図中の曲線の粒子径に対ずるふるい下%を表し、
横軸に粒子径を表す。 第2図は、本製造法の実施例4により得られたBi基酸
化物超電導体試料の電気抵抗の温度変化を示す図で、縦
軸に試料の電気抵抗を表し、横軸に温度を表す。
Figure 1 is a diagram showing the particle size distribution of the organic acid salt precursor obtained in Example 1 of the present production method. The right bar shows the percentage under sieve relative to the particle size of the curve in the figure.
The horizontal axis represents the particle size. FIG. 2 is a diagram showing temperature changes in electrical resistance of a Bi-based oxide superconductor sample obtained by Example 4 of the present manufacturing method, with the vertical axis representing the electrical resistance of the sample and the horizontal axis representing temperature. .

Claims (12)

【特許請求の範囲】[Claims] (1)Bi,Sr,Ca,Cuを含む化合物を無機酸に
溶解し、ヒドロキシル酸と多価アルコールを加えて有機
酸塩を生成させた後、脱水して得た反応生成物を加熱分
解し、前駆体とした後に熱処理を行うことを特徴とする
Bi基酸化物超電導体の製造方法。
(1) A compound containing Bi, Sr, Ca, and Cu is dissolved in an inorganic acid, hydroxyl acid and polyhydric alcohol are added to produce an organic acid salt, and the reaction product obtained by dehydration is thermally decomposed. . A method for producing a Bi-based oxide superconductor, which comprises performing heat treatment after forming a precursor.
(2)前記Bi,Sr,Ca,Cuの元素で構成された
化合物において、その原子比がSrを1としてBi0.
5〜1.5、Ca0.5〜1.5、Cu0.7〜2.0
の範囲内にあることを特徴とする請求項1記載のBi基
酸化物超電導体の製造方法。
(2) In a compound composed of the elements Bi, Sr, Ca, and Cu, the atomic ratio is Bi0.
5-1.5, Ca0.5-1.5, Cu0.7-2.0
2. The method for producing a Bi-based oxide superconductor according to claim 1, wherein the Bi-based oxide superconductor is within the range of:
(3)前記化合物のBiの一部をBi1に対し0.05
〜0.5の組成原子比でPbに置換することを特徴とす
る請求項1又は2記載のBi基酸化物超電導体の製造方
法。
(3) Part of Bi in the compound is 0.05 to Bi1
3. The method for producing a Bi-based oxide superconductor according to claim 1 or 2, characterized in that Pb is substituted at a composition atomic ratio of ~0.5.
(4)少なくともSr,Caを含む化合物を無機酸に溶
解し、ヒドロキシル酸と多価アルコールを加えて有機酸
塩を生成させたのち脱水して得た反応生成物を加熱分解
処理した前駆体Aと、少なくともBi,Cuを含む化合
物に同様な処理を行って生成した前駆体Bを混合し、熱
処理を行うことを特徴とするBi基酸化物超電導体の製
造方法。
(4) Precursor A obtained by thermally decomposing the reaction product obtained by dissolving a compound containing at least Sr and Ca in an inorganic acid, adding hydroxyl acid and a polyhydric alcohol to produce an organic acid salt, and then dehydrating it. and a precursor B produced by subjecting a compound containing at least Bi and Cu to similar treatment, and heat-treating the mixture.
(5)前記前駆体AがSr,CaまたはSr,Ca,C
uの元素を含み、それらの原子比がSrを1としてCa
0.25〜1.0,Cu0〜1.5の範囲にあり、また
、前駆体BがBi,CuまたはBi,Ca,Cuの元素
を含み、それらの原子比がBiを1としてCa0〜1.
0、Cu0.25〜1.5の範囲内にあることを特徴と
する請求項4記載のBi基酸化物超電導体の製造方法。
(5) The precursor A is Sr, Ca or Sr, Ca, C
Contains the elements u, and their atomic ratio is Ca with Sr being 1.
0.25 to 1.0, Cu0 to 1.5, and the precursor B contains Bi, Cu or the elements Bi, Ca, Cu, and the atomic ratio thereof is Ca0 to 1 with Bi being 1. ..
5. The method for producing a Bi-based oxide superconductor according to claim 4, wherein the Cu content is within a range of 0.0 and Cu0.25 to 1.5.
(6)前記前駆体BのBiの一部を、Bi1に対して0
.05〜0.5の原子組成比でPbに置換することを特
徴とする請求項4又は5記載のBi基酸化物超電導体の
製造方法。
(6) A part of Bi of the precursor B is set to 0 with respect to Bi1.
.. 6. The method for producing a Bi-based oxide superconductor according to claim 4, wherein Pb is substituted at an atomic composition ratio of 0.05 to 0.5.
(7)前記前駆体Aと前駆体Bの混合をモル比が、前駆
体Aを1として前駆体Bが0.5〜2.0の範囲にある
ことを特徴とする請求項4ないし6のいずれかに記載の
Bi基酸化物超電導体の製造方法。
(7) The molar ratio of the mixture of the precursor A and the precursor B is in the range of 1 for precursor A and 0.5 to 2.0 for precursor B. Any method for producing a Bi-based oxide superconductor.
(8)前記熱処理が600℃〜820℃の範囲にある一
次熱処理と、この熱処理の後に行う830℃〜870℃
の範囲にある二次熱処理からなることを特徴とする請求
項1ないし7のいずれかに記載のBi基酸化物超電導体
の製造方法。
(8) Primary heat treatment in which the heat treatment is in the range of 600°C to 820°C, and 830°C to 870°C performed after this heat treatment.
8. The method for producing a Bi-based oxide superconductor according to any one of claims 1 to 7, comprising a secondary heat treatment in the range of .
(9)前記熱処理は830℃〜870℃の二次熱処理の
みから成り、400℃以上に昇温したときに昇温速度を
400℃未満の場合よりも遅くすることを特徴とする請
求項1ないし7のいずれかに記載のBi基酸化物超電導
体の製造方法。
(9) The heat treatment consists of only secondary heat treatment at 830°C to 870°C, and when the temperature is raised to 400°C or higher, the rate of temperature rise is slower than when the temperature is lower than 400°C. 7. The method for producing a Bi-based oxide superconductor according to any one of 7.
(10)前記熱処理は830℃〜870℃の二次熱処理
のみから成り、約400℃において一旦昇温を停止する
ことを特徴とする請求項1ないし7のいずれかに記載の
Bi基酸化物超電導体の製造方法。
(10) The Bi-based oxide superconductor according to any one of claims 1 to 7, wherein the heat treatment consists of only a secondary heat treatment at 830°C to 870°C, and the temperature increase is once stopped at about 400°C. How the body is manufactured.
(11)前記二次熱処理を複数回に分け、それらの間で
プレス、圧延、押出し等の中間加工処理を施すことを特
徴とする請求項1ないし10のいずれかに記載のBi基
酸化物超電導体の製造方法。
(11) The Bi-based oxide superconductor according to any one of claims 1 to 10, wherein the secondary heat treatment is divided into a plurality of times, and intermediate processing such as pressing, rolling, and extrusion is performed between the steps. How the body is manufactured.
(12)請求項8記載の一次熱処理の後、その素材を線
状物に形成し、二次熱処理を行うことを特徴とするBi
基酸化物超電導線材の製造方法。
(12) After the primary heat treatment according to claim 8, the material is formed into a linear object and subjected to a secondary heat treatment.
Method for manufacturing base oxide superconducting wire.
JP1235794A 1989-09-13 1989-09-13 Bi-based oxide superconductor and method for producing wire thereof Expired - Lifetime JP2966442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235794A JP2966442B2 (en) 1989-09-13 1989-09-13 Bi-based oxide superconductor and method for producing wire thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235794A JP2966442B2 (en) 1989-09-13 1989-09-13 Bi-based oxide superconductor and method for producing wire thereof

Publications (2)

Publication Number Publication Date
JPH03103351A true JPH03103351A (en) 1991-04-30
JP2966442B2 JP2966442B2 (en) 1999-10-25

Family

ID=16991361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235794A Expired - Lifetime JP2966442B2 (en) 1989-09-13 1989-09-13 Bi-based oxide superconductor and method for producing wire thereof

Country Status (1)

Country Link
JP (1) JP2966442B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302246A (en) * 2000-04-24 2001-10-31 Murata Mfg Co Ltd Method of producing ceramic, and ceramic
US7008169B1 (en) * 1999-02-09 2006-03-07 Yanmar Co., Ltd. Hydraulically driven working machine
US7735248B2 (en) 2005-03-14 2010-06-15 Yanmar Co., Ltd. Piping struture of front work machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008169B1 (en) * 1999-02-09 2006-03-07 Yanmar Co., Ltd. Hydraulically driven working machine
JP2001302246A (en) * 2000-04-24 2001-10-31 Murata Mfg Co Ltd Method of producing ceramic, and ceramic
US7735248B2 (en) 2005-03-14 2010-06-15 Yanmar Co., Ltd. Piping struture of front work machine

Also Published As

Publication number Publication date
JP2966442B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JPH03103351A (en) Preparation of bi-based oxide superconductor and wire thereof
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JP3165770B2 (en) Manufacturing method of oxide superconductor
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
CA2453922C (en) Oxide high-critical temperature superconductor acicular crystal and method for producing the same
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
Gunasekaran et al. Superconducting behavior of tetragonal Ca1− xCdxBaLaCu3O7− δ
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH02258665A (en) Production of superconductive material
JPH10120417A (en) Production of oxide superconductor and precursor for producing oxide superconductor
Matsui et al. Transport superconducting properties of ambient oxygen pressure-fabricated Y124/Ag wires
JPH01153565A (en) Production of oxide superconductor
JPS63291853A (en) Production of superconductor
JPH04124033A (en) Vanadium-containing superconducting substance and its production
JPH07109170A (en) Production of bi-based oxide superconductor and material for forming the same
JPH03265562A (en) Production of ceramic superconductor
JPH01160825A (en) Production of oxide superconductor
JPH01138121A (en) Production of oxide
JPH02271920A (en) Production of superconductor oxide material
JPH08217442A (en) Carbon-containing metal oxide wire material and its production
JPH09502959A (en) Superconductor containing at least one of barium and strontium and thallium, copper, oxygen and fluorine
JPH03295813A (en) Oxide superconducting material and production thereof
JPH02217320A (en) Production of bi-based oxide superconductor
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state