JPH03101834A - Adsorbent and water treatments using it adsorbent - Google Patents

Adsorbent and water treatments using it adsorbent

Info

Publication number
JPH03101834A
JPH03101834A JP23694389A JP23694389A JPH03101834A JP H03101834 A JPH03101834 A JP H03101834A JP 23694389 A JP23694389 A JP 23694389A JP 23694389 A JP23694389 A JP 23694389A JP H03101834 A JPH03101834 A JP H03101834A
Authority
JP
Japan
Prior art keywords
adsorbent
water
porous sintered
incineration ash
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23694389A
Other languages
Japanese (ja)
Inventor
Noriaki Sasaki
佐々木 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki Poly Tech Inc
Original Assignee
Iseki Poly Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki Poly Tech Inc filed Critical Iseki Poly Tech Inc
Priority to JP23694389A priority Critical patent/JPH03101834A/en
Publication of JPH03101834A publication Critical patent/JPH03101834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently adsorb and treat the soluble components such as humus in water at extremely low cost at large amounts by mixing organic substance with incineration ash of sludge and granulating this mixture and thereafter sintering the granulated bodies and bringing waste water or potable water into contact with the porous sintered adsorbent. CONSTITUTION:Organic substance (e.g. polyacrylic acid and PVA, etc.), having thickening effect is sufficiently mixed with incineration ash of sludge. This mixture is granulated at about 0.5-10mm diameter by the binder effect of the organic substance. These granulated bodies are sintered at about 800-1000 deg.C to make organic substance into ashes. Then a porous sintered adsorbent having many holes in the inside is obtained. Thereby both the area in which the adsorbent is brought into contact with waste water and potable water and the area for adsorbing the soluble components are increased and also adsorbing performance can be remarkably improved. The soluble components such as humus in water are adsorbed to this porous sintered adsorbent and efficiently removed from waste water or potable water at extremely low cost at large amounts.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は水処理に使用される吸着剤と、及びこの吸着剤
を用いた廃水或いは上水の処理方法に係り、特に水中に
含まれるフミン質等の溶解性戒分を吸着することが出来
る吸着剤,及びこの吸着剤を使用して廃水或いは上水の
処理を実施する水処理方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an adsorbent used in water treatment and a method for treating wastewater or clean water using this adsorbent, and in particular to a method for treating wastewater or clean water using the adsorbent. The present invention relates to an adsorbent capable of adsorbing soluble substances such as water and water, and a water treatment method using this adsorbent to treat wastewater or clean water.

く従来の技{ネi〉 従来も、廃水或いは上水の中に含有される種々の溶解性
物質を除去する為の吸着剤或いはこの吸着剤を使用した
水処理方法が開発されている.従来のこの種の吸着剤或
いはこれ等の吸着剤を使用した水処理方法に関する文献
としては、水道協会941誌第51巻第6号(第573
号)第37真乃至第47頁「粒状活性炭のフミン酸吸着
性能」、下水道協会誌14. No.16L 60 (
1977)  r水処理用粒状活性炭の基礎物性」、水
処理技術VOI.6 NQII, 1965「粘土鉱物
とフ逅ン酸についての基礎的概念j等が存在する. これ等の文献によっても明らかな如く、従来の水処理方
法は砂や活性炭を積層することによって横威した濾過層
に廃水或いは上水を通過接触させて処理するのが一般で
あった. く発明が解決しようとする課題〉 然るに、これ等の濾過層では濾過層の濾材表面に生物膜
が発生し、NH*−N. BODFIi.分の生物分解
可能な物質は除去が容易であるが、フミン質.リグニン
賞等の物質は生物処理によっても分解が困難であるとさ
れている. 特に上述のフミン質は塩素処理によって生威される発ガ
ン性物質の一種であるトリハロメタンの前駆物質である
と見做されており、廃水又は上水に含まれるフミン質は
出来るだけ除去することが強く要望されている。
Conventional Techniques Conventionally, adsorbents and water treatment methods using these adsorbents have been developed to remove various soluble substances contained in wastewater or tap water. Literature regarding conventional adsorbents of this kind or water treatment methods using these adsorbents includes Water Works Association 941, Vol. 51, No. 6 (No. 573).
Issue), pp. 37 to 47, “Humic acid adsorption performance of granular activated carbon”, Journal of Japan Sewage Works Association, 14. No. 16L 60 (
1977) “Basic physical properties of granular activated carbon for water treatment”, Water Treatment Technology VOI. 6 NQII, 1965 "Basic concepts regarding clay minerals and fluoric acids exist. As is clear from these documents, conventional water treatment methods have been overpowered by layering sand and activated carbon. It has been common practice to treat wastewater or tap water by passing it through the filtration layer. Problems to be Solved by the Invention However, in these filtration layers, biofilms are generated on the surface of the filter medium of the filtration layer. Biodegradable substances of NH*-N. BODFIi. are easy to remove, but substances such as humic substances and lignin substances are said to be difficult to decompose even by biological treatment. In particular, the above-mentioned humic substances is considered to be a precursor of trihalomethane, a carcinogenic substance that is produced by chlorine treatment, and there is a strong desire to remove as much humic substances as possible from wastewater or tap water. .

従って、従来もこのフミン質を水から吸着除去する為に
@着剤として活性炭が一般的に用いられていたが、この
活性炭は比較的コストが高く大量に使用することが困難
であった。
Therefore, activated carbon has conventionally been generally used as an adhesive to adsorb and remove humic substances from water, but this activated carbon is relatively expensive and difficult to use in large quantities.

本発明は従来のこれ等の問題に鑑み開発された全く新規
な技術であって、極めて安価で大量に使用することが可
能な吸着剤を提供すると共に、この吸着剤を用いた水処
理方法を提供しようとするものである. く課題を解決するための手段〉 本発明は前述の従来の問題点を解決するものであり、そ
の吸着剤の要旨は汚泥焼却灰と有機物とを混合して造粒
した後で、造粒物−t−焼結して多孔性焼結物を構或し
たものである。
The present invention is a completely new technology developed in view of these conventional problems, and provides an adsorbent that is extremely inexpensive and can be used in large quantities, as well as a water treatment method using this adsorbent. This is what we are trying to provide. Means for Solving the Problems> The present invention solves the above-mentioned conventional problems, and the gist of the adsorbent is that after sludge incineration ash and organic matter are mixed and granulated, the granulated material is -t-sintered to form a porous sintered product.

【た上記吸着剤を用いた水処理方法の要旨は、汚泥焼却
灰と有機物とを混合造粒した後で焼結した多孔性焼結吸
着剤に、廃水或いは上水を接触させることによって、水
中のフミン質等の溶解性成分を吸着処理するものである
[The gist of the water treatment method using the above adsorbent is that by bringing wastewater or tap water into contact with a porous sintered adsorbent that is sintered after mixing and granulating sludge incineration ash and organic matter, This process adsorbs soluble components such as humic substances.

く作用〉 本発明に係る吸着剤は前述の如く、汚泥焼却灰と有機物
とを混合して造粒した後で焼結して吸着剤を構戒するの
で、粒状物の中の有4R物を燃焼炭化させながら内部に
多数の孔を有する多孔性焼結吸着剤を得ることが出来、
これによって吸着剤が廃水或いは上水に接触する面積と
及び溶解性成分を吸着する面積を増大せしめると共に、
吸着性能を著しく高めることが出来る。
As mentioned above, the adsorbent according to the present invention mixes sludge incineration ash and organic matter, granulates it, and then sinters it to form the adsorbent, so that the 4R substances in the granules are removed. A porous sintered adsorbent with many internal pores can be obtained through combustion and carbonization.
This increases the area where the adsorbent contacts wastewater or tap water and the area where it adsorbs soluble components, and
Adsorption performance can be significantly improved.

本発明に係る水処理方法は、上述の如く、汚泥焼却灰と
有機物とを混合造粒した後で焼結した多孔性焼結吸着剤
に廃水或いは上水を接触させるので、水中のフミン質等
の熔解性成分をこの多JL性焼結吸着剤に吸着させ、こ
の溶解性成分を廃水或いは上水より効率良く除去せしめ
ることが出来る。
As described above, in the water treatment method of the present invention, wastewater or tap water is brought into contact with the porous sintered adsorbent that is sintered after mixing and granulating sludge incineration ash and organic matter, so that humic substances etc. in the water are removed. The soluble components can be adsorbed onto this multi-JL sintered adsorbent, and these soluble components can be removed more efficiently than wastewater or tap water.

〈実施例〉 従来から下水処理場等で発生する余剰汚泥の処理とその
処分が緊急課題となっているが、本発明者はこの下水処
理汚泥の有効利用を図る目的で、下水汚泥焼却灰が廃水
の中のフミン質等の溶解性或分を有効に吸着処理するこ
とに利用出来るか否かについて、長年に亘って種々の実
験を試みた。
<Example> The treatment and disposal of surplus sludge generated in sewage treatment plants, etc. has been an urgent issue for some time now, and the present inventor has developed a system in which sewage sludge incineration ash is used to effectively utilize this sewage treatment sludge. Over the years, various experiments have been conducted to determine whether a certain amount of solubility in wastewater, such as humic substances, can be effectively used for adsorption treatment.

その実験の中で、下水汚泥焼却灰で多孔性焼結物を作り
、これに廃水を接触させた処、多孔性焼結物が天然着色
成分のフξン質を吸着除去する性質を有することを発明
した。
In the experiment, porous sintered material was made from sewage sludge incineration ash, and wastewater was brought into contact with it, and it was found that the porous sintered material had the property of adsorbing and removing fluorine, which is a natural coloring component. invented.

またこの多孔性焼結物(以下多孔性焼結吸着剤という)
は下水汚泥焼却灰と有機物とを所定の直径に混合造粒し
た後で、所定の温度で焼結することによって得られるこ
とも発明した。
In addition, this porous sintered material (hereinafter referred to as porous sintered adsorbent)
also invented that it can be obtained by mixing and granulating sewage sludge incineration ash and organic matter to a predetermined diameter and then sintering at a predetermined temperature.

更に上述の如く構成された多孔性焼結吸着剤は天然着色
成分のフミン質の吸着処理の他に、リグニンスルホン酸
.及び染色廃水の脱色等にも有効であることも発明した
Furthermore, the porous sintered adsorbent constructed as described above has adsorption treatment for humic substances, which are natural coloring components, as well as lignin sulfonic acid. They also invented that it is effective for decolorizing dyeing wastewater.

先ず本発明者は、廃水の中に混入されたフミン質を効率
良く吸着処理することが出来る下水汚泥の多孔性焼結吸
着剤の製造について種々検討した結果、多孔性焼結吸着
剤は下水汚泥を焼却して得られた下水汚泥焼却灰と増粘
効果を有する有機物とを良くγ昆合して、有機物のバイ
ンダー効果によって直径0.5〜10m程度に造粒して
、これ等を800〜1,000゜Cの温度で焼結するこ
とによって有機物を灰化させて製造することが出来るこ
とを発明した。
First, the present inventor conducted various studies on the production of a porous sintered adsorbent for sewage sludge that can efficiently adsorb and treat humic substances mixed in wastewater. Sewage sludge incineration ash obtained by incinerating sewage sludge and organic matter having a thickening effect are well γ-combined and granulated to a diameter of about 0.5 to 10 m by the binder effect of the organic matter. The inventor has invented that organic matter can be produced by ashing organic matter by sintering at a temperature of 1,000°C.

尚、増粘効果を示す有機物として、例えばポリアクリル
酸.ポリビニールアルコール等を使用しても同様の多孔
性焼結吸着剤を製造することが出来る。
In addition, examples of organic substances that exhibit a thickening effect include polyacrylic acid. A similar porous sintered adsorbent can be produced using polyvinyl alcohol or the like.

次にこの様にして製造した多孔性焼結吸着剤がフミン質
の吸着処理にどの程度有効であるかについて、次の実験
例に示す如く、−Cにフミン質の吸着剤として使用する
活性炭と比較した結果、実験例に示す様な結論に達した
. 実基朋 上述の如く、下水処理汚泥焼却灰と、有機物とを混合し
て造粒した後で焼結して製造した多孔性焼結吸着剤と、
活性炭とを夫々別々にlm目及び2聰目の篩いでふるい
、2圓目の篩いを通過し、lrm目の篩いに残留したも
のを夫々別々に実験装置の透明円筒に夫々が同容積にな
る迄充填し、24■/lに調整したフミン酸溶液を定量
ポンプを介して36−/分の水量で円筒と三角フラスコ
の間を循環させた。
Next, as to how effective the porous sintered adsorbent produced in this way is in the adsorption treatment of humic substances, as shown in the following experimental example, activated carbon used as an adsorbent for humic substances and -C As a result of the comparison, we reached the conclusion shown in the experimental example. As mentioned above, a porous sintered adsorbent produced by mixing sewage treatment sludge incineration ash and organic matter, granulating it, and then sintering it;
The activated carbon was separately sieved through the 1mth and 2nd round sieves, and the materials that passed through the 2nd round sieve and remained on the lrmth sieve were placed separately in transparent cylinders of the experimental apparatus, each having the same volume. A humic acid solution adjusted to 24 μ/l was circulated between the cylinder and the Erlenmeyer flask at a rate of 36 μ/min via a metering pump.

上述の如く透明円筒に充填された同一容積の多孔性焼結
吸着剤と活性炭との重量を測定した処、多孔性焼結吸着
剤は342gであるのに対し、活性炭は178gであり
、多孔性焼結吸着剤の方が活性炭より密度が大きいこと
が判明した。
As mentioned above, when we measured the weight of the same volume of porous sintered adsorbent and activated carbon filled in a transparent cylinder, the weight of the porous sintered adsorbent was 342g, while the weight of activated carbon was 178g. It was found that the sintered adsorbent has a higher density than the activated carbon.

その後透明円筒上部の液浅口から流出する液2dを採取
し、フミン酸濃度を測定した結果は第1図のグラフに示
すような効果が得られた。
Thereafter, the liquid 2d flowing out from the shallow liquid opening at the top of the transparent cylinder was collected, and the humic acid concentration was measured. As a result, the effect shown in the graph of FIG. 1 was obtained.

この第1図のグラフで明らかな如く、本発明による多孔
性焼結吸着剤を充填した場合のフミン酸吸着は活性炭に
比べて吸着速度は若干遅いものの、ほとんど活性炭と同
程度の吸着パターンを示していることが明らかである. 本発明者は上述の下水処理汚泥焼却灰を多数の孔を持っ
た粒状の多孔性焼結吸着剤として使用した場合と、この
樟な粒状の多孔性焼結吸着剤とせずに単に下水処理汚泥
焼却灰を1 , 000〜1 , 300゜Cに溶融し
て製造した溶融スラグを使用した場合とについて比較し
た処、熔融スラグもフミン質の吸着処理に効果があるが
、本発明の多孔性焼結吸着剤とは比較にならない程効果
が小さいことが明らかとなった. この理由は本発明に使用されている多孔性焼結吸着剤は
内部が多数の孔によってポーラス状になっているので、
吸着剤が廃水等に接触する面積及びフミン質等の溶解性
成分を吸着する面積を増大せしめることにあるものと判
断されている。
As is clear from the graph in Figure 1, the adsorption rate of humic acid when filled with the porous sintered adsorbent of the present invention is slightly slower than that of activated carbon, but the adsorption pattern is almost the same as that of activated carbon. It is clear that The present inventor has discovered two cases in which the above-mentioned sewage treatment sludge incineration ash is used as a granular porous sintered adsorbent with many pores, and a case where the sewage treatment sludge incineration ash is simply used without using this granular porous sintered adsorbent. A comparison was made between the use of molten slag produced by melting incinerated ash at 1,000 to 1,300°C, and it was found that molten slag is also effective in adsorbing humic substances, but the porous incineration of the present invention It became clear that the effect was incomparably smaller than that of condensed adsorbents. The reason for this is that the porous sintered adsorbent used in the present invention has a porous interior with many pores.
It is considered that the purpose of this is to increase the area where the adsorbent contacts wastewater and the like and the area where it adsorbs soluble components such as humic substances.

本発明者は上記実験例に使用した実験装置を使用して、
フミン酸の代わりにリグニンスルホン酸リン等について
も本発明に係る多孔性焼結吸着剤と活性炭とについて実
験した処、上記実験例のフミン酸よりは効果はやや少な
いが、しかし相当の効果を発揮することが出来ることが
判明した6また同様に本発明に係る多孔性焼結吸着剤を
用いて染色工場から排出された染色廃水の脱色を試みた
処、活性炭を使用した場合に比較して約60%の脱色効
率が得られることが判明した.更に長期間の使用によっ
てフミン酸1 リグニンスルホン酸,染料等が飽和状態
になる迄吸着された本発明の多孔性焼結吸着剤は600
〜800゜Cで加熱処理することによって、繰り返しの
使用が可能であることも明らかとなった. 次に本発明者は従来一般に使用されている活性炭の製造
コストと本発明に係る上述の多孔性焼結吸着剤の製造コ
ストとを現時点で比較した処、活性炭の製造コストが約
950円であるのに対し、前記吸着剤は約40〜95円
であり、活性炭は吸着剤に対して10〜20分の1の製
造コストで製造することが出来ることが明らかとなった
. 上記実施例は廃水の処理について説明したが、上水の処
理も同様な方法で処理することによって極めて良好な効
果が得られた。
The present inventor used the experimental apparatus used in the above experimental example to
When experiments were conducted on the porous sintered adsorbent of the present invention and activated carbon using ligninsulfonate phosphorus instead of humic acid, the effect was slightly less than that of humic acid in the above experimental example, but it still showed a considerable effect. It was also found that decolorization of dyeing wastewater discharged from a dyeing factory using the porous sintered adsorbent according to the present invention was similarly attempted, and the results showed that the decolorization of dyeing wastewater discharged from a dyeing factory was approximately It was found that a decolorization efficiency of 60% could be obtained. The porous sintered adsorbent of the present invention, which has been adsorbed with humic acid 1, lignin sulfonic acid, dye, etc. until it becomes saturated after long-term use,
It has also become clear that repeated use is possible by heat treatment at ~800°C. Next, the present inventor compared the manufacturing cost of conventionally commonly used activated carbon with the manufacturing cost of the above-mentioned porous sintered adsorbent according to the present invention, and found that the manufacturing cost of activated carbon is approximately 950 yen. On the other hand, the cost of the adsorbent is about 40 to 95 yen, and it has become clear that activated carbon can be manufactured at a manufacturing cost that is 1/10 to 20 times lower than that of the adsorbent. Although the above embodiment describes the treatment of wastewater, very good effects were obtained by treating clean water in a similar manner.

〈発明の効果〉 本発明に係る吸着剤は上述の如き構造と作用とを有する
のでフミン酸等を有効に吸着処理し得る内部に多数の孔
を有し、これによって廃水或いは上水に接触する面積及
び熔解戒分を吸着する面積を増大せしめることが出来、
更に溶解性成分が飽和状態迄吸着された吸着剤に加熱処
理によって再生使用が可能であり、しかも廃棄処分に困
っていた下水処理場等で発生する余剰汚泥を加工するこ
とによって製造することが出来るので、極めて安価に大
量生産することが出来る。
<Effects of the Invention> Since the adsorbent according to the present invention has the structure and function as described above, it has a large number of pores inside which can effectively adsorb humic acid, etc., so that it can come into contact with wastewater or clean water. It is possible to increase the area and the area for adsorbing dissolved substances,
Furthermore, it is possible to reuse the adsorbent by heating the adsorbent, which has adsorbed soluble components to a saturated state, and it can also be manufactured by processing surplus sludge generated at sewage treatment plants, etc., where disposal is difficult. Therefore, it can be mass-produced at extremely low cost.

また、本発明に係る水処理方法は上述の如き構造を有す
る多孔性焼結吸着剤に廃水或いは上水を接触させるので
、水中に混入されたフミン質等の溶解性成分をこの多孔
性焼結吸着剤に効率良く吸着させ、この熔解性或分を廃
水或いは上水より除去せしめることが出来る特徴を有す
るものである.
Furthermore, since the water treatment method according to the present invention brings wastewater or tap water into contact with the porous sintered adsorbent having the above-described structure, the soluble components such as humic substances mixed in the water are removed by the porous sintered adsorbent. It has the characteristics of being able to be efficiently adsorbed onto an adsorbent and to remove this soluble portion from wastewater or tap water.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の実験例に於ける活性炭と吸着剤との効
果を比較した例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example in which the effects of activated carbon and adsorbent were compared in an experimental example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)下水処理等によって生ずる汚泥を焼却して製造し
た汚泥焼却灰と有機物とを混合して造粒した後で、造粒
物を焼結して多孔性焼結物を構成したことを特徴とした
吸着剤。
(1) A porous sintered product is formed by mixing sludge incineration ash produced by incinerating sludge generated from sewage treatment, etc. with organic matter, granulating it, and then sintering the granulated product. adsorbent.
(2)汚泥焼却灰と有機物とを混合造粒した後で焼結し
た多孔性焼結吸着剤に、廃水或いは上水を接触させるこ
とによって、水中のフミン質等の溶解性成分を吸着処理
することを特徴とした水処理方法。
(2) By bringing wastewater or tap water into contact with a porous sintered adsorbent that is sintered after mixing and granulating sludge incineration ash and organic matter, soluble components such as humic substances in water are adsorbed. A water treatment method characterized by:
JP23694389A 1989-09-14 1989-09-14 Adsorbent and water treatments using it adsorbent Pending JPH03101834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23694389A JPH03101834A (en) 1989-09-14 1989-09-14 Adsorbent and water treatments using it adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23694389A JPH03101834A (en) 1989-09-14 1989-09-14 Adsorbent and water treatments using it adsorbent

Publications (1)

Publication Number Publication Date
JPH03101834A true JPH03101834A (en) 1991-04-26

Family

ID=17008050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23694389A Pending JPH03101834A (en) 1989-09-14 1989-09-14 Adsorbent and water treatments using it adsorbent

Country Status (1)

Country Link
JP (1) JPH03101834A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612692A1 (en) * 1993-02-26 1994-08-31 Createrra Inc. Water purifying substances and method for production thereof
KR100343418B1 (en) * 2000-01-28 2002-07-11 임정규 Absorbent For Water Treatment Using Water Plant Sludges And Its Method Of Preparation
KR20050105682A (en) * 2004-05-03 2005-11-08 최완순 Manufacturing process of compounded adsorbent
KR100597662B1 (en) * 2004-05-24 2006-07-10 주식회사 청록이엔지 Manufacturing Method of Waster Compound Stony Pellet for removing nitrogen and phosphorus, Using of Wasted sludge
JP2009011883A (en) * 2007-06-29 2009-01-22 Toyo Univ Apparatus and method for natural penetration clarification of polluted water using sand recycled from incinerator fly ash
JPWO2021054116A1 (en) * 2019-09-19 2021-03-25

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612692A1 (en) * 1993-02-26 1994-08-31 Createrra Inc. Water purifying substances and method for production thereof
US5447653A (en) * 1993-02-26 1995-09-05 Createrra Inc. Method for the production of water purifying substances
KR100343418B1 (en) * 2000-01-28 2002-07-11 임정규 Absorbent For Water Treatment Using Water Plant Sludges And Its Method Of Preparation
KR20050105682A (en) * 2004-05-03 2005-11-08 최완순 Manufacturing process of compounded adsorbent
KR100597662B1 (en) * 2004-05-24 2006-07-10 주식회사 청록이엔지 Manufacturing Method of Waster Compound Stony Pellet for removing nitrogen and phosphorus, Using of Wasted sludge
JP2009011883A (en) * 2007-06-29 2009-01-22 Toyo Univ Apparatus and method for natural penetration clarification of polluted water using sand recycled from incinerator fly ash
JPWO2021054116A1 (en) * 2019-09-19 2021-03-25
WO2021054116A1 (en) * 2019-09-19 2021-03-25 国立大学法人神戸大学 Phosphorus adsorbent

Similar Documents

Publication Publication Date Title
Kaur et al. Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents
Eren et al. Production of microporous Cu-doped BTC (Cu-BTC) metal-organic framework composite materials, superior adsorbents for the removal of methylene blue (Basic Blue 9)
Ali Water treatment by adsorption columns: evaluation at ground level
Ferrero Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust
Aydın Temel et al. Ammonium removal from landfill leachate using natural zeolite: kinetic, equilibrium, and thermodynamic studies
Jain et al. Removal of hazardous dye congored from waste material
Mustafa et al. Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment
Halim et al. Semi-aerobic landfill leachate treatment using carbon–minerals composite adsorbent
Zhang et al. Sorption characteristics and mechanisms of ammonium by coal by-products: slag, honeycomb-cinder and coal gangue
WO2005053846A1 (en) Anion-adsorbing carbon material, and method and apparatus for producing same
Babatunde et al. Constructed wetlands using aluminium-based drinking water treatment sludge as P-removing substrate: should aluminium release be a concern?
CN101721978A (en) Adsorbent for polyaromatic hydrocarbon pollutant, preparation method and application thereof
Amin et al. Batch and fixed-bed column studies for the biosorption of Cu (II) and Pb (II) by raw and treated date palm leaves and orange peel
Gupta et al. Adsorption of Cr (VI) by a low-cost adsorbent prepared from neem leaves
Fu et al. Efficient removal of nitrogen and phosphorus in aqueous solutions using modified water treatment residuals–sodium alginate beads
CN107417058B (en) A kind of river embankment bed mud is modified the method and its application of preparation ecology filler
KR101124431B1 (en) Surface-modifed active carbon and method for preparing the same
Sanghi et al. Adsorption-coagulation for the decolorisation of textile dye solutions
Hou et al. Characteristics and mechanisms of sulfamethoxazole adsorption onto modified biochars with hierarchical pore structures: Batch, predictions using artificial neural network and fixed bed column studies
Balji et al. Utilization of fly ash for the effective removal of hazardous dyes from textile effluent
JPH03101834A (en) Adsorbent and water treatments using it adsorbent
CN100431688C (en) Modified fly ash absorbent and method for processing nitrophenol polymerization inhibitor production waste water
Bhagyaraj et al. Modified os sepiae of Sepiella inermis as a low cost, sustainable, bio-based adsorbent for the effective remediation of boron from aqueous solution
JP2000218261A (en) Method for removing heavy metal
CN106621561A (en) Sewage filter screen for adsorbing nitrogen and phosphorus elements in sewage