JPH03101147A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03101147A
JPH03101147A JP23577489A JP23577489A JPH03101147A JP H03101147 A JPH03101147 A JP H03101147A JP 23577489 A JP23577489 A JP 23577489A JP 23577489 A JP23577489 A JP 23577489A JP H03101147 A JPH03101147 A JP H03101147A
Authority
JP
Japan
Prior art keywords
oxide film
film
insulating film
silicon oxide
photoresist mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23577489A
Other languages
Japanese (ja)
Inventor
Toru Ozaki
徹 尾崎
Katsuhiko Hieda
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23577489A priority Critical patent/JPH03101147A/en
Publication of JPH03101147A publication Critical patent/JPH03101147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To integrate elements of an excellent characteristic at high density by a method wherein, after an element-isolation groove is formed, a first insulating film larger than the depth of the groove is formed while a used photoresist mask is left and a second insulating film is formed on its sidewalls. CONSTITUTION:A silicon oxide film 2 and a silicon nitire film 3 are formed on a silicon substrate 1; an element-formation region is covered with a photoresist mask 4; an element-isolation groove 5 having nearly vertical sidewalls is formed by an anisotropic dry etching method; an inversion- preventing layer 6 is formed on the bottom. Then, a silicon oxide film 7 is filled and formed in a film thickness larger than the depth of the groove 5; after that, the mask 4 is removed; a heat treatment is executed; a thermal oxide film 8 is formed on the inner wall faces; the film 3 is removed. Then, a silicon oxide film 9 is formed on protruding sidewalls of the film 7 by a so-called sidewall-leaving technique; a gate oxide film 10, a gate electrode 11 and drain diffusion layers 12, 13 are formed to form a MOS integrated circuit.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置の製造方法に係り、とくに微細幅
の素子分離領域の形成工程の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a process for forming a device isolation region with a fine width.

(従来の技術) MOS集積回路における素子の微細化、高集積化を実現
するための素子分離法として、これまで広く用いられて
きたLOCO8法に代わって、半導体基板に溝を掘って
ここに素子分離絶縁膜を埋め込む方法が提案されている
(Prior art) In place of the LOCO8 method that has been widely used as an element isolation method to achieve miniaturization and high integration of elements in MOS integrated circuits, trenches are dug in the semiconductor substrate and elements are placed here. A method of embedding an isolation insulating film has been proposed.

第2図(a>〜(C)は、その様な埋込み法を利用した
従来の素子分離の工程である。(a)に示すように、シ
リコン基板21にシリコン酸化膜22゜シリコン窒化膜
23を積層形成し、この上に素子分離領域に開口を持つ
フォトレジスト・マスク24を形成する。そしてこのフ
ォトレジスト・マスク24を用いてシリコン窒化膜23
.シリコン酸化膜22.シリコン基板21を順次をドラ
イエツチング法によって選択エツチングして、(b)に
示すように素子分離溝25を形成する。その後(C)に
示すように溝にシリコン酸化膜26を形成して反転防止
層形成用のイオン注入を行い、次いでCVD法によりシ
リコン酸化膜27を溝25内に埋込み形成する。この酸
化膜埋込みは例えば、全面に酸化膜を堆積形成した後、
その表面をフォトレジスト等によって平坦化し、フォト
レジストと酸化膜に対するエツチング速度が等しい条件
に設定されたドライエツチング法によって全面エツチン
グすることにより行う。
2(a> to (C)) show a conventional device isolation process using such a burying method.As shown in FIG. 2(a), a silicon oxide film 22, a silicon nitride film 23, A photoresist mask 24 having an opening in the element isolation region is formed on this layer.Then, using this photoresist mask 24, a silicon nitride film 23 is formed.
.. Silicon oxide film 22. The silicon substrate 21 is sequentially selectively etched using a dry etching method to form element isolation grooves 25 as shown in FIG. Thereafter, as shown in (C), a silicon oxide film 26 is formed in the trench, ions are implanted to form an anti-inversion layer, and then a silicon oxide film 27 is buried in the trench 25 by CVD. This oxide film embedding can be done, for example, by depositing an oxide film on the entire surface, and then
The surface is planarized using a photoresist or the like, and the entire surface is etched using a dry etching method in which the etching rates for the photoresist and the oxide film are set to be equal.

しかしながらこの方法では、埋込み酸化膜の膜厚制御性
が十分でない。そして、素子分離溝の上部コーナーが露
出する状態になると素子特性上問題となる。この問題を
具体的に第3図を用いて説明する。
However, this method does not provide sufficient control over the thickness of the buried oxide film. If the upper corner of the element isolation trench is exposed, it will cause problems in terms of element characteristics. This problem will be specifically explained using FIG. 3.

第3図は上述した方法により素子分離された基板に、ゲ
ート酸化膜28を形成してこの上にゲート電極29を形
成し、ゲート電極29をマスクとして不純物をドープし
てソース、ドレイン拡散層30.31を形成した状態を
示している。図では、素子分離溝25に埋め込まれたシ
リコン酸化膜26が薄<、!25の上部コーナーが露出
する状態を示している。このとき図のようにゲート電極
29が配設されると、MOSトランジスタのチャネル幅
方向端部の溝上部コーナーA、Bにゲート電極29が対
向し、これらの上部コーナーA、  Bで電界集中が起
こる。この結果上部コーナーA。
FIG. 3 shows that a gate oxide film 28 is formed on a substrate subjected to device isolation by the method described above, a gate electrode 29 is formed thereon, and impurities are doped using the gate electrode 29 as a mask to form source and drain diffusion layers 30. .31 is shown. In the figure, the silicon oxide film 26 buried in the element isolation trench 25 is thin <,! The upper corner of No. 25 is shown exposed. At this time, if the gate electrode 29 is disposed as shown in the figure, the gate electrode 29 faces the upper corners A and B of the groove at the ends in the channel width direction of the MOS transistor, and the electric field is concentrated at these upper corners A and B. happen. This results in upper corner A.

Bでは反転が起り易くなり、従って特にチャネル幅の狭
いMOS)ランジスタでは大きいしきい値の低下をもた
らす。
In the case of B, inversion is more likely to occur, resulting in a large reduction in the threshold value, especially in a MOS transistor with a narrow channel width.

これを解決する方法として、素子分離溝にシリコン酸化
膜を埋込み形成した後、さらにその上にシリコン酸化膜
をCVD法によって堆積し、パターン形成して素子分離
領域を絶縁膜で覆う方法が提案されている。
As a method to solve this problem, a method has been proposed in which a silicon oxide film is buried in the element isolation trench, and then a silicon oxide film is deposited on top of it by the CVD method, and then patterned to cover the element isolation region with an insulating film. ing.

第4図(a)〜(e)は、その様な素子分離形成工程で
ある。(a) 〜(c)までは第2図の(a) 〜(c
)と同じである。この後、(d)に示すように全面にC
VD法によりシリコン酸化膜30を堆積し、その上にフ
ォトレジスト・マスク31を形成する。
FIGS. 4(a) to 4(e) show such element isolation formation steps. (a) to (c) in Figure 2
) is the same as After this, as shown in (d), the entire surface is covered with C.
A silicon oxide film 30 is deposited by the VD method, and a photoresist mask 31 is formed thereon.

そしてこのマスク31を用いて酸化膜30を選択エツチ
ングし、(e)に示すように素子分離溝領域上に酸化膜
30を残す。
Then, the oxide film 30 is selectively etched using this mask 31, leaving the oxide film 30 on the element isolation groove region as shown in FIG.

この方法によれば、当初に埋め込まれた酸化膜27の膜
厚が溝の深さより薄い場合であっても、この上をさらに
酸化膜30で覆うことにより、溝25の上部コーナーの
露出が防止される。
According to this method, even if the thickness of the initially buried oxide film 27 is thinner than the depth of the trench, by further covering it with the oxide film 30, the upper corner of the trench 25 is prevented from being exposed. be done.

しかしながらこの方法では、酸化膜30のパターン形成
にフォトリソグラフィを用いているために、合わせずれ
を考慮しなければならず、それだけ素子分離領域幅が増
大してしまうという難点がある。
However, since this method uses photolithography to pattern the oxide film 30, it is necessary to take misalignment into consideration, which has the disadvantage that the width of the element isolation region increases accordingly.

(発明が解決しようとする課題) 以上のように従来の絶縁膜埋込みを利用した素子分離技
術では、素子分離溝上部コーナーの露出による素子特性
劣化があり、これを解決しようとすると素子分離領域幅
が増大するといった問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional device isolation technology using insulating film embedding, device characteristics deteriorate due to exposure of the upper corner of the device isolation trench. There was a problem with the increase in

本発明はこのような問題を解決した素子分離法を利用し
た半導体装置の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device using an element isolation method that solves these problems.

[発明の構成コ (課題を解決するための手段) 本発明の方法は、まず半導体基板上にフォトレジスト・
マスクを形成し、このフォトレジスト・マスクを用いて
基板を選択エツチングして素子分離領域に溝を形成する
。次いでフォトレジスト・マスクを残した状態で形成さ
れた溝にその深さ以上の膜厚をもって第1の絶縁膜を埋
込み形成する。その後フォトレジスト・マスクを除去し
た後、第1の絶縁膜の側壁に選択的に第2の絶縁膜を形
成する。そして第1および第2の絶縁膜により囲まれた
素子形成領域に所望の素子を形成する。
[Configuration of the Invention (Means for Solving the Problems) The method of the present invention first includes forming a photoresist on a semiconductor substrate.
A mask is formed and the photoresist mask is used to selectively etch the substrate to form trenches in isolation regions. Next, a first insulating film is buried in the trench formed with the photoresist mask left in place to a thickness equal to or greater than the depth of the trench. After removing the photoresist mask, a second insulating film is selectively formed on the sidewalls of the first insulating film. Then, a desired element is formed in the element formation region surrounded by the first and second insulating films.

(作用) 本発明によれば、素子分離溝を形成した後に、その溝形
成に用いたフォトレジスト・マスクを残したまま絶縁膜
埋込みを行って、溝の深さ以上の膜厚の第1の絶縁膜を
形成し、その側壁に更に第2の絶縁膜を形成するから、
素子分離溝の上部コーナーが露出することはない。従っ
て素子分離溝の上部コーナーが露出することによる素子
特性劣化が防止される。しかも第2の絶縁膜は所謂側壁
残しの技術により自己整合的に形成できるので、合わせ
ずれを考慮する必要がなく、素子分離領域幅を必要最小
限に抑えることができる。以上により、優れた特性の素
子を高密度集積化することができる。
(Function) According to the present invention, after forming an element isolation trench, an insulating film is buried with the photoresist mask used for forming the trench remaining, and a first film having a thickness equal to or greater than the depth of the trench is formed. Since an insulating film is formed and a second insulating film is further formed on the side wall of the insulating film,
The upper corner of the element isolation trench is never exposed. Therefore, deterioration of device characteristics due to exposure of the upper corner of the device isolation trench is prevented. Moreover, since the second insulating film can be formed in a self-aligned manner by a so-called sidewall leaving technique, there is no need to consider misalignment, and the width of the element isolation region can be suppressed to the necessary minimum. As described above, elements with excellent characteristics can be integrated at high density.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a)〜(h)は、一実施例の素子形成工程を示
す断面図である。p型シリコン基板1を酸化して約50
0人のシリコン酸化膜2を形成した後、この上にCVD
法によって約150OAのシリコン窒化膜3を堆積形成
する。そしてこの上にフォトリソグラフィによって、素
子形成領域を覆うフォトレジスト・マスク4を形成する
((a))。
FIGS. 1(a) to 1(h) are cross-sectional views showing the element forming process of one embodiment. The p-type silicon substrate 1 is oxidized to about 50%
After forming the silicon oxide film 2, CVD is performed on it.
A silicon nitride film 3 having a thickness of about 150 OA is deposited by a method. Then, a photoresist mask 4 covering the element formation region is formed on this by photolithography ((a)).

そして反応性イオンエツチング法等の異方性ドライエツ
チング法を用いて基板を選択エツチングして、略垂直側
壁を持つ深さ0.5μm程度の素子分離溝5を形成する
。その後、ボロンをイオン注入して素子分離溝5の底、
部に反転防止層6を形成する((b))。
Then, the substrate is selectively etched using an anisotropic dry etching method such as a reactive ion etching method to form an element isolation groove 5 having a depth of about 0.5 μm and having substantially vertical sidewalls. After that, boron ions are implanted into the bottom of the element isolation trench 5.
An anti-inversion layer 6 is formed on the portion ((b)).

次に、フォトレジスト・マスク4を残した状態で選択的
に素子分離溝5の領域に第1の絶縁膜として例えばシリ
コン酸化膜7を埋込み形成する((C))。このとき埋
め込まれるシリコン酸化膜7は、素子分離溝5の深さ以
上の膜厚とする。このシリコン酸化膜埋込みには、次の
ような液相成長法を利用する。まず、シリカ(Si02
)を飽和させた珪弗化水素酸(HzSiF6)水溶液に
硼酸(H3BO3)水溶液を添加して、シリカを過飽和
させる。このシリカ過飽和液を例えば30℃に保ち、こ
の液中に(b)のシリコン基板を浸すことにより、フォ
トレジスト・マスク4で覆われた領域以外の領域に選択
的にシリコン酸化膜を析出させる。なおこの析出堆積を
行うためには、素子分離溝5の内壁を水洗等により親水
性処理しておくことが必要である。また酸化膜埋込みに
先立って、素子分離溝5の内壁をアルカリ溶液を含むエ
ツチング液により或いはCDE法によって50〜100
おぐエツチングして、反応性イオンエツチングによるダ
メージ層を除去する工程を付加する事も有効である。
Next, with the photoresist mask 4 remaining, for example, a silicon oxide film 7 is selectively buried in the region of the element isolation trench 5 as a first insulating film ((C)). The silicon oxide film 7 buried at this time has a thickness equal to or greater than the depth of the element isolation trench 5. The following liquid phase growth method is used to embed the silicon oxide film. First, silica (Si02
) is added to an aqueous solution of hydrosilicic acid (HzSiF6) saturated with boric acid (H3BO3) to supersaturate the silica. This silica supersaturated solution is maintained at, for example, 30° C., and by immersing the silicon substrate (b) in this solution, a silicon oxide film is selectively deposited in areas other than the area covered with the photoresist mask 4. Note that in order to carry out this precipitation deposition, it is necessary to perform a hydrophilic treatment on the inner wall of the element isolation groove 5 by washing with water or the like. In addition, prior to embedding the oxide film, the inner wall of the element isolation trench 5 is etched to a depth of 50 to 100% using an etching solution containing an alkaline solution or by the CDE method.
It is also effective to add a step of removing the damaged layer caused by reactive ion etching.

こうしてシリコン酸化膜7を埋込み形成した後、フォト
レジスト・マスク4を除去する((d))。
After forming the silicon oxide film 7 in this way, the photoresist mask 4 is removed ((d)).

その後、850℃程度の水蒸気雰囲気中で熱処理する。Thereafter, heat treatment is performed in a steam atmosphere at about 850°C.

この処理により、析出されたシリコン酸化膜7からの酸
素供給によって、内壁面には約200人の良質の熱酸化
膜8が形成される((e))。
Through this treatment, about 200 high quality thermal oxide films 8 are formed on the inner wall surface due to the supply of oxygen from the deposited silicon oxide film 7 ((e)).

次いでシリコン窒化膜3をエツチング除去する((1’
))。
Next, the silicon nitride film 3 is removed by etching ((1')
)).

その後、素子分離領域に突出したシリコン酸化膜7の側
壁に選択的に、第2の絶縁膜としてシリコン酸化膜9を
形成する ((g))。このシリコン酸化膜9の形成は
、まず全面にCVD法により1000人程度シリコン酸
化膜を堆積した後、全面を反応性イオンエツチング法で
エツチングして側壁部にのみ選択的にシリコン酸化膜9
を残置させる、所謂側壁残しの技術を利用する。
Thereafter, a silicon oxide film 9 is selectively formed as a second insulating film on the sidewalls of the silicon oxide film 7 protruding into the element isolation region ((g)). The silicon oxide film 9 is formed by first depositing about 1,000 silicon oxide films on the entire surface using the CVD method, and then etching the entire surface using the reactive ion etching method to selectively selectively form the silicon oxide film 9 only on the side walls.
The so-called side wall leaving technique is used.

この後は通常の素子形成工程にしたがって、素子形成領
域にゲート酸化膜10を形成し、多結晶シリコン膜の堆
積とパターニングによってゲート電極11を形成し、ゲ
ート電極をマスクとして砒素等をイオン注入してソース
、ドレイン拡散層12.13を形成する( (h))。
After this, according to the usual device formation process, a gate oxide film 10 is formed in the device formation region, a gate electrode 11 is formed by depositing and patterning a polycrystalline silicon film, and arsenic or the like is ion-implanted using the gate electrode as a mask. Then, source and drain diffusion layers 12 and 13 are formed ((h)).

図では、一つのMOS)ランジスタのチャネル幅方向の
断面を示している。その後は図示しないが、全面をCV
D絶縁膜で覆い、コンタクト孔を開けてl?配線を施す
ことより、MO8集積回路が完成する。
The figure shows a cross section of one MOS transistor in the channel width direction. After that, although not shown, the entire surface is CV
D Cover with insulating film and make a contact hole. The MO8 integrated circuit is completed by wiring.

この実施例によれば、第1図(h)から明らかなように
、素子分離溝の上部コーナーが露出することはなく、形
成されたMOS)ランジスタのチ0 ャネル幅方向端部での電界集中によるしきい値低下が確
実に防止される。したがって微細寸法のMOSトランジ
スタであっても優れた特性が得られる。また素子分離領
域端部を覆うシリコン酸化膜9は、側壁残しによって素
子分離領域に自己整合されて形成されるから、素子分離
領域幅が無用に増大することはなく、従って素子の高密
度集積化が実現できる。
According to this embodiment, as is clear from FIG. 1(h), the upper corner of the element isolation trench is not exposed, and the electric field is concentrated at the end of the channel width of the formed MOS transistor. This will reliably prevent the threshold value from decreasing. Therefore, excellent characteristics can be obtained even in a MOS transistor with minute dimensions. In addition, since the silicon oxide film 9 covering the end of the element isolation region is formed in a self-aligned manner with the element isolation region by leaving sidewalls, the width of the element isolation region does not increase unnecessarily, and therefore high-density integration of elements is possible. can be realized.

本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.

例えば実施例では、素子分離溝へのシリコン酸化膜埋込
みをシリカ飽和溶液を用いた液相成長法によったが、C
VD法により埋込みを行うこともできる。この場合、フ
ォトレジスト・マスク上にもシリコン酸化膜が堆積する
が、これはフォトレジストと共にリフトオフすることに
よって、上記実施例と同様の埋込み構造が得られる。そ
の池水発明はその趣旨を逸脱しない範囲で種々変形して
実施することができる。
For example, in the example, the silicon oxide film was buried in the element isolation trench by a liquid phase growth method using a silica saturated solution.
Embedding can also be performed by the VD method. In this case, a silicon oxide film is also deposited on the photoresist mask, and by lifting off together with the photoresist, a buried structure similar to that of the above embodiment is obtained. The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果コ 以上述べたように本発明による素子分離技術で1 は、素子分離溝上部コーナーが露出することによる素子
特性劣化か防止され、しかも素子分離溝上部コーナーは
自己整合的に絶縁膜で覆われる。したがって優れた素子
特性をもって微細素子の高密度集積化をはかることがで
きる。
[Effects of the Invention] As described above, the device isolation technology according to the present invention prevents deterioration of device characteristics due to exposure of the upper corners of the device isolation trenches, and furthermore, the upper corners of the device isolation trenches are formed with an insulating film in a self-aligned manner. covered with Therefore, it is possible to achieve high-density integration of fine devices with excellent device characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(h)は本発明の一実施例の製造工程を
示す断面図、 第2図(a)〜(c)は従来の素子分離法を説明するた
めの断面図、 第3図は従来法による問題を説明するための断面図、 第4図(a)〜(e)は従来の別の素子分離法を説明す
るための断面図である。 1・・・シリコン基板、2・・シリコン酸化膜、3・・
・シリコン窒化膜、4・・・フォトレジスト・マスク、
5・・素子分離溝、6・・・反転防止層、7・・・シリ
コン酸化膜(第1の絶縁膜)、8・・・熱酸化膜、9・
・・シリコン酸化膜(第2の絶縁膜)、10・・・ゲー
ト酸化膜、11・・・ゲート電極、12.13・・ソー
ス。 2 ドレイン拡散層。
FIGS. 1(a) to (h) are cross-sectional views showing the manufacturing process of an embodiment of the present invention. FIGS. 2(a) to (c) are cross-sectional views for explaining the conventional element isolation method. FIG. 3 is a cross-sectional view for explaining problems caused by the conventional method, and FIGS. 4(a) to (e) are cross-sectional views for explaining another conventional element isolation method. 1...Silicon substrate, 2...Silicon oxide film, 3...
・Silicon nitride film, 4... Photoresist mask,
5... Element isolation trench, 6... Inversion prevention layer, 7... Silicon oxide film (first insulating film), 8... Thermal oxide film, 9...
... Silicon oxide film (second insulating film), 10... Gate oxide film, 11... Gate electrode, 12.13... Source. 2 Drain diffusion layer.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上にフォトレジスト・マスクを形成し
、このフォトレジスト・マスクを用いて基板を選択エッ
チングして素子分離領域に溝を形成する工程と、 前記フォトレジスト・マスクを残した状態で前記溝にそ
の深さ以上の膜厚をもって第1の絶縁膜を埋込み形成す
る工程と、 前記フォトレジスト・マスクを除去した後、前記第1の
絶縁膜の側壁に選択的に第2の絶縁膜を形成する工程と
、 前記第1および第2の絶縁膜により囲まれた素子形成領
域に所望の素子を形成する工程と、を有することを特徴
とする半導体装置の製造方法。
(1) A step of forming a photoresist mask on a semiconductor substrate, selectively etching the substrate using this photoresist mask to form a groove in an element isolation region, and leaving the photoresist mask in place. burying a first insulating film in the trench to a thickness equal to or greater than the depth thereof; and after removing the photoresist mask, selectively forming a second insulating film on the sidewalls of the first insulating film; A method for manufacturing a semiconductor device, comprising: forming a desired element in an element forming region surrounded by the first and second insulating films.
(2)前記第1の絶縁膜の形成工程は、シリカ過飽和液
を用いて前記フォトレジスト・マスク以外の領域に選択
的にシリコン酸化膜を析出させる請求項1記載の半導体
装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein in the step of forming the first insulating film, a silicon oxide film is selectively deposited in a region other than the photoresist mask using a supersaturated silica solution.
(3)前記第1の絶縁膜の側壁に選択的に第2の絶縁膜
を形成する工程は、CVD法により全面に第2の絶縁膜
を堆積した後、これを反応性イオンエッチング法により
全面エッチングする請求項1記載の半導体装置の製造方
法。
(3) The step of selectively forming a second insulating film on the sidewalls of the first insulating film involves depositing the second insulating film on the entire surface using the CVD method, and then depositing the second insulating film on the entire surface using the reactive ion etching method. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising etching.
JP23577489A 1989-09-13 1989-09-13 Manufacture of semiconductor device Pending JPH03101147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23577489A JPH03101147A (en) 1989-09-13 1989-09-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23577489A JPH03101147A (en) 1989-09-13 1989-09-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03101147A true JPH03101147A (en) 1991-04-25

Family

ID=16991042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23577489A Pending JPH03101147A (en) 1989-09-13 1989-09-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03101147A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646956A2 (en) * 1993-09-30 1995-04-05 Motorola, Inc. Trench isolation structure in an integrated circuit and method of formation
US5433794A (en) * 1992-12-10 1995-07-18 Micron Technology, Inc. Spacers used to form isolation trenches with improved corners
US5677229A (en) * 1992-10-27 1997-10-14 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device isolation region
US5741738A (en) * 1994-12-02 1998-04-21 International Business Machines Corporation Method of making corner protected shallow trench field effect transistor
WO1999010918A1 (en) * 1997-08-22 1999-03-04 Micron Technology, Inc. Process of isolation in integrated circuit fabrication, using an antireflective coating
KR19990057300A (en) * 1997-12-29 1999-07-15 김영환 Trench formation method with improved leakage characteristics
US6444588B1 (en) 1999-04-26 2002-09-03 Micron Technology, Inc. Anti-reflective coatings and methods regarding same
US6541843B2 (en) 1998-09-03 2003-04-01 Micron Technology, Inc. Anti-reflective coatings and methods for forming and using same
JP2006078489A (en) * 2004-09-08 2006-03-23 Korea Electronics Telecommun Device for measuring image and lifetime of display panel
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation
JP4955880B2 (en) * 1999-08-30 2012-06-20 スパンション エルエルシー Method for fabricating an integrated circuit forming a trench in a substrate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677229A (en) * 1992-10-27 1997-10-14 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device isolation region
US5433794A (en) * 1992-12-10 1995-07-18 Micron Technology, Inc. Spacers used to form isolation trenches with improved corners
US5868870A (en) * 1992-12-10 1999-02-09 Micron Technology, Inc. Isolation structure of a shallow semiconductor device trench
EP0646956A2 (en) * 1993-09-30 1995-04-05 Motorola, Inc. Trench isolation structure in an integrated circuit and method of formation
EP0646956A3 (en) * 1993-09-30 1997-07-09 Motorola Inc Trench isolation structure in an integrated circuit and method of formation.
US5741738A (en) * 1994-12-02 1998-04-21 International Business Machines Corporation Method of making corner protected shallow trench field effect transistor
US6423631B1 (en) 1997-08-22 2002-07-23 Micron Technology, Inc. Isolation using an antireflective coating
US6121133A (en) * 1997-08-22 2000-09-19 Micron Technology, Inc. Isolation using an antireflective coating
US6174590B1 (en) 1997-08-22 2001-01-16 Micron Technology, Inc. Isolation using an antireflective coating
WO1999010918A1 (en) * 1997-08-22 1999-03-04 Micron Technology, Inc. Process of isolation in integrated circuit fabrication, using an antireflective coating
US6605502B2 (en) 1997-08-22 2003-08-12 Micron Technology, Inc. Isolation using an antireflective coating
US6495450B1 (en) 1997-08-22 2002-12-17 Micron Technology, Inc. Isolation using an antireflective coating
KR19990057300A (en) * 1997-12-29 1999-07-15 김영환 Trench formation method with improved leakage characteristics
US6541843B2 (en) 1998-09-03 2003-04-01 Micron Technology, Inc. Anti-reflective coatings and methods for forming and using same
US6673713B2 (en) 1998-09-03 2004-01-06 Micron Technology, Inc. Anti-reflective coatings and methods for forming and using same
US6784094B2 (en) 1998-09-03 2004-08-31 Micron Technology, Inc. Anti-reflective coatings and methods for forming and using same
US6444588B1 (en) 1999-04-26 2002-09-03 Micron Technology, Inc. Anti-reflective coatings and methods regarding same
JP4955880B2 (en) * 1999-08-30 2012-06-20 スパンション エルエルシー Method for fabricating an integrated circuit forming a trench in a substrate
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation
JP2006078489A (en) * 2004-09-08 2006-03-23 Korea Electronics Telecommun Device for measuring image and lifetime of display panel

Similar Documents

Publication Publication Date Title
KR100275730B1 (en) Trench isolating method
KR100273615B1 (en) Semiconductor device and fabrication method thereof
JPH03101147A (en) Manufacture of semiconductor device
KR100268894B1 (en) Method for forming of flash memory device
JP2007027348A (en) Semiconductor device and its manufacturing method
JPH0637178A (en) Manufacture of semiconductor device
US6380088B1 (en) Method to form a recessed source drain on a trench side wall with a replacement gate technique
KR100281124B1 (en) Semicon ductor and method for fabricating the same
KR20010107707A (en) Method for manufacturing semiconductor device having a sti structure
KR20020055147A (en) Method for manufacturing semiconductor device
KR100218741B1 (en) Semiconductor device and method for manufacturing the same
KR100271661B1 (en) Method for fabricating semiconductor device
KR100477786B1 (en) Method for forming contact in semiconductor device
KR100307536B1 (en) Manufacturing method for cell transistor in dram
KR100266028B1 (en) Semiconductor device and method for fabricating the same
KR100245087B1 (en) Method of forming an element isolation film in a semiconductor device
JPH06244415A (en) Semiconductor device and manufacture thereof
KR100252908B1 (en) Method for forming field region of semiconductor device
JP2002009144A (en) Method for manufacturing semiconductor device
KR100317311B1 (en) Semiconductor device and method for manufacturing the same
KR100290912B1 (en) Method for fabricating isolation region of semiconductor device
KR100203897B1 (en) Method of forming an element isolation region in a semiconductor device
JPH02211633A (en) Semiconductor device and manufacture thereof
KR20010038754A (en) Manufacturing method for mos transistor
JPH1126756A (en) Manufacture of semiconductor device