JPH03101241A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03101241A
JPH03101241A JP1238600A JP23860089A JPH03101241A JP H03101241 A JPH03101241 A JP H03101241A JP 1238600 A JP1238600 A JP 1238600A JP 23860089 A JP23860089 A JP 23860089A JP H03101241 A JPH03101241 A JP H03101241A
Authority
JP
Japan
Prior art keywords
semiconductor chip
wiring pattern
electrode
insulating film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1238600A
Other languages
Japanese (ja)
Inventor
Yasuo Yamazaki
康男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1238600A priority Critical patent/JPH03101241A/en
Publication of JPH03101241A publication Critical patent/JPH03101241A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To prevent edge short by forming an insulating film at a place opposed to the edge of, at least, the semiconductor of a wiring pattern. CONSTITUTION:A wiring pattern 2 is formed on a glass board 1, in a shape that it corresponds to the electrode 6 of a semiconductor chip 7. Insulating material is so applied as to cover the whole topside of this glass board 1, and an insulating film 8 is formed. After this, the insulating film 8 on the wiring pattern is exfoliated by etching only at the place where it opposes the electrode of the semiconductor chip 7. Next, photosetting resin 4 including conductive particles 3 is screen-printed at a position corresponding to the electrode 6 on the wiring pattern 2. Next, for wiring chip 7 and the glass board 1, adhesives 5 are applied on the wiring pattern 2 or the wiring chip 7, and then the semiconductor chip 7 is heated, besides being pressed, for hardening, and the semiconductor chip 7 is bonded and fixed onto the glass board 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体チップの配線基板上への実装構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a structure for mounting a semiconductor chip on a wiring board.

[従来の技術] 近年液晶表示体やICカード等一定面積の配線基板に、
多数の半導体チップを高密度かつ薄型に実装する需要が
強まっている。これらの要求に対応して半導体チップを
フェースダウンの形で直接基板上に実装する方法として
、半導体チップ7上の電極と、基板1上の配線パターン
2とを突起電極または導電粒子3を介して電気的接続を
とる方法が、知られていた。第5図は、このような従来
例を示す断面図であり、1はガラス基板、2は配線パタ
ーン、3は導電粒子、4は樹脂、5は接着剤、6は電極
、7は半導体チップである。
[Prior art] In recent years, wiring boards with a fixed area such as liquid crystal displays and IC cards,
There is a growing demand for high-density and thin packaging of a large number of semiconductor chips. In response to these demands, as a method for directly mounting a semiconductor chip face-down on a substrate, the electrodes on the semiconductor chip 7 and the wiring pattern 2 on the substrate 1 are connected via protruding electrodes or conductive particles 3. Methods of making electrical connections were known. FIG. 5 is a sectional view showing such a conventional example, in which 1 is a glass substrate, 2 is a wiring pattern, 3 is a conductive particle, 4 is a resin, 5 is an adhesive, 6 is an electrode, and 7 is a semiconductor chip. be.

[発明が解決しようとする課題] しかしながら、従来の方法では、第5図に示した上うに
 配線パターン2と半導体チップ7のエツジとの間に入
り込んだ導電粒子3や、半導体チップ7のエツジにある
A1配線等のダイシング時に生じるめくれ等により、半
導体チップ7と配線パターン2との間が電気的に短絡す
るというエツジショート不良が発生する。第5図では、
導電粒子3を電気的接続に使用しているが、突起電極を
用いても同様の問題を有する。
[Problems to be Solved by the Invention] However, in the conventional method, as shown in FIG. Due to curling of a certain A1 wiring or the like during dicing, an edge short defect occurs in which an electrical short circuit occurs between the semiconductor chip 7 and the wiring pattern 2. In Figure 5,
Although conductive particles 3 are used for electrical connection, similar problems arise even when protruding electrodes are used.

[01題を解決するための手段] 本発明の半導体装置は、突起電極または導電粒子を介し
、半導体チップ上の電極と基板上の配線パターンとの電
気的接続を取る構造の半導体装置において、配線パター
ン上のすくなくとも半導体チップのエツジと対向する場
所に絶縁膜を形成したことを特徴とする。
[Means for Solving Problem 01] A semiconductor device of the present invention has a structure in which an electrode on a semiconductor chip is electrically connected to a wiring pattern on a substrate through a protruding electrode or a conductive particle. It is characterized in that an insulating film is formed on the pattern at least at a location facing the edge of the semiconductor chip.

[実施例] 以下、実施例により本発明の詳細を示す。[Example] Hereinafter, the details of the present invention will be shown by examples.

(実施例1) 第1図は本発明の一実施例を示す断面図であり、1はガ
ラス基板、2は配線パターン、3は導電粒子、4は樹脂
、5は接着剤、6は電極、7は半導体チップ、8は絶縁
膜である。
(Example 1) FIG. 1 is a sectional view showing an example of the present invention, in which 1 is a glass substrate, 2 is a wiring pattern, 3 is a conductive particle, 4 is a resin, 5 is an adhesive, 6 is an electrode, 7 is a semiconductor chip, and 8 is an insulating film.

まず、ガラス基板1上に半導体チップ7の電極6と対応
する形に、インジウム−スズ酸化物およびNiメツキに
より配線パターン2を形成する。
First, the wiring pattern 2 is formed on the glass substrate 1 by indium-tin oxide and Ni plating in a shape corresponding to the electrode 6 of the semiconductor chip 7.

このガラス基板1上の全面を覆うようにポリイミド系の
絶縁材料を約1〜2μmの厚みとなるようにスピンコー
ド、或はフレキソ印刷等を用いて塗布し絶縁膜8を形成
する。この後、配線パターン2上の絶縁Ill 8を半
導体チップ7の電極6と対向する場所のみエツチングに
より剥離し、配線パターン2と電極6との電気的導通が
可能となるようにする。(第2図) 次に、7.5μmの平均直径をもつ樹脂ボール上にAu
メツキを約50nm施した導電粒子3を含むアクリル系
光硬化形樹脂4を 配線パターン2上の電極6と対応し
た位置にスクリーン印刷する。このとき、導電粒子3を
含んだ樹脂4を半導体チップ7の電極6の上に印刷して
もよい。印刷した樹脂は、約10100O/cm2の強
さの紫外線を20秒間照射することによって、あらかじ
め硬化させておく。樹脂4は、導電粒子3が配線パター
ン上から流れ出さないように保持するために使用してい
る。このため樹脂4は、熱硬化性樹脂、溶剤揮発性樹脂
、熱可塑性樹脂、等の樹脂でも代用が可能である。また
、導電粒子3は、Ni、錫、半田、等のめっきを施した
樹脂ボール、或は、金、銀、銅、半田、等の金属粒子を
使用してもよい。
An insulating film 8 is formed by coating the entire surface of the glass substrate 1 with a polyimide-based insulating material to a thickness of about 1 to 2 μm using a spin cord or flexographic printing. Thereafter, the insulating layer 8 on the wiring pattern 2 is removed by etching only at the portion facing the electrode 6 of the semiconductor chip 7, so that electrical continuity between the wiring pattern 2 and the electrode 6 becomes possible. (Figure 2) Next, Au was placed on a resin ball with an average diameter of 7.5 μm.
An acrylic photocurable resin 4 containing conductive particles 3 plated to a thickness of about 50 nm is screen printed on the wiring pattern 2 at positions corresponding to the electrodes 6. At this time, the resin 4 containing the conductive particles 3 may be printed on the electrodes 6 of the semiconductor chip 7. The printed resin is cured in advance by irradiating it with ultraviolet light having an intensity of about 10,100 O/cm 2 for 20 seconds. The resin 4 is used to hold the conductive particles 3 so that they do not flow out from the wiring pattern. Therefore, the resin 4 can be replaced by a thermosetting resin, a solvent volatile resin, a thermoplastic resin, or the like. Further, the conductive particles 3 may be resin balls plated with Ni, tin, solder, etc., or metal particles such as gold, silver, copper, solder, etc.

半導体チップ7とガラス基板1は、エポキシ系熱硬化・
熱可塑併用形接着剤5を配線パターン2、もしくは半導
体チップ7に塗布し、半導体チップ7の電極6と配線パ
ターン2の位置合わせを行った後、半導体チップ7を約
10kg/cm2の圧力で加圧しかつ、170 ’Cに
加熱し10秒間硬化させ半導体チップ7をガラス基板1
上に圧着固定する。
The semiconductor chip 7 and the glass substrate 1 are made of epoxy thermosetting resin.
After applying the thermoplastic adhesive 5 to the wiring pattern 2 or the semiconductor chip 7 and aligning the electrodes 6 of the semiconductor chip 7 and the wiring pattern 2, the semiconductor chip 7 is applied with a pressure of about 10 kg/cm2. Press and heat to 170'C for 10 seconds to harden the semiconductor chip 7 to the glass substrate 1.
Crimp and fix on top.

また、接着剤として、熱硬化性樹脂、熱可塑性樹脂、常
温硬化性樹脂、嫌気性樹脂、光硬化性樹脂、電子線硬化
性樹脂、紫外線硬化性樹脂、等の樹脂を使用してもよい
Further, as the adhesive, resins such as thermosetting resins, thermoplastic resins, room temperature curable resins, anaerobic resins, photocurable resins, electron beam curable resins, and ultraviolet curable resins may be used.

このようにして、第1図に示した様な半導体装置を作成
した。
In this way, a semiconductor device as shown in FIG. 1 was produced.

(実施例2) ガラス基板1上に半導体チップ7の電極6と対応する形
に、インジウム−スズ酸化物およびNiメツキにより配
線パターン2を形成する。さらにこのNiメツキ上に入
出力インピーダンスの低下のため、Auメツキを110
0n施す。この配線パターン2上の半導体チップ7の電
極6を含む能動面と対応する部分にレジストを塗布しマ
スクを施す。レジストによりマスクを施したガラス基板
1上にSiO2薄膜、またはSiN薄膜等の絶縁性薄膜
をプラズマCVD法により約1μm成長させ絶縁TlA
3を形成する。この1組  配線パターン2上のレジス
トを適当な溶剤で剥離することにより、配線パターン2
と電極6との電気的導通が可能となるようにする。(第
3図) 次に、約20μmの平均直径をもつ半田粒子を導電粒子
3とし、これを含むアクリル系光硬化形樹脂4を 配線
パターン2上の電極6と対応した位置にスクリーン印刷
する。このとき、導電粒子3を含んだ樹脂4を半導体チ
ップ7の電極6の上に印刷してもよい。印刷した樹脂は
、約1000m W / c m 2の強さの紫外線を
20秒間照射する°ことによって、あらかじめ硬化させ
ておく。
(Example 2) A wiring pattern 2 is formed on a glass substrate 1 in a shape corresponding to the electrodes 6 of a semiconductor chip 7 using indium-tin oxide and Ni plating. Furthermore, in order to reduce the input/output impedance on this Ni plating, Au plating of 110
Apply 0n. A resist is applied to a portion of the wiring pattern 2 corresponding to the active surface including the electrode 6 of the semiconductor chip 7, and a mask is applied. An insulating thin film such as a SiO2 thin film or a SiN thin film is grown to a thickness of approximately 1 μm on a glass substrate 1 masked with a resist by plasma CVD to form an insulating TlA film.
form 3. By peeling off the resist on this one set of wiring patterns 2 with an appropriate solvent, wiring pattern 2
and the electrode 6 to be electrically connected to each other. (FIG. 3) Next, solder particles having an average diameter of about 20 μm are used as conductive particles 3, and acrylic photocurable resin 4 containing them is screen printed on the wiring pattern 2 at positions corresponding to the electrodes 6. At this time, the resin 4 containing the conductive particles 3 may be printed on the electrodes 6 of the semiconductor chip 7. The printed resin is precured by irradiation with ultraviolet light at an intensity of approximately 1000 m W/cm 2 for 20 seconds.

半導体チップ7とガラス基板1は、エポキシ系熱硬化・
熱硬化併用型接着剤5を配線パターン2、もしくは半導
体チップ7に塗布し、半導体チップ7の電極6と配線パ
ターン2の位置合わせを行った後、半導体チップ7を約
20 k g / c m 2の圧力で加圧しかつ、1
70°Cに加熱し30秒間硬化させ半導体チップ7をガ
ラス基板1上に圧着固定する。このようにして、第1図
に示したような半導体装置を作成した。
The semiconductor chip 7 and the glass substrate 1 are made of epoxy thermosetting resin.
After applying the thermosetting adhesive 5 to the wiring pattern 2 or the semiconductor chip 7 and aligning the electrodes 6 of the semiconductor chip 7 and the wiring pattern 2, the semiconductor chip 7 is heated to about 20 kg/cm 2 . Pressurized at a pressure of 1
The semiconductor chip 7 is fixed by pressure on the glass substrate 1 by heating to 70° C. and curing for 30 seconds. In this way, a semiconductor device as shown in FIG. 1 was produced.

m2の強さの紫外線を20秒間照射することによって、
電極6に対応した位置の樹脂のみ硬化させる。
By irradiating ultraviolet light with an intensity of m2 for 20 seconds,
Only the resin at the position corresponding to the electrode 6 is cured.

薄板を取り除いたのち余分な樹脂を純水等で洗い流し、
配線パターン2上に樹脂4を形成する。
After removing the thin plate, wash off the excess resin with pure water, etc.
A resin 4 is formed on the wiring pattern 2.

また、導電粒子3は、Ni、l、半田、等のめっ施した
樹脂ボール、或は、金、銀、銅、半田、等の金属粒子を
使用してもよい。
Further, the conductive particles 3 may be resin balls plated with Ni, L, solder, etc., or metal particles such as gold, silver, copper, solder, etc.

次に、実施例1と同様な方法で半導体チップ7を圧着固
定し、第1図に示したような半導体装置を作成した。
Next, the semiconductor chip 7 was crimped and fixed in the same manner as in Example 1 to produce a semiconductor device as shown in FIG.

(実施例3) 実施例1で示した方法により第2図のような基板を作成
する。次に、7.5μmの平均直径をもつ樹脂ボール上
にAuメツキを約50nm*した導電粒子3を含むアク
リル系光硬化形樹脂4を配線パターン2上の全面に塗布
する。電極6に対応した位置にエツチング等により穴あ
けを行った光を通さない薄板を配線パターン2上に位置
合わせを行う。薄板の穴を通して、約10100O/c
(実施例4) 実施例1で示したような方法により第2図の様な基板を
作成する。次に約7.5μmの平均直径を持つ樹脂ボー
ル上にAuメツキを50nmfI!l、。
(Example 3) A substrate as shown in FIG. 2 is produced by the method shown in Example 1. Next, an acrylic photocurable resin 4 containing conductive particles 3 plated with Au to a thickness of approximately 50 nm* on a resin ball having an average diameter of 7.5 μm is applied over the entire surface of the wiring pattern 2 . A light-blocking thin plate with holes formed by etching or the like at positions corresponding to the electrodes 6 is aligned on the wiring pattern 2. Approximately 10100O/c through the hole in the thin plate
(Example 4) A substrate as shown in FIG. 2 is prepared by the method shown in Example 1. Next, Au plating was applied to a resin ball with an average diameter of about 7.5 μm to a thickness of 50 nm! l.

た導電粒子3を熱可塑・熱硬化併用型接着剤5に約30
wt%含有させる。これを配線パターン2、或は、半導
体チップ7に塗布し、半導体チップ7の電極6と配線パ
ターン2の位置合わせを行った後、半導体チップ7を約
20kg/Cm2の圧力で加圧しかつ、170“Cに加
熱し30秒間硬化させ半導体チップ7をガラス基板1上
に圧着固定する。
Approximately 30% of the conductive particles 3 were added to the thermoplastic/thermosetting adhesive 5.
Contain wt%. After applying this to the wiring pattern 2 or the semiconductor chip 7 and aligning the electrodes 6 of the semiconductor chip 7 and the wiring pattern 2, the semiconductor chip 7 is pressurized at a pressure of about 20 kg/cm2 and The semiconductor chip 7 is fixed on the glass substrate 1 by heating and curing for 30 seconds.

このようにして、第4図に示したような半導体装置を作
成した。
In this way, a semiconductor device as shown in FIG. 4 was produced.

第1表 実施例1から4に示した方法で半導体装置を各々100
個作成し、エツジショートによる不良の発生率を調べた
。また、比較例として第5図に示した従来例の構造を持
つ半導体装置を同様に100個作成し、エツジショート
不良の発生率を調べた。これらをあわせて、試料100
個中何個エッジショート不良が発生したかを調べ第1表
に示した。
100 pieces of each semiconductor device were manufactured by the methods shown in Examples 1 to 4 of Table 1.
A number of samples were prepared and the incidence of defects due to edge shorts was investigated. Furthermore, as a comparative example, 100 semiconductor devices having the conventional structure shown in FIG. 5 were manufactured in the same manner, and the incidence of edge short defects was investigated. In total, 100 samples
Table 1 shows how many edge short defects occurred among the samples.

第1表から明かなごとく、実施例1から4では絶縁膜8
をガラス基板1上に施したことにより、比較例として作
成した従来例において多発したエツジショート不良を完
全になくすことができ、半導体装置の歩留まりを著しく
向上させることができた。また、比較例においては、導
電粒子3のつぶれ量に大きな差が出来たが、実施例1か
ら4の場合には、絶縁1iJ8がギャップ材の役目も兼
ね、半導体チップ7とガラス基板1とのギャップを均一
に保っている。このため、実施例1から4においては導
電粒子3のつぶれ量に差は見られず、導電粒子3のつぶ
れ量の制御が容易となった。
As is clear from Table 1, in Examples 1 to 4, the insulating film 8
By applying this to the glass substrate 1, it was possible to completely eliminate the edge short defects that occurred frequently in the conventional example prepared as a comparative example, and the yield of semiconductor devices could be significantly improved. In addition, in the comparative example, there was a large difference in the amount of crushing of the conductive particles 3, but in the case of Examples 1 to 4, the insulation 1iJ8 also served as a gap material, and the insulation between the semiconductor chip 7 and the glass substrate 1 Keeping the gap uniform. Therefore, in Examples 1 to 4, no difference was observed in the amount of crushing of the conductive particles 3, and it became easy to control the amount of crushing of the conductive particles 3.

このようにして、絶縁膜8を施すことにより、半導体装
置の信頼性を著しく向上させることが出来た。
By applying the insulating film 8 in this manner, it was possible to significantly improve the reliability of the semiconductor device.

[発明の効果] 以上述べたように本発明によれば、配線パターン上のす
くなくとも半導体チップのエツジと対向する場所に絶縁
膜を形成することにより以下の効果が得られる。
[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained by forming an insulating film on the wiring pattern at least at a location facing the edge of the semiconductor chip.

■半導体チップと配線パターンとの間のエツジショート
不良を防ぐことが出来る。
■Edge short defects between the semiconductor chip and the wiring pattern can be prevented.

■絶縁膜が配線パターンの外気と触れている部分を覆う
ことにより、酸化や腐食や機械的摩耗等から配線パター
ンを保護することができ、半導体装置の寿命を著しく延
長することが出来る。
(2) By covering the parts of the wiring pattern that are in contact with the outside air with an insulating film, the wiring pattern can be protected from oxidation, corrosion, mechanical wear, etc., and the life of the semiconductor device can be significantly extended.

■絶縁膜は、ギャップ材の役目も兼ね、半導体チップと
基板とのギャップを均一にし、導電粒子のつぶれ量をコ
ントロールすることが容易となる。
■The insulating film also serves as a gap material, making the gap between the semiconductor chip and the substrate uniform, and making it easier to control the amount of crushing of the conductive particles.

このため半導体装1の信頼性を著しく向上させることが
出来る。
Therefore, the reliability of the semiconductor device 1 can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における半導体装置の一実施例を示す
断面図である。 第2図は、基板上に絶縁膜を形成した一実施例を示した
斜視図である。 第3図は、基板上に絶縁膜を形成した一実施例を示した
斜視図である。 第4図は、本発明における半導体装置の一実施例を示す
断面図である。 第5図は、従来例の断面図である。 (1) (2) (3) (4) (5) (6) (7) (8) ガラス基板 配線パターン 導電粒子 樹脂 接着剤 電極 半導体チップ 絶縁膜 以  上
FIG. 1 is a sectional view showing an embodiment of a semiconductor device according to the present invention. FIG. 2 is a perspective view showing an embodiment in which an insulating film is formed on a substrate. FIG. 3 is a perspective view showing an embodiment in which an insulating film is formed on a substrate. FIG. 4 is a sectional view showing an embodiment of the semiconductor device according to the present invention. FIG. 5 is a sectional view of a conventional example. (1) (2) (3) (4) (5) (6) (7) (8) Glass substrate wiring pattern Conductive particles Resin adhesive Electrode Semiconductor chip Insulating film

Claims (1)

【特許請求の範囲】[Claims] 突起電極または導電粒子を介し、半導体チップ上の電極
と基板上の配線パターンとの電気的接続を取る構造の半
導体装置において、配線パターン上のすくなくとも半導
体チップのエッジと対向する場所に絶縁膜を形成したこ
とを特徴とする半導体装置。
In a semiconductor device having a structure in which an electrode on a semiconductor chip is electrically connected to a wiring pattern on a substrate through a protruding electrode or conductive particles, an insulating film is formed on the wiring pattern at least at a location facing the edge of the semiconductor chip. A semiconductor device characterized by:
JP1238600A 1989-09-14 1989-09-14 Semiconductor device Pending JPH03101241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1238600A JPH03101241A (en) 1989-09-14 1989-09-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1238600A JPH03101241A (en) 1989-09-14 1989-09-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03101241A true JPH03101241A (en) 1991-04-26

Family

ID=17032600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1238600A Pending JPH03101241A (en) 1989-09-14 1989-09-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03101241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794551A (en) * 1993-09-25 1995-04-07 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794551A (en) * 1993-09-25 1995-04-07 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US20050148165A1 (en) Conductive pattern producing method and its applications
WO1994024699A1 (en) Semiconductor device
JPH0362411A (en) Manufacture of aeolotropic conductive film
KR0149721B1 (en) A method of setting printed circuit by using anisotropic conductive adhesive
JPH03101241A (en) Semiconductor device
JPH06168982A (en) Flip chip packaging structure
JP2661382B2 (en) LSI chip connection method
JPH02185051A (en) Tape carrier for double-side protective coat type tab
JP2004253529A (en) Semiconductor device and its manufacturing method
JP3999222B2 (en) Flip chip mounting method and flip chip mounting structure
JP2928755B2 (en) Electronic component manufacturing method
JP2002217248A (en) Transfer plate for pattern formation and method of manufacturing substrate for semiconductor device using it
JPS62285432A (en) Micro formation of electric contact material
JP2511909B2 (en) Method for micro-forming electrical connection material
JP2006237412A (en) Method for manufacturing semiconductor device and for electronic apparatus
JPS63151031A (en) Connection of semiconductor device
JPS6297340A (en) Electrical connecting method for ic chip
JPH05251505A (en) Method of connecting ic chip to area tape
JPS61158163A (en) Formation of bump
JPH0964225A (en) Semiconductor device
JP2819747B2 (en) Semiconductor device, its mounting structure, and its mounting method
JP2002009110A (en) Semiconductor device
JPH0327542A (en) Structure for packaging semiconductor device
JP2523641B2 (en) Semiconductor device
JPH0334651B2 (en)