JPH03102814A - Electrostatic chucking device - Google Patents

Electrostatic chucking device

Info

Publication number
JPH03102814A
JPH03102814A JP1240340A JP24034089A JPH03102814A JP H03102814 A JPH03102814 A JP H03102814A JP 1240340 A JP1240340 A JP 1240340A JP 24034089 A JP24034089 A JP 24034089A JP H03102814 A JPH03102814 A JP H03102814A
Authority
JP
Japan
Prior art keywords
voltage
electrodes
electrode
chucked
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240340A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Sadaaki Kohama
小浜 禎晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1240340A priority Critical patent/JPH03102814A/en
Publication of JPH03102814A publication Critical patent/JPH03102814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a large attraction force at a low voltage by arranging a pair of electrodes to be applied by a positive voltage and a negative voltage, respectively and insulated from each other on an electrode layer, and independently varying the absolute values of the voltages to be applied on the paired electrodes. CONSTITUTION:Pairs of electrodes 1-8 (1-2, 3-4, 5-6, 7-8) are sequentially arranged from one periphery to the other periphery on the surface of a board 9 to form an electrode layer 10. The layer 10 is coated with polyimide 11 from above to form a polyimide film 11 having 10mun thickness by spin coating, baking at a rotating speed of about 1000rpm, and the electrodes 1-8 on the side of the board 9 are also coated with the polyimide in a sufficient thickness. As a power source 20, +200V and as a power source 21 -200V are prepared, and voltages are applied to predetermined electrodes by switch groups 22, 23. The sequence of applications of the voltages is controlled by a control signal of a controller 24. Voltage is applied on all electrodes 1-8 thus attraction holding an article to be chucked such as a silicon wafer, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はウェハ等の被チャック物を静電的に吸着固定
する静電チャック装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrostatic chuck device that electrostatically attracts and fixes objects to be chucked, such as wafers.

〔従来の技術〕[Conventional technology]

従来の静電チャソク装置では、アルミナ等の剛性の大き
い材料を平面に仕上げた基板に単一の電極を作り、その
上に、薄く研摩したアルミナ等の強誘電体をガラス等で
融着した基板に高圧を印加し、被チャック物をアースす
る事によってチャンキングが行われていた. また、電極を2つに分けて、互に逆符号の電圧を印加し
、被チャソク物はアースを施さない静電チャック装置も
公知である。
In conventional electrostatic chasok devices, a single electrode is made on a flat substrate made of a highly rigid material such as alumina, and then a thinly polished ferroelectric material such as alumina is fused to the substrate using glass or the like. Chunking was performed by applying high voltage to the chuck and grounding the chucked object. Further, an electrostatic chuck device is also known in which the electrode is divided into two parts, voltages of opposite signs are applied to each other, and the object to be chucked is not grounded.

〔発明が解決しようとするLma) しかしながら、上記の如き従来の技術に於いては、基板
が6インチ、8インチと大きくなるに従って、強誘電体
の薄い板を作るのが困難となり、例えば6インチでは3
00−1.クロン厚以下にするには非常に高価となる。
[Lma to be solved by the invention] However, in the conventional technology as described above, as the size of the substrate increases to 6 inches or 8 inches, it becomes difficult to make a thin ferroelectric plate. So 3
00-1. It would be very expensive to make the thickness less than 100mm thick.

従ってチャッキングに要する電圧を400〜8 0 0
Voltと高くする必要があった。
Therefore, the voltage required for chucking should be 400 to 800
It was necessary to raise the Volt.

また強誘電体の特徴として、一度電圧を印加すると永久
分極が生じ、電圧を0にしただけでは被チャック物がチ
ャックを脱することができず、逆符号の電圧を特定の時
間間隔のみ印加してはじめて被チャック物を脱にするこ
とができ、その着脱に要する時間が長時間必要であると
いう問題点があった。
In addition, a characteristic of ferroelectric materials is that once a voltage is applied, permanent polarization occurs, and the object to be chucked cannot be released from the chuck simply by reducing the voltage to 0. There is a problem in that the object to be chucked can only be removed once the object has been chucked, and that it takes a long time to attach and detach the object.

また、シリコンウエーハ等の被チャック物をチャックし
た場合、チャック後の被チャック物の平面度が必ずしも
良くならないという問題点があった。
Furthermore, when chucking an object to be chucked such as a silicon wafer, there is a problem in that the flatness of the chucked object is not necessarily improved after being chucked.

さらに、電極に正と負の電圧を印加した場合、被チャッ
ク物の電位が必ずしも0にならないという問題点があっ
た. そこで、本発明の第lの目的は低い電圧で大きな吸着力
を得ることのできる静電チャック装置の提供にあり、本
発明の第2の目的は被チャック物を平面度良く吸着でき
るチャック装置の提供にあり、本発明の第3の目的は、
被チャック物の電位を0にすることのできるチャック装
置の提供にある。
Furthermore, there was a problem in that when positive and negative voltages were applied to the electrodes, the potential of the object to be chucked did not necessarily become zero. Therefore, the first object of the present invention is to provide an electrostatic chuck device that can obtain a large attraction force with a low voltage, and the second object of the present invention is to provide an electrostatic chuck device that can attract objects to be chucked with good flatness. A third object of the present invention is to provide:
An object of the present invention is to provide a chuck device capable of reducing the potential of an object to be chucked to zero.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明はまず、ボリミド等の
有機物絶縁材料をスピンコートして絶縁層を形威したこ
とを特徴とする静電チャック装置であり、また、複数の
互いに絶縁された電極を、基盤に配設して電極層を形威
し、一方の電極から他方の電極に向かって順次電圧を印
加せしめる電源装置を設けたことを特徴とする静電チャ
ック装置であり、さらに、基盤の上に電極層、絶縁層を
順次積層してなり、前記電8ilNに直流電圧を印加す
ることにより、絶縁層上に載置された被チャック物を吸
着固定する静電チャック装置において、前記電極層には
、正電圧の印加される電極と負電圧の印加される電極と
で対をなす互いに絶縁された電極を配設し、前記対をな
す電極に印加する電圧の絶対値を独立して変化させるこ
とのできる電源装置を設けたことを特徴とする静電チャ
ック装置である。
In order to solve the above problems, the present invention first provides an electrostatic chuck device characterized in that an insulating layer is formed by spin-coating an organic insulating material such as borimide, and also includes a plurality of mutually insulated electrodes. is disposed on a base to form an electrode layer, and is further provided with a power supply device that sequentially applies voltage from one electrode to the other electrode, and further includes: In an electrostatic chuck device, in which an electrode layer and an insulating layer are successively laminated on top of the electrode, and an object to be chucked placed on the insulating layer is attracted and fixed by applying a DC voltage to the electrode. The layer is provided with a pair of insulated electrodes, an electrode to which a positive voltage is applied and an electrode to which a negative voltage is applied, and the absolute value of the voltage applied to the pair of electrodes is independently determined. This is an electrostatic chuck device characterized by being provided with a power supply device that can be changed.

〔作 用〕[For production]

静電チャック装置におけるチャック力(F)は次式で与
えられる。
The chuck force (F) in an electrostatic chuck device is given by the following equation.

2d” ただし、ε0・・・真空での誘電率、ε0・・・絶縁物
の比誘電率、S・・・電極の表面積、■・・・電極への
印加電圧、d・・・絶縁物の厚さ、である。
2d" However, ε0... Dielectric constant in vacuum, ε0... Relative permittivity of the insulator, S... Surface area of the electrode, ■... Voltage applied to the electrode, d... Insulator Thickness.

上述の式から、ε。、Sを一定とすれば、である。From the above formula, ε. , S is constant.

そこで、従来の絶縁物材料としてアルミナを考え、本発
明の有機物絶縁材料としてボリミドを考えると、アルミ
ナにおいてd=300μm、ボリくドにおいてd=10
μmとすれば、ボリミドの比誘電率はアルミナのそれに
比し1/3であるから、同しチャックカを得るための電
「は、アルミナを用いた場合に対しボリミドを用いた場
合は1/10になる. すなわち、本発明によれば、小さな電圧で大きなチャッ
ク力を得ることができる。
Therefore, considering alumina as a conventional insulating material and borimide as an organic insulating material of the present invention, d = 300 μm for alumina and d = 10 μm for boric material.
μm, the dielectric constant of borimide is 1/3 that of alumina, so the electric current required to obtain the same chuck force is 1/10 when using borimide as compared to when using alumina. That is, according to the present invention, a large chucking force can be obtained with a small voltage.

また、有機物絶縁材料は電圧をOにすれば分極も0にな
り、永久分極や残留分極を生しない。
Furthermore, when the voltage is set to O, the polarization of the organic insulating material becomes 0, and no permanent polarization or residual polarization occurs.

従って、電圧を与えるとただちにチャック(吸着固定)
が完了し、電圧を0にするとただちにチャソクが解除さ
れ、着脱が短時間で行なえる。
Therefore, as soon as voltage is applied, it is chucked (adsorbed and fixed).
Once the voltage is set to 0, the lock is immediately released, allowing for quick attachment and detachment.

また、被チャック物に働く静電力を一方から他方へ時間
をずらせて徐々に印加していき、最終的に全面に働くよ
うにしているので、平面性良く被チャック物を吸着させ
ることができる。
In addition, since the electrostatic force acting on the object to be chucked is gradually applied from one side to the other with a time lag, and is finally applied to the entire surface, the object to be chucked can be attracted with good flatness.

さらに、各電極に印加される電圧の絶対値を調節できる
ことにより、被チャック物の電位を0にすることができ
る。
Furthermore, by being able to adjust the absolute value of the voltage applied to each electrode, the potential of the object to be chucked can be set to zero.

〔実施例〕 第1図は本発明の静電チャック装置の実施例である。ア
ル旦ナ磁器の基盤9の上面を研摩し、その上面及び一方
の側面に電極1〜8をニッケルの無電界メッキで形威し
た。第2図に示したように電極1〜8のパターンは4対
の互いに絶縁された電極1〜8の対(1−2、3−4、
5−6、78)を基盤9の表面の一方の周辺から他方の
周辺に向かって順次配設して、電極[0を構成するよう
になっている。各電極1〜8の基盤9の側面の部分には
リード線をハンダ付けした.その後、電極層10の上か
らボリミド11を塗布し、約100Orpmの回転速度
でスピンコート、ベーキング処理を行うことによって厚
さ10μmの丈夫なポリミド膜11を形成した.また、
基盤9の側面の部分の電極1〜8上にもポリミドを十分
厚く塗布した. このようにして形成した静電チャック装置は対をなす電
極に±50voltを印加させて動作させるが、信頼性
を十分なものにするため±2 0 0voltを印加し
た。すなわち、第1図において、電i1I20とし7+
200V,電源21として−200Vの電圧を出力する
ものを用意し、スイ・ンチ群22、23によって、所定
の電極に電圧を印加する。電圧印加のシーケンスは制御
装置24の制御信号による。一例としての電圧印加のシ
ーケンスは、まず、電極1、2に最初+200V,−2
00Vを印加し、次にさらに電極3と4、次にさらに電
極5と6、そして最後に電極7と8に+200■、−2
00Vを印加した。それによって全電極1〜8は電圧を
印加され、シリコンウェハ等の被チャック物が吸着保持
される。この場合、被チャック物が反っていても、すみ
やかに周辺部から吸着されるので被チャック物はすみや
かに吸着されることになる。被チャック物の吸着を解除
する場合は、電圧を全電極同時にoffにするのみで良
いが、より短時間に脱にするため、逆符号の電圧を短時
間印加してもよい。その場合には、電rX20、21に
それぞれ±200Vの電圧を用意し、制御装置24の制
御信号により切換えるようにすればよい. 入力装置25は、制御装置24に電圧印加のどのような
制御を行なうのかを指令し、またチャック装置のオン、
オフの作動指令を行なう。
[Embodiment] FIG. 1 shows an embodiment of the electrostatic chuck device of the present invention. The upper surface of the substrate 9 made of Altanna porcelain was polished, and electrodes 1 to 8 were formed on the upper surface and one side surface by electroless plating of nickel. As shown in FIG. 2, the pattern of electrodes 1 to 8 consists of four pairs of mutually insulated electrodes 1 to 8 (1-2, 3-4,
5-6, 78) are sequentially arranged from one periphery of the surface of the substrate 9 toward the other periphery to constitute the electrode [0. Lead wires were soldered to the sides of the base plate 9 of each electrode 1-8. Thereafter, borimide 11 was applied onto the electrode layer 10, and spin coating and baking were performed at a rotation speed of about 100 rpm to form a durable polyimide film 11 with a thickness of 10 μm. Also,
Polymide was also coated sufficiently thickly on the electrodes 1 to 8 on the sides of the substrate 9. The electrostatic chuck device thus formed was operated by applying ±50 volts to the pair of electrodes, and ±200 volts were applied to ensure sufficient reliability. That is, in Fig. 1, if electric i1I20 is 7+
A power source 21 that outputs a voltage of -200V is prepared, and the switch groups 22 and 23 apply the voltage to predetermined electrodes. The sequence of voltage application is based on a control signal from the control device 24. As an example, the voltage application sequence is as follows: first, +200V, -2V, and -2V to electrodes 1 and 2.
Apply 00V, then apply +200V to electrodes 3 and 4, then electrodes 5 and 6, and finally +200V to electrodes 7 and 8.
00V was applied. As a result, a voltage is applied to all the electrodes 1 to 8, and an object to be chucked, such as a silicon wafer, is attracted and held. In this case, even if the object to be chucked is warped, it is quickly attracted from the periphery, so the object to be chucked is quickly attracted. To release the chucked object, it is sufficient to simply turn off the voltage to all electrodes at the same time, but in order to remove the chucked object in a shorter time, a voltage of the opposite sign may be applied for a short time. In that case, voltages of ±200V may be prepared for the electric currents 20 and 21, respectively, and the voltages may be switched by a control signal from the control device 24. The input device 25 instructs the control device 24 how to control voltage application, and also controls whether the chuck device is turned on or off.
Issue an off operation command.

すなわち、例えば人力装置25に電極1〜8に順次電圧
を印加するようなシーケンスを指令し、かつチャック装
置のオンを指示するとすれば、制御装置24は電源20
に+200■をセ・ノトし、電a21に−200■をセ
ットし、スイッチ群22、23に制御信号を人力して、
まず、電rJ20をスイッチ1に接続すると同時に電源
21を電極2に接続する。ついで、電源20を電極1に
接続したままで、電源20を電極3にも接続すると同時
に、電源21を電極2に接続したままで、電源21を電
極4に接続する。同様にして、電源20、21を順次そ
れぞれ電極5、7電極6、8に接続する。
That is, for example, if the human power device 25 is instructed to apply a voltage sequentially to the electrodes 1 to 8 and to turn on the chuck device, the control device 24 controls the power supply 20
Set +200■ to , set -200■ to electric a21, manually input control signals to switch groups 22 and 23,
First, the power supply 21 is connected to the electrode 2 at the same time as the electric current rJ20 is connected to the switch 1. Next, the power source 20 is connected to the electrode 3 while the power source 20 remains connected to the electrode 1, and at the same time, the power source 21 is connected to the electrode 4 while the power source 21 remains connected to the electrode 2. Similarly, power supplies 20 and 21 are connected to electrodes 5 and 7 and electrodes 6 and 8 in sequence, respectively.

また、電極20、21を、制御装置24からの制御信号
により、出力電圧を各出力端子毎に可変できる電源とし
て構成し、入力装置25に各電極1〜8に印加する電圧
を指令することにより、各電極1〜8に入力装置25に
指令した電圧を印加するように、電源20、2lの出力
する電圧を制御することができる。このように、各電極
l〜8に印加する電圧を制御することにより、被チャッ
ク物の表面観察を電子顕微鏡で行うような場合に、被チ
ャック物の電位が変化することにより被チャック物から
の信号が変化し、観察像が乱れてしまうことを無くすこ
とができる。
Furthermore, by configuring the electrodes 20 and 21 as a power source whose output voltage can be varied for each output terminal by a control signal from the control device 24, and instructing the input device 25 to apply a voltage to each electrode 1 to 8, , the voltage output from the power sources 20 and 2l can be controlled so that the voltage commanded by the input device 25 is applied to each electrode 1 to 8. In this way, by controlling the voltages applied to each of the electrodes 1 to 8, when observing the surface of an object to be chucked using an electron microscope, the voltage from the object to be chucked can be changed by changing the potential of the object to be chucked. It is possible to eliminate disturbances in the observed image due to signal changes.

すなわち、被チャック物の表面電位が変化しないように
各1t極1〜8に印加する電圧を制御すればよい. 以上述べたように本発明の実施例によれば、ポリミド膜
の膜厚を10μmと薄くすることによって、チャック電
圧の必要最小限値を1/10にすることができる。この
必要最小値の4倍程度の電圧で使うことにより、信頼性
が増した。
That is, the voltage applied to each of the 1t poles 1 to 8 may be controlled so that the surface potential of the object to be chucked does not change. As described above, according to the embodiment of the present invention, by reducing the thickness of the polyimide film to 10 μm, the required minimum value of the chuck voltage can be reduced to 1/10. Reliability was increased by using a voltage about four times the required minimum value.

また、アルミナの絶縁耐力は15.7kv/n+mなの
に対して、ポリミドは3 1 1kv/一で20倍以上
あるので、厚みを1/30にしても絶縁耐力は2/3程
度でほとんど悪くならない。
Furthermore, the dielectric strength of alumina is 15.7 kv/n+m, whereas that of polymide is 311 kv/n+m, which is more than 20 times that. Therefore, even if the thickness is reduced to 1/30, the dielectric strength is only about 2/3, which hardly deteriorates.

さらに、アルミナを300μm程度に薄く研摩して、基
板に熔着する工程が単にスピンコートするのみなので非
常に安価になった。特に8インチ基板等大型化が進むと
特に著しい。
Furthermore, the process of polishing the alumina to a thickness of about 300 μm and welding it to the substrate is simply spin coating, making it very inexpensive. This is particularly noticeable as the size of 8-inch substrates progresses.

さらに、各電極対に電圧を印加し始める時刻をずらし、
一方の周辺から他方の周辺まで順次印加を始めるように
することで、一つの狭い領域からチャックが始まり、全
体に広がるようにすることができ、被チャック物を局部
的にのみ吸着するのでなく、全面を吸着させ、平坦度を
良くできる。
Furthermore, by shifting the time at which voltage is started to be applied to each electrode pair,
By starting the application sequentially from one periphery to the other, the chucking starts from one narrow area and spreads over the entire area, instead of only picking up the chucked object locally. The entire surface can be adsorbed and the flatness can be improved.

さらにまた、被チャック物の電位を常にOあるいは制御
された値に保つことができるので、ESEM (Env
ironII+ental Scanning Ele
ctron microscopy・・・電子顕微鏡の
一種)での正確な観察が可能。
Furthermore, since the potential of the object to be chucked can always be maintained at O or a controlled value, ESEM (Env
ironII+mental Scanning Ele
Accurate observation using ctron microscopy (a type of electron microscope) is possible.

そして、チャックの着脱に必要な時間を大幅に小さくで
きる, (発明の効果) 以上述べたように本発明によれば、小さな電圧で大きな
チャック力(吸着力)を得ることができるばかりでなく
、着脱が短時間で行なえる.また、被チャック物を平面
性良く吸着できる。
The time required for attaching and detaching the chuck can be significantly reduced. (Effects of the Invention) As described above, according to the present invention, not only can a large chucking force (adsorption force) be obtained with a small voltage, but also Can be attached and detached in a short time. Further, the object to be chucked can be attracted with good flatness.

さらに、被チャック物の電位を0にすることができる。Furthermore, the potential of the object to be chucked can be set to zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の静電チャック装置本体の側
面図及び電気系のブロック図、第2図は第1図における
電極の平面パターンを示す図、である。 〔主要部分の符号の説明〕 l〜8・・・電極、9・・・基盤、10・・・電極層、
l1・・・ボリミドの絶縁層、2o、2l・・・電源、
22、23・・・スイッチ群。
FIG. 1 is a side view and a block diagram of an electrical system of an electrostatic chuck device main body according to an embodiment of the present invention, and FIG. 2 is a diagram showing a planar pattern of the electrodes in FIG. 1. [Explanation of symbols of main parts] 1 to 8... Electrode, 9... Base, 10... Electrode layer,
l1... Borimide insulating layer, 2o, 2l... Power supply,
22, 23...Switch group.

Claims (3)

【特許請求の範囲】[Claims] (1)有機物絶縁材料をスピンコートして絶縁層を形成
したことを特徴とする静電チャック装置。
(1) An electrostatic chuck device characterized in that an insulating layer is formed by spin coating an organic insulating material.
(2)複数の互いに絶縁された電極を、基盤に配設して
電極層を形成し、一方の電極から他方の電極に向かって
順次電圧を印加せしめる電源装置を設けたことを特徴と
する静電チャック装置。
(2) A static electricity supply device characterized in that a plurality of mutually insulated electrodes are arranged on a substrate to form an electrode layer, and a power supply device is provided that sequentially applies a voltage from one electrode to the other electrode. Electric chuck device.
(3)基盤の上に電極層、絶縁層を順次積層してなり、
前記電極層に直流電圧を印加することにより、絶縁層上
に載置された被チャック物を吸着固定する静電チャック
装置において、 前記電極層には、正電圧の印加される電極と負電圧の印
加される電極とで対をなす互いに絶縁された電極を配設
し、前記対をなす電極に印加する電圧の絶対値を独立し
て変化させることのできる電源装置を設けたことを特徴
とする静電チャック装置。
(3) An electrode layer and an insulating layer are sequentially laminated on a substrate,
In an electrostatic chuck device that attracts and fixes an object placed on an insulating layer by applying a DC voltage to the electrode layer, the electrode layer includes an electrode to which a positive voltage is applied and an electrode to which a negative voltage is applied. A power supply device is provided, in which mutually insulated electrodes are arranged to form a pair with the electrode to be applied, and the absolute value of the voltage applied to the paired electrode can be independently changed. Electrostatic chuck device.
JP1240340A 1989-09-16 1989-09-16 Electrostatic chucking device Pending JPH03102814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240340A JPH03102814A (en) 1989-09-16 1989-09-16 Electrostatic chucking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240340A JPH03102814A (en) 1989-09-16 1989-09-16 Electrostatic chucking device

Publications (1)

Publication Number Publication Date
JPH03102814A true JPH03102814A (en) 1991-04-30

Family

ID=17058030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240340A Pending JPH03102814A (en) 1989-09-16 1989-09-16 Electrostatic chucking device

Country Status (1)

Country Link
JP (1) JPH03102814A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560780A (en) * 1993-04-22 1996-10-01 Applied Materials, Inc. Protective coating for dielectric material on wafer support used in integrated circuit processing apparatus and method of forming same
EP0749188A2 (en) * 1995-06-13 1996-12-18 Nissin Electric Company, Limited Rotary section current transmitting mechanism
US5751538A (en) * 1996-09-26 1998-05-12 Nikon Corporation Mask holding device and method for holding mask
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560780A (en) * 1993-04-22 1996-10-01 Applied Materials, Inc. Protective coating for dielectric material on wafer support used in integrated circuit processing apparatus and method of forming same
EP0749188A2 (en) * 1995-06-13 1996-12-18 Nissin Electric Company, Limited Rotary section current transmitting mechanism
EP0749188A3 (en) * 1995-06-13 1997-03-05 Nissin Electric Co Ltd Rotary section current transmitting mechanism
US5827080A (en) * 1995-06-13 1998-10-27 Nissin Electric Co., Ltd. Rotary section current transmitting mechanism
US5751538A (en) * 1996-09-26 1998-05-12 Nikon Corporation Mask holding device and method for holding mask
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7297949B2 (en) 2000-06-27 2007-11-20 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7411191B2 (en) 2000-06-27 2008-08-12 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7601972B2 (en) 2000-06-27 2009-10-13 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US8053726B2 (en) 2000-06-27 2011-11-08 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7417236B2 (en) 2000-07-27 2008-08-26 Ebara Corporation Sheet beam-type testing apparatus
US7829871B2 (en) 2000-07-27 2010-11-09 Ebara Corporation Sheet beam-type testing apparatus

Similar Documents

Publication Publication Date Title
JP2665242B2 (en) Electrostatic chuck
JP2001298072A (en) Electrostatic chucking device and vacuum processing device using the same
WO2006049085A1 (en) Electrostatic chuck apparatus
KR102185026B1 (en) Substrate processing method and substrate processing apparatus
JPS63194345A (en) Electrostatic chuck
WO2021111732A1 (en) Attracting-and-holding device and object surface machining method
JP2003037159A (en) Electrostatic chuck unit
JPH03102814A (en) Electrostatic chucking device
JP2976861B2 (en) Electrostatic chuck and method of manufacturing the same
TW201834132A (en) Electrostatic chuck device and electrostatic adsorption method which can electrostatically adsorb an object to be held under an atmospheric pressure environment
JP2978470B2 (en) Electrostatic suction device and method of detaching object
JP2004047979A (en) Electrostatic gripping device and its manufacturing method
JPH0855900A (en) Electrostatic attraction method and its device and manufacture of semiconductor device
JPH04132239A (en) Wafer chuck
JPH07130826A (en) Electrostatic chuck
GB2293689A (en) Electrostatic chuck
JPH09260472A (en) Electrostatic chuck
JP2503364B2 (en) Wafer electrostatic chucking device, wafer electrostatic chucking method, wafer separating method, and dry etching method
JP2010177686A (en) Wafer chucking apparatus and chucking method
TW201637742A (en) Self-cleaning substrate contact surfaces
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JPH0216749A (en) Wafer holder for electron beam exposure device
JPS63299137A (en) Sample holding device
JPH0563063A (en) Electrostatic chuck device
JPH04246843A (en) Controlling device for electrostatic chuck