JPH03101282A - Optical system member for laser light - Google Patents

Optical system member for laser light

Info

Publication number
JPH03101282A
JPH03101282A JP23298389A JP23298389A JPH03101282A JP H03101282 A JPH03101282 A JP H03101282A JP 23298389 A JP23298389 A JP 23298389A JP 23298389 A JP23298389 A JP 23298389A JP H03101282 A JPH03101282 A JP H03101282A
Authority
JP
Japan
Prior art keywords
optical system
system member
hydrogen
laser light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23298389A
Other languages
Japanese (ja)
Other versions
JPH0648734B2 (en
Inventor
Shigeru Yamagata
茂 山形
Kyoichi Inagi
恭一 稲木
Toshikatsu Matsutani
松谷 利勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to AT90110854T priority Critical patent/ATE116448T1/en
Priority to EP90110854A priority patent/EP0401845B2/en
Priority to DE69015453T priority patent/DE69015453T3/en
Priority to US07/535,205 priority patent/US5086352A/en
Publication of JPH03101282A publication Critical patent/JPH03101282A/en
Priority to US07/801,813 priority patent/US5325230A/en
Publication of JPH0648734B2 publication Critical patent/JPH0648734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent reduction in transmittance and fluctuation of distribution of refractive index even excimer laser light is applied for a long time by clearly specifying the range of hydrogen concentration when doping degassed hydrogen while heating and treating a synthesized quartz glass. CONSTITUTION:An optical system member for laser light is formed by a synthesized quartz glass, this member is cut or formed in a desired shape of approximately cylindrical shape, disc shape, or spherical shape, and then heating treatment is performed to eliminate the internal distortion etc. Hydrogen gas is set to at least 5X10<16> (molecules/cm<3>) or more by preventing degassing in a doping treatment to be performed after heating treatment or simultaneously with the heating treatment or enabling hydrogen to be absorbed into an optical system member which is degassed. Thus, it becomes possible to prevent deterioration of transmittance or fluctuation of distribution of refractive index and to improved laser resistance even if excimer laser light is applied over a long time.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はレンズ、窓部材、ミラー プリズム、フィルタ
、エタロン板、その他のレーザ光用光学系に係り、特に
250nm以下の特定波長域で使用されるレーザ光用光
学系部材に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to lenses, window members, mirrors, prisms, filters, etalon plates, and other optical systems for laser light, particularly those used in a specific wavelength range of 250 nm or less. The present invention relates to optical system members for laser light.

[従来の技術J ウェハ上に回路パターンを描画するりソグラフィ技術に
おいては従来より光リングラフィ技術が用いられている
が、光リングラフィの欠点として露光波長が大きいため
回折により解像力が制限されるという問題があり、その
解決策として光の短波長化が検討されている。
[Conventional technology J Photophosphorography technology has traditionally been used to draw circuit patterns on wafers and lithography technology, but the disadvantage of photophosphorography is that the exposure wavelength is large, so the resolution is limited by diffraction. There is a problem, and shortening the wavelength of light is being considered as a solution.

しかしながら、光の短波長化を図る為に400皿以下の
紫外線を用いた場合は、従来の光学ガラスを用いたレン
ズでは使用波長が365nm  (i線)付近より光透
過率が急激に低下して、言い換えれば光吸収による発熱
が生じ、該レンズの焦点位置やその他の特性を狂わせる
ことになる。
However, when using ultraviolet rays of 400 plates or less in order to shorten the wavelength of light, the light transmittance of lenses using conventional optical glass decreases rapidly when the wavelength used is around 365 nm (i-line). In other words, heat generation occurs due to light absorption, which disturbs the focal position and other characteristics of the lens.

この為、レンズ材料を従来の光学ガラスから石英ガラス
に代えるとともに、石英ガラスを用いた場合における色
収差の発生を防止する為にスペクトル巾の狭いレーザ光
を使うことが考えられ、特に該レーザの中で最も完成度
の高いものがエキシマレーザである。
For this reason, it is possible to change the lens material from conventional optical glass to quartz glass and to use a laser beam with a narrow spectral width in order to prevent the occurrence of chromatic aberration when using quartz glass. The most complete type of laser is the excimer laser.

エキシマレーザは主として紫外域で発振する高出力パル
スレーザであり、発振効率とガス寿命の点からXeF(
351,353nm) KrF(248nm)、XeC
1(308nm)。
An excimer laser is a high-power pulsed laser that oscillates mainly in the ultraviolet region.
351,353nm) KrF (248nm), XeC
1 (308 nm).

ArF (] 93nm)等が用いられているが、サブ
ミクロン単位のより鮮明画像を得るためには、より短波
長なKrF(24,8nm)、ArF(193nm)を
用いるのが好ましい。
Although ArF (] 93 nm) and the like are used, in order to obtain clearer images in submicron units, it is preferable to use KrF (24.8 nm) and ArF (193 nm), which have shorter wavelengths.

[発明が解決しようとする課題」 しかしながら前記エキシマレーザ光は従来のi線等に比
較して極めてパワーが大であり而も前記のように発振波
長の短波長化が進むにつれ、例え前記石英ガラスを用い
て前記レーザ光用光学系部材を製作したとしたとしても
該レーザ光が長時間照射されるとレンズ等の光学系部材
がダメージを受け、透過率の低下、絶対屈折率の上昇、
屈折率分布の変動や蛍光が発生し、場合によっては最終
的にクランクが発生するという問題が生じる。
[Problem to be Solved by the Invention] However, the excimer laser light has extremely high power compared to conventional i-line, etc., and as the oscillation wavelength becomes shorter as described above, even if the quartz glass Even if the optical system member for the laser beam is manufactured using the laser beam, if the laser beam is irradiated for a long time, the optical system member such as the lens will be damaged, resulting in a decrease in transmittance, an increase in the absolute refractive index,
This causes problems such as fluctuations in the refractive index distribution, fluorescence, and, in some cases, eventually the occurrence of cranks.

そして前記透過率等の低下の原因の一つは前記石英ガラ
ス中に存在する金属不純物に起因するとされ、この為前
記光学系部材に天然石英を出発母材とせずに、高純度化
された5zC14等の珪素化合物を用いて、金属元素の
混入を極力排除しながら高純度の合成石英ガラスを形成
し、該合成石英ガラスを母材としてレーザ光用のレンズ
等を製作して、前記欠点の解消を図ったが、尚、高出力
で且つ短波長レーザ光用光学系部材として満足する結果
が得られなかった。
One of the causes of the decrease in transmittance, etc. is said to be due to metal impurities present in the quartz glass, and for this reason, highly purified 5zC14 is used in the optical system components instead of using natural quartz as a starting material. Using silicon compounds such as, high purity synthetic quartz glass is formed while minimizing the contamination of metal elements, and lenses for laser beams, etc. are manufactured using the synthetic quartz glass as a base material to eliminate the above drawbacks. However, a satisfactory result could not be obtained as an optical system member for high output and short wavelength laser light.

本発明はかかる従来技術の欠点に鑑み、高出力で且つ短
波長のエキシマレーザ光を長時間に亙って照射した場合
においても透過率の低下や屈折率分布の変動が生じる事
なく耐レーザ性の向上を図ったレーザ光用光学系部材を
提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention provides laser resistance without reducing transmittance or changing refractive index distribution even when irradiated with high-output, short-wavelength excimer laser light for a long period of time. It is an object of the present invention to provide an optical system member for laser light with improved performance.

[課題を解決する為の手段」 本発明に至った過程を順を追って説明する。[Means to solve problems] The process leading to the present invention will be explained step by step.

本発明者はレーザ光用光学系部材を合成石英ガラスで形
成し且つ高純度化を図ったにも拘らず、何故耐レーザ性
が向上しないかについて検討するために、加熱処理前後
の石英ガラスの組成変化を調べてみたところ、次の様な
事が知見出来た。
In order to investigate why the laser resistance does not improve even though optical system members for laser light are made of synthetic quartz glass and high purity is attempted, the present inventors investigated the reasons why the laser resistance did not improve even though the optical system components for laser light were made of synthetic quartz glass. When we investigated the compositional changes, we found the following.

即ちレーザ光用光学系部材も、材料となるべきガラス材
を略円柱状、円板状、又は球状等の所望形状に切断若し
くは成型した後、その内部歪の除去等を図る為に加熱処
理を行う点については、般のレンズ部材と同様であるが
、合成石英ガラス材の場合は他の光学ガラスと異なり、
徐冷点に対応させて前記加熱処理温度を少なくとも11
00℃前後の高温に設定しなければならず、この為該加
熱処理中に問題が生じる事が予想される。
In other words, optical system members for laser beams are also made by cutting or molding a glass material into a desired shape, such as a substantially cylindrical, disc, or spherical shape, and then heat-treating it to remove internal distortion. The process is similar to that of general lens materials, but unlike other optical glasses, synthetic silica glass materials
The heat treatment temperature is set to at least 11% in accordance with the annealing point.
It is necessary to set the temperature to a high temperature of around 00°C, and therefore it is expected that problems will occur during the heat treatment.

そこで加熱処理前後の組成状態の変化について調べてみ
たところ、前記加熱処理後において石英ガラス組織中の
吸蔵水素が脱ガス化する為に該水素濃度の低下に起因し
て加熱処理前に所定レベル以上に維持していた耐レーザ
性能が低下してしまう事が確認された。
Therefore, we investigated the change in the composition state before and after heat treatment, and found that after the heat treatment, the occluded hydrogen in the quartz glass structure degassed, resulting in a decrease in hydrogen concentration that exceeded a predetermined level before heat treatment. It was confirmed that the laser resistance performance that had been maintained during the previous period deteriorated.

従ってかかる欠点を解消するには前記加熱処理中に脱ガ
ス化した水素をドーピングすればよい事が理解できるが
、本発明者は更に一歩進めて、耐レーザ性を保証し得る
水素ドーピング量、言い換えれば水素濃度範囲を明確化
した。
Therefore, it can be understood that in order to eliminate such drawbacks, it is sufficient to dope the hydrogen degassed during the heat treatment, but the present inventor went one step further and determined the amount of hydrogen doping that can guarantee laser resistance. The hydrogen concentration range has been clarified.

即ち本発明の第1の特徴とする所は、前記加熱処理後着
しくは加熱処理と同時に行うドーピング処理にて脱ガス
化を防止若しくは脱ガス化した光学系部材中に水素ガス
を吸蔵させ、該水素ガスを少なくとも 5 X 101
6(mole1016(/ am3)濃度以上、又Ar
Fのように少なくとも200nm以下に短波長化された
レーザ光においては、前記光学系部材中に含有させた水
素ガスを5×1O16乃至5X 1019(mole−
1019(/ cm3)の範囲に設定した事にある。 
尚前記水素濃度の測定は、Zhurnal Pr1kl
adnoi 5pek−troskopii、Vol、
46.No、6.PP、987−991.June、 
1987に記載されているように・[アルゴンレーザラ
マン散都側定器により、4135cm−’と800on
 ’の散乱強度■の比率を求め、下記式により、水素含
有濃度C(O2molecule/cm3glass)
として計算スルコトが出来る。
That is, the first feature of the present invention is to prevent degassing or occlude hydrogen gas in the degassed optical system member by doping treatment performed after the heat treatment or at the same time as the heat treatment, The hydrogen gas is at least 5 x 101
6 (mole1016(/am3) concentration or higher, or Ar
For laser light whose wavelength is shortened to at least 200 nm or less, such as F, the hydrogen gas contained in the optical system member is 5×1O16 to 5X1019 (mole-
This is because it is set to a range of 1019 (/cm3).
Note that the measurement of the hydrogen concentration is carried out using Zhurnal Pr1kl.
adnoi 5pek-troskopii, Vol.
46. No, 6. PP, 987-991. June,
As described in 1987, [4135 cm-' and 800 on by argon laser Raman scattering device.
The ratio of the scattering intensity ■ of ' is determined, and the hydrogen content concentration C (O2 molecule/cm3 glass) is
The calculation can be done as follows.

C=  [I (4135cm−’)]  / [I 
(800cm−1)]  X  kkは定数であり、k
 = 1.22X 102’である。
C= [I (4135cm-')] / [I
(800cm-1)] X kk is a constant, k
= 1.22X 102'.

元に戻り、前記水素ガスのドーピングは例えば光学系部
材の加熱処理時に水素ガス雰囲気にて熱処理を行う事に
より容易に達成されるが、しかしながらかかる雰囲気下
で且つ1000℃前後の高温で熱処理を行うと、炉材中
からの汚染が生じ、高純度化を維持できず、結果として
耐レーザ性が低下する。
Returning to the original, doping with hydrogen gas can be easily achieved by performing heat treatment in a hydrogen gas atmosphere during heat treatment of optical system members, however, heat treatment is performed in such an atmosphere and at a high temperature of around 1000°C. In this case, contamination occurs from within the furnace material, making it impossible to maintain high purity, resulting in a decrease in laser resistance.

そこで本発明の第2の特徴とする所は、前記光学系部材
中への不純物の拡散を阻止しつつ高純度を維持した点に
ある。
Therefore, the second feature of the present invention is that high purity is maintained while preventing the diffusion of impurities into the optical system member.

そしてかかる構成は前記加熱処理を例えば塩化水素を約
0.1〜10%程度加味した水素ガス雰囲気にて行う事
により容易に達成され、そして好ましくは加熱処理後の
光学系部材中に含まれる不純物濃度が各金属元素におい
て50ppb以下になるように不純物の侵入を阻止する
のがよい。
Such a structure can be easily achieved by performing the heat treatment in a hydrogen gas atmosphere containing about 0.1 to 10% of hydrogen chloride, and preferably eliminates impurities contained in the optical system member after the heat treatment. It is preferable to prevent impurities from entering so that the concentration of each metal element is 50 ppb or less.

さて本発明は基本的には上記2つの要件を満足する事に
より、初期の効果が達成し得るが、本発明に用いる合成
石英ガラスはスート法やダイレクト法と呼ばれる酸水素
炎加水分解法若しくはプラズマ法等に基づいて製造され
る事になるが、これら製造法の違いに起因して出発母材
としての合成石英ガラス材の特性が異なり、該特性が違
ったまま所定の加熱処理を行うと加熱処理後の耐レーザ
性に大きな変化が生じたり、又低下してしまう場合もあ
る。
Now, the present invention can basically achieve its initial effects by satisfying the above two requirements. However, the synthetic quartz glass used in the present invention can be produced by an oxyhydrogen flame hydrolysis method called the soot method or direct method, or by a plasma hydrolysis method. However, due to the differences in these manufacturing methods, the properties of the synthetic quartz glass material used as the starting base material differ, and if the specified heat treatment is performed while the properties are different, the heating In some cases, the laser resistance after treatment changes significantly or even decreases.

その第1が酸素欠陥の問題である。The first is the problem of oxygen vacancies.

即ち、特願昭63−21361号に示すように、本発明
者は前記合成石英ガラスのガラス組織(SiO8)中に
酸素欠陥が存在すると、耐レーザ特性の劣化を受は易い
事を突き止めている。而も前記酸素欠陥は必ずしも同一
ではなく、合成石英ガラスの製造法の違いにより異なる
種類の欠陥が形成できる事も突止められている。
That is, as shown in Japanese Patent Application No. 63-21361, the present inventor has found that when oxygen defects exist in the glass structure (SiO8) of the synthetic quartz glass, the laser resistance characteristics are easily deteriorated. . However, it has been found that the oxygen defects are not necessarily the same, and that different types of defects can be formed depending on the manufacturing method of synthetic quartz glass.

従って前記具なる種類の酸素欠陥が形成されているもの
をそのまま加熱雰囲気下で内部歪の除去若しくは水素ド
ーピング処理を行った場合、前記酸素欠陥が却って増幅
されて加熱処理後の耐レーザ性が低下するものがでてく
る。
Therefore, if a material in which certain types of oxygen defects are formed is subjected to internal strain removal or hydrogen doping treatment in a heated atmosphere, the oxygen defects will be amplified and the laser resistance after heat treatment will decrease. There will be something to do.

そこで請求項2に記載した発明は、前記出発母材の酸素
欠陥状態に対応させて加熱処理条件を変更し、これによ
り形成された光学系部材中に酸素欠陥が実質的に存在し
ないように水素ガスを所定濃度以上含有させたことを特
徴とするものである。
Therefore, the invention described in claim 2 changes the heat treatment conditions in accordance with the oxygen defect state of the starting base material, so that the hydrogen It is characterized by containing a gas at a predetermined concentration or more.

尚、酸素欠陥の存在が何故光学特性に悪影響を及ぼすか
その理由についてはさだかではないが、下記の理由によ
るものと推定される。
Although the reason why the presence of oxygen defects adversely affects optical properties is not clear, it is presumed to be due to the following reasons.

即ちガラス組織中に、不純物に加えて酸素欠陥が存在す
ると、前記ガラス組織を構成する元素間の結合が、理想
的石英ガラスの元素間の結合に比較して弱くなり、該レ
ーザー光のエネルギーにより結合が切断されやすくなり
、そして石英ガラスの元素間の結合が切断されることに
より構造的変化を起こし、屈折率を変化させるものと推
定される。又同様に不純物もしくは酸素欠陥の存在が前
駆体となり、レーザー光照射後各種のカラーセンターを
“形成し、透過率の低下をもたらし、更に不純物元素の
存在及び前記カラーセンターの形成に伴って、レーザー
照射中の石英ガラスの蛍光波長と強度が決り、これによ
り蛍光が発生し易くなるものと思慮される。
That is, when oxygen defects exist in addition to impurities in the glass structure, the bonds between the elements constituting the glass structure become weaker than the bonds between the elements of ideal silica glass, and the energy of the laser beam weakens the bonds between the elements that make up the glass structure. It is presumed that the bonds become more likely to be broken, and that the bonds between the elements of the silica glass are broken, causing a structural change and changing the refractive index. Similarly, the presence of impurities or oxygen defects acts as a precursor and forms various color centers after laser beam irradiation, resulting in a decrease in transmittance. It is thought that the fluorescence wavelength and intensity of the quartz glass during irradiation are determined, and this makes it easier for fluorescence to occur.

尚本発明における、[実質的に酸素欠陥を存在しない」
とは、5helby(1980)法等を参考にして前記
ガラス組織中の欠損酸素原子濃度及び過剰酸素原子濃度
を測定した場合その測定値が検出限界以下、具体的には
理想的なガラス組織(Si02)に対し、不足又は過剰
の酸素原子数が、ガラス 1g中おおむね1017個以
下であるものを言う。 ここで5helby(1980
)法による酸素過剰型欠陥の過剰酸素濃度の測定は、高
温で水素と反応させた時に生ずるOH基の赤外吸収を測
定して定量するものであり、酸素欠損型欠陥の欠損酸素
濃度の測定は、高温で酸素ガスと反応させた時減少する
7、6eV(163nm)の吸収ピークを測定して定量
するものである。
In the present invention, "substantially free of oxygen defects"
This means that when the concentration of deficient oxygen atoms and the concentration of excess oxygen atoms in the glass structure are measured with reference to the Helby (1980) method, the measured values are below the detection limit, specifically, the ideal glass structure (Si02 ), the number of oxygen atoms in deficiency or excess is approximately 1017 or less per gram of glass. Here 5helby (1980
) method is used to quantify the excess oxygen concentration of oxygen-excess defects by measuring the infrared absorption of OH groups generated when reacting with hydrogen at high temperatures. The method is quantitatively determined by measuring the absorption peak at 7.6 eV (163 nm), which decreases when reacted with oxygen gas at high temperature.

さて元に戻り、前記光学系部材の耐レーザ性は、出発母
材に含有されるOH基濃度にも影響される事は特願昭6
2−323882号、及び特願平1−134562に既
に開示されているが、かかる技術と前記請求項1及び2
に記載した発明と組合せる事により、−層耐レーザ性が
一層向上することは容易に理解される。
Now, returning to the original point, it is known that the laser resistance of the optical system members is also influenced by the OH group concentration contained in the starting base material.
2-323882 and Japanese Patent Application No. 1-134562, such technology and the above claims 1 and 2
It is easily understood that the laser resistance of the -layer can be further improved by combining the invention described in .

請求項3に記載した発明はかかる点に着目したちのであ
り、その特徴とする所は、少なくともtoopp鳳以上
好ましくは略300ppm以上含有する高純度合成石英
ガラス材を出発母材として前記レーザ光学系部材を形成
したものである。
The invention described in claim 3 focuses on this point, and is characterized in that the laser optical system is manufactured using a high-purity synthetic quartz glass material containing at least 300 ppm or more, preferably about 300 ppm or more, as a starting material. A member is formed.

「実験例」 本発明を製造手順に従って具体的に説明する。"Experiment example" The present invention will be specifically explained according to the manufacturing procedure.

先ず原料四塩化ケイ素を蒸留処理して不純物を除去させ
た後テフロンランニゲ付ステンレス製容器に貯溜した高
純度四塩化ケイ素を用意−し、該高純度の四塩化ケイ素
原料を用いてダイレクト法とCvDスート再溶融合成法
ニテ、φ120X tlooomm (D高純度石英ガ
ラスインゴットを各々複数個合成する。尚これらインゴ
ットは3方向脈理フリーでありかつ先便用領域における
屈折率変動幅 (△n)を 2XIO−6に設定されて
いる。
First, raw material silicon tetrachloride is distilled to remove impurities, and then high-purity silicon tetrachloride stored in a stainless steel container with a Teflon runner is prepared. CvD soot remelting synthesis method, φ120X tlooomm (D) A plurality of high-purity silica glass ingots are synthesized. These ingots are striae-free in three directions and have a refractive index variation range (△n) in the first region. It is set to 2XIO-6.

そして前記インゴット群より OH基の含有量が5pp
m以下、1100pp (スート法) 、800ppm
 (ダイレクト法)のOH基濃度を有するインゴットを
選出し、これらをφ120X tloommに切断して
各数ピースずつのサンプルを用意する(Nor :OH
基5ppm以下、N011:OH基1100pp、NO
m :OH基800ppm) 。
And from the above ingot group, the content of OH group is 5pp.
m or less, 1100pp (soot method), 800ppm
(Direct method) Select ingots having an OH group concentration of
Groups 5 ppm or less, N011:OH groups 1100 ppm, NO
m: OH group 800 ppm).

次に、各OH基濃度を有するサンプルを雰囲気加熱炉内
の石英ガラスニ重チャンバー内に設置して、スート法で
製造したサンプル群のうち、NOI及び■の−1〜4に
おいては酸素欠陥と内部歪の除去を図るために、内側チ
ャンバー内を酸素ガス含有雰囲気とし、炉材からの不純
物拡散を防止するために二重チャンバー間を不活性ガス
で希釈した塩化水素ガス含有雰囲気とし、1100℃前
後の温度で加熱処理を行い、−万能のサンプルN0II
I−3″については窒素ガス雰囲気下で加熱処理を行っ
て内部歪のみの除去を図った。
Next, samples with each OH group concentration were placed in a quartz glass double chamber in an atmosphere heating furnace, and among the sample groups produced by the soot method, NOI and -1 to -4 of In order to remove strain, an atmosphere containing oxygen gas was created inside the inner chamber, and an atmosphere containing hydrogen chloride gas diluted with an inert gas was created between the double chambers to prevent impurity diffusion from the furnace material. heat treatment at a temperature of -universal sample N0II
Regarding I-3'', heat treatment was performed in a nitrogen gas atmosphere to remove only internal strain.

又ダイレクト法で製造したサンプル群(NOm)におい
ても内部歪の除去を図るためにアルゴンガスで稀釈した
酸素ガス雰囲気下(NOIll−3″)で 1100℃
前後の温度で加熱処理を行ったものと、内部歪の除去を
図るためにAir雰囲気下(NOI[I−1〜4)で1
100℃前後の温度で加熱処理を行ったものを用意した
In addition, the sample group (NOm) manufactured by the direct method was also heated at 1100°C in an oxygen gas atmosphere diluted with argon gas (NOIll-3'') in order to remove internal strain.
Those that were heat-treated at different temperatures, and those that were heated under an air atmosphere (NOI [I-1 to 4)] to remove internal strain.
A sample was prepared that had been heat treated at a temperature of around 100°C.

次に、第1のサンプル群(No、 I II m−1)
についてはそのまま水素ドーピング処理を行う事なく、
第2〜第4及び第3′のサンプル群(No、 I n 
m−2,3,4,3″)については吸蔵水素ガス濃度を
異ならせるために、常圧(NO,I If m−2) 
10気圧(No、 l11m−3,3°)及び200気
圧(No、 I II m−4)の夫々の圧力下で夫々
水素ドーピング処理を行った。
Next, the first sample group (No, III m-1)
As for, without hydrogen doping treatment,
2nd to 4th and 3' sample groups (No, I n
m-2, 3, 4, 3''), normal pressure (NO, I If m-2) was used to vary the occluded hydrogen gas concentration.
Hydrogen doping treatments were performed under pressures of 10 atm (No, l11m-3,3°) and 200 atm (No, III m-4), respectively.

水素ドーピング処理は塩化水素HCIを1%を加味した
水素ガス(99%)雰囲気下にて前記圧力状態を維持し
た状態で、各々約500℃で一定時間保持した後次に約
200℃の温度以下になるまで一定のプログラムにより
徐冷を行い、その後大気放冷を行うことにより前記処理
が完了する。
The hydrogen doping treatment is carried out in an atmosphere of hydrogen gas (99%) containing 1% hydrogen chloride HCI while maintaining the above pressure state at about 500°C for a certain period of time, and then at a temperature of about 200°C or less. The process is completed by performing slow cooling according to a certain program until the temperature reaches 100 mL, and then cooling to the atmosphere.

尚、前記各サンプルについてアルカリ金属元素Li 、
 Na、 K、アルカリ土類金属元素Mg、Ca及び遷
移金属元素Ti、 Cr、 Fe、 Ni 、 Cuの
各元素の含量分析を行ってみるに、いずれもアルカリ金
属元素が0.O5ppm以下、アルカリ土類金属元素が
0.01ppm前後、遷移金属元素が0.01ppm以
下と高純度が維持されていた。
In addition, for each sample, the alkali metal element Li,
Analysis of the contents of Na, K, alkaline earth metal elements Mg, Ca, and transition metal elements Ti, Cr, Fe, Ni, and Cu revealed that the alkali metal elements were all 0. High purity was maintained, with O being 5 ppm or less, alkaline earth metal elements being around 0.01 ppm, and transition metal elements being 0.01 ppm or less.

そして、このようなサンプルの一部を40X30xt1
mmニ切断研磨し・て5helby(1980)法等に
基づいて酸素欠陥の有無を、又前記サンプルの一部を5
×5 X 20mmに切断研磨して前記アルゴンレーザ
ラマン散乱測定器に基づくサンプル中に吸蔵させた水素
濃度の定量測定を行い、各測定結果を下記−覧表に示す
And part of such sample 40X30xt1
The presence or absence of oxygen defects was determined based on Helby (1980) method, etc. by cutting and polishing to 5 mm, and part of the sample was
The sample was cut and polished to a size of ×5 × 20 mm, and the hydrogen concentration occluded in the sample was quantitatively measured using the argon laser Raman scattering analyzer, and the measurement results are shown in the table below.

次に、擬似光学部材として各サンプルから40×30X
 t30 mmの寸法に切断研磨しかつ両面を高精度に
鏡面仕上げしたエキシマレーザ照射実験用試験片を夫々
少なくとも一対以上作成し、各−の試験片に対してKr
Fエキシマ−レーザ(248nm’)を、又他の試験片
についてはArFエキシマ−レーザ(193nm)を用
い、前者においてはパルス当りエネルギー密度100,
200,400(mJ/err! −pulse)及び
照射パルス数lXIO3,1×106、lx 107(
pulse)の組合せから成る照射条件にて、又後者に
おいてはパルス当りエネルギー密度が50,100,2
00(mJ/cn(−pulse)及び照射パルス数1
×105、lXl06、l X 107(pulse)
の組合せから成る照射条件にて照射を行った。
Next, as a pseudo optical member, 40×30X
At least one pair or more of excimer laser irradiation test specimens were prepared, each of which was cut and polished to a size of 30 mm and mirror-finished with high precision on both sides.
An F excimer laser (248 nm') was used, and an ArF excimer laser (193 nm) was used for the other specimens, with an energy density of 100 nm per pulse in the former.
200,400 (mJ/err! -pulse) and the number of irradiation pulses lXIO3, 1 x 106, lx 107 (
pulse), and in the latter case, the energy density per pulse was 50, 100, 2
00 (mJ/cn (-pulse) and number of irradiation pulses 1
×105, lXl06, lX107 (pulse)
Irradiation was performed under irradiation conditions consisting of a combination of.

そして、前記照射終了後の各試験片について、干渉計に
て屈折率分布変化、透過率計にてソーラリゼーション、
蛍光測定器にて蛍光強度測定を行い、その結果を定性的
にまとめたものを下記−覧表に示す。
After the irradiation, the refractive index distribution of each specimen was changed using an interferometer, and solarization was observed using a transmittance meter.
Fluorescence intensity was measured using a fluorometer, and a qualitative summary of the results is shown in the table below.

下記−覧表のNo、 I群より理解される如(、OH基
含有量が5ppm以下の場合は、酸素欠陥や水素ガス濃
度と無関係に一律に耐レーザー性は平均レベル以下であ
り、 又(No、 II m−1)に示す如<  O1l基含
有量が1100pp以上で且つ酸素欠陥が検出されない
場合であッテも水素ガス濃度がIX 1016(mol
e1016(/ Cm3)以下の場合はやはり耐レーザ
ー性は平均レベル以下である。
As can be understood from the No. and I groups in the table below (, if the OH group content is 5 ppm or less, the laser resistance is uniformly below the average level regardless of oxygen vacancies and hydrogen gas concentration, and ( As shown in No. II m-1), if the O1l group content is 1100 pp or more and no oxygen defects are detected, the hydrogen gas concentration is
If it is less than e1016 (/Cm3), the laser resistance is still below the average level.

しかしながら水素ガス濃度が4X 1017(mole
−1017(7cm3)  (NO,’IIIII−2
)  4XI018(molecules/ 0m3)
  (No、 II lll−3)サンプルノ耐し−ザ
ー性ハきわめて高いものであった。
However, the hydrogen gas concentration is 4X 1017 (mole
-1017 (7cm3) (NO,'III-2
) 4XI018 (molecules/ 0m3)
(No. IIll-3) The sample resistance was extremely high.

又水素ガス濃度がIX 1018(mole1018(
/ rlI )であっても且つ酸素欠陥が検出される場
合には、耐レーザー性が悪い事も実証された。(No、
 II −3’ )更に水素ガス濃度が 8X 101
9(mole1019(/ rrt)迄上昇すると逆に
耐レーザ性が低下する事も確認された。
Also, the hydrogen gas concentration is IX 1018 (mole 1018 (
/rlI) and when oxygen defects are detected, it was also demonstrated that the laser resistance is poor. (No,
II -3') Furthermore, the hydrogen gas concentration is 8X 101
It was also confirmed that when the value increased to 9 (mole 1019 (/rrt)), the laser resistance deteriorated.

前記の結果より水素ガス濃度の適正範囲を確認する事が
必要とされ、そこで前記N0.m群のサンプルにおいて
、KrFエキシマ−レーザ(248nm)をパルス当り
エネルギー密度400CmJ/crd ・pulse)
、周波数100Hzで照射しながら、E′センター吸収
バンドの検出のため透過率計にて5.8eV (215
nm)の透過率の経時的変化を測定し、前記各サンプル
における内部透過率が2%低下するまでの照射パルス数
を夫々測定し、そして前記各サンプルにおける水素濃度
と内部透過率が2%低下するまでの照射パルス数の関係
を第1図にグラフ化した。
Based on the above results, it is necessary to confirm the appropriate range of hydrogen gas concentration, so the above N0. In the sample of group m, KrF excimer laser (248 nm) was used with energy density per pulse of 400 CmJ/crd ・pulse).
, 5.8 eV (215
The number of irradiation pulses until the internal transmittance in each sample decreased by 2% was measured, and the hydrogen concentration and internal transmittance in each sample decreased by 2%. The relationship between the number of irradiation pulses and the number of irradiation pulses is shown in a graph in FIG.

本図より理解される如く、最低限実用に耐え得るとされ
る照射パルス数LX 105(pulse)以上におけ
る水素ガス濃度は5 x 1016(mole1016
(/ 0m3)以上であり、少なくともこれ以上の水素
ガス濃度がなければ好ましい耐レーザ性かえられないこ
とが知見された。
As can be understood from this figure, the hydrogen gas concentration at the minimum practical irradiation pulse number LX 105 (pulse) or more is 5 x 1016 (mole 1016
(/0 m3) or more, and it was found that the desired laser resistance could not be achieved unless the hydrogen gas concentration was at least higher than this.

そして前記水素濃度と耐レーザー性との関係は1 x 
1018〜l x 1019(mole1019(/ 
0m3)にピーク値が存在し、それ以後はむしろ低下し
て行くと解釈されるが、5 X 1019(molec
ules/ 0m3)でも使用に耐えられる限度範囲に
ある。
The relationship between the hydrogen concentration and laser resistance is 1 x
1018~l x 1019 (mole1019(/
It is interpreted that there is a peak value at 0 m3) and it decreases after that, but at 5 x 1019 (molec
ules/0m3) is within the limit range that can withstand use.

一方KrFエキシマーレーザ(248nm)より短波長
であるArFエキシマ−レーザ(193nm)において
もパルス当りエネルギー密度を10100(/cn(1
pulse)と低下させて他は前記と同様な条件下で内
部透過率が2%低下するまでの照射パルス数を測定し、
これと水素濃度との関係を調べてみると第2図に示すよ
うに、下限における水素ガス濃度は5 X 1016(
mol−e1016(/ 0m3)以上と前記と同様で
あるが、第1図に比較してビークカーブが急峻になると
推定され略5 X 1019(1mol1019(1/
 Cm3)以上になると使用限度範囲以下に低下してし
まう事が理解できる。
On the other hand, even in the ArF excimer laser (193 nm), which has a shorter wavelength than the KrF excimer laser (248 nm), the energy density per pulse is 10100 (/cn (1
under the same conditions as above, measuring the number of irradiation pulses until the internal transmittance decreases by 2%,
Examining the relationship between this and the hydrogen concentration, as shown in Figure 2, the hydrogen gas concentration at the lower limit is 5 x 1016 (
mol-e1016 (/0m3) or more is the same as above, but the beak curve is estimated to be steeper than in Figure 1, and it is approximately 5 x 1019 (1 mol1019 (1/
It can be seen that if it exceeds Cm3), it will fall below the usage limit range.

かかる実験結果より本発明の構成が明瞭に把握すること
が出来た。
From these experimental results, the structure of the present invention could be clearly understood.

rq明の効果J 以上記載の如く本発明によれば、長時間にわたってエキ
シマレーザ光を照射した場合においても透過率の低下や
屈折率分布の変動が生じる事なく耐レーザ性が一層向上
し得るレーザ光用光学系部材を得る事が出来、 これに
より本発明にのレーザ光学系部材は、リソグラフィー装
置その他の高集積回路製造装置のみならず、レーザ核融
合装置その他の高出力エキシマレーザ−に使用されるレ
ーザ光学系母材にも十分適用可能である。
Effect of rq light J As described above, according to the present invention, a laser whose laser resistance can be further improved without causing a decrease in transmittance or fluctuation in refractive index distribution even when irradiated with excimer laser light for a long time. A light optical system member can be obtained, and thus the laser optical system member of the present invention can be used not only in lithography equipment and other highly integrated circuit manufacturing equipment, but also in laser fusion equipment and other high-power excimer lasers. It is also fully applicable to laser optical system base materials.

等の種々の著効を有す。It has various effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、KrFエキシマ−レーザ(248
nm)とArFエキシマ−レーザ(193nm)を厚さ
30mmのサンプルに照射した場合における、5.8e
V(215nm)の内部透過率が2%低下するまでの照
射パルス数と水素濃度との関係を示すグラフ図である。
1 and 2 show a KrF excimer laser (248
5.8e when a 30 mm thick sample is irradiated with ArF excimer laser (193 nm) and ArF excimer laser (193 nm).
FIG. 2 is a graph diagram showing the relationship between the number of irradiation pulses and the hydrogen concentration until the internal transmittance of V (215 nm) decreases by 2%.

Claims (1)

【特許請求の範囲】 1)略400nm以下の紫外線波長域のレーザ光に使用
されるレーザ光用光学系部材において、該光学系部材を
高純度合成石英ガラス材で形成するとともに、該光学系
部材中への、不純物の拡散を阻止して高純度を維持しつ
つ、水素ガスを少なくとも5×10^1^6(mole
cules/cm^3)濃度以上含有させたことを特徴
とするレーザ光用光学系部材 2)前記光学系部材が、酸素欠陥が実質的に存在しない
光学系部材である請求項1)記載のレーザ光用光学系部
材 3)前記光学系部材のOH基濃度を少なくとも100p
pm以上に設定した事を特徴とする請求項1)記載のレ
ーザ光用光学系部材 4)少なくとも200nm以下のエキシマレーザ光に使
用される請求項1)記載のレーザ光用光学系部材におい
て、該光学系部材中に含有させた水素ガスを5×10^
1^6乃至5×10^1^9(molecules/c
m^3)の範囲に設定したことを特徴とするレーザ光用
光学系部材
[Claims] 1) An optical system member for a laser beam used for laser light in an ultraviolet wavelength range of about 400 nm or less, wherein the optical system member is formed of a high-purity synthetic quartz glass material, and the optical system member is made of a high-purity synthetic quartz glass material. While maintaining high purity by preventing the diffusion of impurities into the hydrogen gas, at least 5 × 10^1^6 (mole
2) The laser according to claim 1, wherein the optical system member is an optical system member substantially free of oxygen defects. Optical system member for light 3) The OH group concentration of the optical system member is at least 100p.
4) The optical system member for laser light according to claim 1, which is used for excimer laser light of at least 200 nm or less. Hydrogen gas contained in optical system components is 5 x 10^
1^6 to 5×10^1^9 (molecules/c
An optical system member for a laser beam, characterized in that the optical system member is set in the range of m^3).
JP1232983A 1989-06-09 1989-09-11 Optical components for laser light Expired - Lifetime JPH0648734B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT90110854T ATE116448T1 (en) 1989-06-09 1990-06-08 OPTICAL PARTS AND BLANKS MADE OF SYNTHETIC SILICON DIOXIDE GLASS AND METHOD FOR THEIR PRODUCTION.
EP90110854A EP0401845B2 (en) 1989-06-09 1990-06-08 Optical members and blanks of synthetic silica glass and method for their production
DE69015453T DE69015453T3 (en) 1989-06-09 1990-06-08 Optical parts and blanks made of synthetic silicon dioxide glass and process for their production.
US07/535,205 US5086352A (en) 1989-06-09 1990-06-08 Optical members and blanks or synthetic silica glass and method for their production
US07/801,813 US5325230A (en) 1989-06-09 1991-12-06 Optical members and blanks of synthetic silica glass and method for their production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-154620 1989-06-19
JP01154620 1989-06-19

Publications (2)

Publication Number Publication Date
JPH03101282A true JPH03101282A (en) 1991-04-26
JPH0648734B2 JPH0648734B2 (en) 1994-06-22

Family

ID=15588162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232983A Expired - Lifetime JPH0648734B2 (en) 1989-06-09 1989-09-11 Optical components for laser light

Country Status (1)

Country Link
JP (1) JPH0648734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290935A (en) * 1995-04-14 1996-11-05 Corning Inc Highly purified molten silica glass member with resistance to optical damage and its preparation
JP2004511092A (en) * 2000-10-03 2004-04-08 コーニング インコーポレイテッド Photolithography method and photolithography apparatus
JP2008544947A (en) * 2005-06-30 2008-12-11 コーニング インコーポレイテッド Synthetic silica material having low fluence dependent transmittance and method for producing the same
JP2010502538A (en) * 2006-09-05 2010-01-28 旭硝子株式会社 Quartz glass substrate and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938265A (en) * 1995-07-28 1997-02-10 Tekusamu Giken:Kk Golf practicing bed
WO1998052879A1 (en) * 1997-05-20 1998-11-26 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
KR20240039155A (en) 2021-07-30 2024-03-26 도다 고교 가부시끼가이샤 Strontium titanate fine particle powder and method for producing the same, dispersion and resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323236A (en) * 1989-09-11 1991-01-31 Shinetsu Sekiei Kk Optical member for laser light

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323236A (en) * 1989-09-11 1991-01-31 Shinetsu Sekiei Kk Optical member for laser light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290935A (en) * 1995-04-14 1996-11-05 Corning Inc Highly purified molten silica glass member with resistance to optical damage and its preparation
JP2004511092A (en) * 2000-10-03 2004-04-08 コーニング インコーポレイテッド Photolithography method and photolithography apparatus
JP2008544947A (en) * 2005-06-30 2008-12-11 コーニング インコーポレイテッド Synthetic silica material having low fluence dependent transmittance and method for producing the same
JP2010502538A (en) * 2006-09-05 2010-01-28 旭硝子株式会社 Quartz glass substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0648734B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
US6339033B2 (en) Silica glass having superior durability against excimer laser beams and method for manufacturing the same
JPH0388742A (en) Synthetic silica glass optical body and production therefor
JPH0388743A (en) Synthetic silica glass optical body for ultraviolet laser and production therefor
JPH03101282A (en) Optical system member for laser light
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JPH03109233A (en) Synthetic silica glass optical body for ultraviolet laser beam and its production
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP2005239537A (en) Method for producing optical element
JP4323319B2 (en) Fused silica containing aluminum
JPH01212247A (en) Production of base material for laser optical system
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
US6630418B2 (en) Fused silica containing aluminum
JPH0323236A (en) Optical member for laser light
JPH1067526A (en) Optical quartz glass element
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP2566151B2 (en) Method for manufacturing laser optical system base material
JPH0558667A (en) Optical member
JP4485031B2 (en) Quartz glass for ultraviolet rays and method for producing the same
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JPH01197343A (en) Element for producing optical system with laser
JPH054830A (en) Production of optical silica glass
JPH11240728A (en) Production of synthetic quartz glass optical member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 16