JPH0310040A - High ductility al-li-zr alloy - Google Patents

High ductility al-li-zr alloy

Info

Publication number
JPH0310040A
JPH0310040A JP14301089A JP14301089A JPH0310040A JP H0310040 A JPH0310040 A JP H0310040A JP 14301089 A JP14301089 A JP 14301089A JP 14301089 A JP14301089 A JP 14301089A JP H0310040 A JPH0310040 A JP H0310040A
Authority
JP
Japan
Prior art keywords
alloy
break
elongation
low
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14301089A
Other languages
Japanese (ja)
Inventor
Takeshi Kawabata
武 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP14301089A priority Critical patent/JPH0310040A/en
Publication of JPH0310040A publication Critical patent/JPH0310040A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/79Apparatus for Tape Automated Bonding [TAB]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the Al-Li alloy which is light in weight and having high ductility by adding B, C, N, P and S to an Al-Li-Zr alloy. CONSTITUTION:An alloy contg., by weight, 1.00 to 4.00% Li, 0.01 to 0.20% Zr and one or more kinds among 0.002 to 1.0% B, 0.01 to 1.0% C, 0.01 to 1.0% N, 0.001 to 1.0% P and 0.001 to 1.0% S and the balance Al with inevitable impurities is prepd. In this way, the Al-Li alloy having increased elongation without deteriorating the tensile strength can be used as an aircraft material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、航空機材料として注目されている軽量かつ高
弾性率を持つAl−Li基合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Al-Li based alloy that is lightweight and has a high modulus of elasticity and is attracting attention as an aircraft material.

〔従来の技術〕[Conventional technology]

航空機用材料は、比重の小さなA1合金が使用され、例
えば、AA2024やAA7050で示されるA1合金
材料が使用されている。しかし、これらのA1合金材料
は、強度の増加に伴って靭性が低下する性質がある。ま
た、アルミニウム合金において比重を減少させるために
Liを添加することがおこなわれているが、Liを添加
すると、ますます靭性が低下する結果となって、航空機
用材料としてAl−Li合金は、実用化されていないの
が実情である。
As the aircraft material, an A1 alloy having a small specific gravity is used, for example, an A1 alloy material designated as AA2024 or AA7050 is used. However, these A1 alloy materials have the property that their toughness decreases as their strength increases. Additionally, Li is added to aluminum alloys to reduce their specific gravity, but the addition of Li further reduces the toughness, making Al-Li alloys impractical as aircraft materials. The reality is that it has not been standardized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来使用されてきた2090合金および8090合金は
、低密度であるが(2,5〜2.6g/aI)従来航空
機に使用されている7000系合金に比較して、強度・
伸びにおいて劣っている。
The conventionally used 2090 and 8090 alloys have low density (2.5 to 2.6 g/aI), but have higher strength and strength than the 7000 series alloys conventionally used in aircraft.
It is inferior in elongation.

航空機用材料として実用化するためには、比強度2X1
0  mm以上、伸び10%以上が必要である。
In order to put it to practical use as an aircraft material, a specific strength of 2X1 is required.
0 mm or more and elongation of 10% or more are required.

しかし、このようなAl−Li基合金は、粒界破壊が生
じやすいために強度および延性が低下するという欠点を
有する。この粒界破壊は粒界にNaおよびLiが偏析し
やすいために生じるものである。したがって、Al−L
i基合金は、従来の航空機材料である7000系A1合
金に比べて問題があり、上述のようにまだ実用化されて
いないのが実情である。
However, such Al-Li-based alloys have the disadvantage that intergranular fracture tends to occur, resulting in reduced strength and ductility. This grain boundary fracture occurs because Na and Li tend to segregate at grain boundaries. Therefore, Al-L
The i-base alloy has problems compared to the 7000 series A1 alloy, which is a conventional aircraft material, and the fact is that it has not yet been put into practical use as described above.

本発明は、上記の問題点を解消し、引張強度は従来のA
l−Li合金と変わりなく、破断伸びが12%以上を有
するAl−Liアルミニウム合金を提供することを目的
としている。
The present invention solves the above problems, and the tensile strength is lower than that of the conventional A.
The object of the present invention is to provide an Al-Li aluminum alloy having an elongation at break of 12% or more, which is the same as the l-Li alloy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、上記目的を達成するために種々研究を重ね
た結果、本発明は、Li:1.QQ〜4.00%、Zr
:0.01〜0.20%およびB:0.002〜1.0
%、C:0.01〜1゜0%、N:0.01〜1.0%
、P:0.001〜11.0%、S:0.001〜1.
0%のうちの一種または二種以上を含有し、残部Alお
よび不可避的不純物からなる高延性Al−Li−Zr合
金を要旨とするものである。
The present inventor has conducted various studies in order to achieve the above object, and as a result, the present invention has been developed based on Li:1. QQ~4.00%, Zr
:0.01~0.20% and B:0.002~1.0
%, C: 0.01-1°0%, N: 0.01-1.0%
, P: 0.001-11.0%, S: 0.001-1.
The gist is a highly ductile Al-Li-Zr alloy containing one or more of 0% Al and the remainder being Al and unavoidable impurities.

すなわち、侵入型元素であるB、C,N、P。That is, B, C, N, and P are interstitial elements.

Sを添加することにより、これらの原子を粒界に微量偏
析させ、粒界の結合環境を変化させることにより、粒界
破壊が起こらなくなることを見出だし、本発明を完成し
た。すなわち、従来のAl−Li合金の粒界近傍に起こ
っていたLi−Li。
The present invention was completed based on the discovery that adding S causes these atoms to segregate in small amounts at the grain boundaries, thereby changing the bonding environment of the grain boundaries, thereby preventing grain boundary destruction. That is, Li-Li occurs near the grain boundaries of conventional Al-Li alloys.

Li−Na、Na−Alなどの結合を、侵入型元素であ
るB、C,N、P、Sを添加することにより、Li−X
−Li  (X=B、C,N、P、S以下同様) 、L
 i −X−NaSNa−X−A Iの結合に変化させ
ることにより、粒界の結合力を強化し、全体として強度
および延性を増大させるものである。
By adding interstitial elements B, C, N, P, and S to bonds such as Li-Na and Na-Al, Li-X
-Li (X=B, C, N, P, S and so on), L
By changing the bond to i -X-NaSNa-X-A I, the bonding force at grain boundaries is strengthened, and the overall strength and ductility are increased.

〔作用〕[Effect]

次に合金成分を限定した理由について説明する。 Next, the reason for limiting the alloy components will be explained.

Li Liは、合金材料の強度向上と軽量化に効果がある。こ
の効果は、1.0%より少ないと得られず、4.0%を
越えると熱間加工性が低下する。
Li Li is effective in improving the strength and reducing the weight of alloy materials. This effect cannot be obtained if the content is less than 1.0%, and if it exceeds 4.0%, hot workability decreases.

Zr Zrは、合金材料の再結晶を抑制するために0.01〜
0.20%含有させる。0.01%より少ないと最終焼
鈍で再結晶が容易に生じ、下部組織を安定化させること
が困難となり、高強度が得られなくなる。また、0.2
0%を越えると鋳造時巨大化合物を晶出しやすくなり、
熱間加工性が劣化する。
Zr Zr is 0.01 to 0.01 to suppress recrystallization of the alloy material.
Contain 0.20%. If it is less than 0.01%, recrystallization will easily occur during final annealing, making it difficult to stabilize the underlying structure and making it impossible to obtain high strength. Also, 0.2
If it exceeds 0%, giant compounds will tend to crystallize during casting,
Hot workability deteriorates.

B、C,N、P、S B、C,N、P、Sは、これらの原子を粒界に微量偏析
させ、粒界の結合環境を変化させ、粒界破壊を防止し、
強度および延性を増大させる。
B, C, N, P, S B, C, N, P, and S segregate small amounts of these atoms at grain boundaries, change the bonding environment of grain boundaries, and prevent grain boundary fracture.
Increases strength and ductility.

下限値未満および上限を越えると、これらの効果が認め
られない。
Below the lower limit and above the upper limit, these effects will not be observed.

また、これらの成分を複数添加する場合は、これらの和
が0.01〜1%とする。これら成分を複数添加すると
、粒界に競合偏析し、単独添加と同様な結合環境の変化
をもたらし、強度および延性を増大させる。下限値未満
および上限値を越えると、これらの効果が得られなくな
る。
Further, when a plurality of these components are added, the sum of these components is 0.01 to 1%. When a plurality of these components are added, competitive segregation occurs at the grain boundaries, resulting in a change in the bonding environment similar to when a single component is added, increasing strength and ductility. If it is less than the lower limit or exceeds the upper limit, these effects cannot be obtained.

〔実施例〕〔Example〕

CおよびNを除く第1表に示す合金を溶解し、アルゴン
ガスアトマイズ法により急冷凝固粉末を得た。このとき
の冷却速度は、103〜10≠’C/secであつ−た
。得られた粉末を149μm以下に分級した。C,Nの
元素を含有しない材料は、上記粉末をそのまま冷間金型
圧縮により直径63mm長さ150mmの圧粉体(相対
密度約70%)を作成した。また、C,Nを含有する材
料は、1μm以°下のグラファイトまたはAlN粉末を
上記粉末に加え、高エネルギーミルにより5〜10時間
混合した後、冷間金型圧縮により直径63rrrm長さ
150mmの圧粉体を作成した。この圧粉体をアルミニ
ウム缶に入れ真空 (10−12 〜10  Torr)に引きながら、450℃に加熱し
て脱ガスを行いアルミニウム缶を封じた。その後430
℃で間接押出により、断面が厚さ10mm、幅50mm
の板材を得た。これを500℃で均質化処理した後、熱
間圧延および冷間圧延を行い、厚さ1mmの試験材を得
た。得られた材料から圧延方向と平行にJIS−13B
号引張試験片を採取し、室温で引張試験を行った。それ
らの結果を第1表に示す。
The alloys shown in Table 1 except for C and N were melted and rapidly solidified powder was obtained by argon gas atomization. The cooling rate at this time was 103 to 10≠'C/sec. The obtained powder was classified to 149 μm or less. For the material not containing the elements C and N, the powder was directly compressed with a cold mold to form a green compact (relative density about 70%) with a diameter of 63 mm and a length of 150 mm. In addition, materials containing C and N can be prepared by adding graphite or AlN powder of 1 μm or less to the above powder, mixing it in a high-energy mill for 5 to 10 hours, and then pressing it with a cold mold into a material with a diameter of 63rrrm and a length of 150mm. A green compact was created. This green compact was placed in an aluminum can and heated to 450° C. while being vacuumed (10 −12 to 10 Torr) to degas, and the aluminum can was sealed. then 430
By indirect extrusion at ℃, the cross section becomes 10 mm thick and 50 mm wide.
The board material was obtained. After homogenizing this at 500°C, hot rolling and cold rolling were performed to obtain a test material with a thickness of 1 mm. JIS-13B parallel to the rolling direction from the obtained material
A No. 1 tensile test piece was taken and a tensile test was conducted at room temperature. The results are shown in Table 1.

これらの結果から、本発明合金であるNo、1〜42は
、いずれも破断伸びが12%以上を有する。
From these results, alloys Nos. 1 to 42 of the present invention all have elongations at break of 12% or more.

これに対して、比較例のNo、43は、B、C。On the other hand, Comparative Example No. 43 has B and C.

N、P、Sのいずれをも含有しないので、破断伸びが4
%と低くなった。
Since it does not contain any of N, P, or S, the elongation at break is 4.
%.

No、44および45は、S含有量が1.50%および
2.00%と高く、破断伸びが8%および6%と低くな
った。
Nos. 44 and 45 had high S contents of 1.50% and 2.00%, and low elongations at break of 8% and 6%.

No、46および47は、C含有量が1.50%および
2.00%と高く、破断伸びが8%および5%と低くな
った。
Nos. 46 and 47 had high C contents of 1.50% and 2.00%, and low elongations at break of 8% and 5%.

No、48および49は、N含有量が1.30%および
2.00%と高く、破断伸びが7%および4%と低くな
った。
In Nos. 48 and 49, the N content was high at 1.30% and 2.00%, and the elongation at break was low at 7% and 4%.

No、50および51は、P含有量が1.60%および
2.50%と高く、破断伸びが6%および5%と低くな
った。
Nos. 50 and 51 had high P contents of 1.60% and 2.50%, and low elongations at break of 6% and 5%.

No、52および53は、S含有量が1.20%および
3.00%と高く、破断伸びがいずれも5%と低くなっ
た。
No. 52 and No. 53 had a high S content of 1.20% and 3.00%, and a low elongation at break of 5%.

No、54および55は、(B+C)の含有量が(0,
75%+0.65%)ならびに(1,10%+0.80
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、7%および6%とそれぞれ低くなった。
No. 54 and 55 have a (B+C) content of (0,
75% + 0.65%) and (1,10% + 0.80
%) and the sum of both addition amounts was higher than 1.0%, and the elongation at break was low at 7% and 6%, respectively.

No、56および57は、(B+N)の含有量が(1,
35%+1,10%)ならびに(0,85%+2.13
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、5%および3%とそれぞれ低くなった。
Nos. 56 and 57 have (B+N) content of (1,
35% + 1,10%) and (0,85% + 2,13
%) and the sum of both addition amounts was higher than 1.0%, and the elongation at break was low at 5% and 3%, respectively.

No、58および59は、(B+P)の含有量が(0,
71%+0.82%)ならびに(1,24%+0.63
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、4%および3%とそれぞれ低くなった。
No. 58 and 59 have (B+P) content of (0,
71% + 0.82%) and (1,24% + 0.63
%) and the sum of the added amounts of both were higher than 1.0%, and the elongation at break was low at 4% and 3%, respectively.

No、60および61は、(B+S) の含有量が(1
,05%+0.55%)ならびに(0,80%+1.1
5%)と、両者の添加量の和が1.0%よりも高く、破
断伸びは、5%および3%とそれぞれ低くなった。
No. 60 and 61 have (B+S) content of (1
,05%+0.55%) and (0,80%+1.1
5%), the sum of the amounts added of both was higher than 1.0%, and the elongation at break was low at 5% and 3%, respectively.

No、62および63は、(C+N)の含有量が(0,
86%+0.75%)ならびに(1,19%+0.67
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、8%および6%とそれぞれ低くなった。
No. 62 and 63 have (C+N) content of (0,
86% + 0.75%) and (1,19% + 0.67
%) and the sum of the added amounts of both were higher than 1.0%, and the elongation at break was low at 8% and 6%, respectively.

No、64および65は、(c+p)の含有量が(0,
78%+0.96%)ならびに(1,60%+1.05
%)と、両者の添加量の和が1.0%よりも高(、破断
伸びは、4%および3%とそれぞれ低くなった。
No. 64 and 65 have (c+p) content of (0,
78% + 0.96%) and (1,60% + 1.05
%) and the sum of the amounts added of both was higher than 1.0% (the elongation at break was lower at 4% and 3%, respectively).

No、66および67は、(C+S)の含有量が(0,
68%+0.94%)ならびに(1,54%+1.50
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、いずれも4%と低くなった。
No. 66 and 67 have a (C+S) content of (0,
68% + 0.94%) and (1,54% + 1.50
%) and the sum of the amounts added of both was higher than 1.0%, and the elongation at break was low at 4% in both cases.

No、68および69は、(N+P)+7)含有量が(
0,69%+0.78%)ならびに(0,95%+1.
50%)と、両者の添加量の和が1.0%よりも高く、
破断伸びは、4%および3%とそれぞれ低くなった。
No. 68 and 69 have (N+P)+7) content (
0.69%+0.78%) and (0.95%+1.
50%), and the sum of the amounts added of both is higher than 1.0%,
The elongation at break was low at 4% and 3%, respectively.

No、70および71は、(N+S)の含有量が(0,
75%+1.12%)ならびに(1,52%+0.85
%)と、両者の添加量の和が1.0%よりも高く、破断
伸びは、4%および3%とそれぞれ低くなった。
No. 70 and 71 have (N+S) content of (0,
75% + 1.12%) and (1,52% + 0.85
%) and the sum of the added amounts of both were higher than 1.0%, and the elongation at break was low at 4% and 3%, respectively.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したとおりの構成であって、Al−
Li−Zr合金に、B、C,N、P。
The present invention has the configuration as explained above, and has an Al-
B, C, N, P in Li-Zr alloy.

Sを添加することにより、従来の高強度Ai合金材料よ
りも軽量、かつ高弾性率を有するAl−Li合金が得ら
れ、航空機用材料として使用することが可能となった。
By adding S, an Al-Li alloy that is lighter and has a higher elastic modulus than conventional high-strength Al alloy materials can be obtained, making it possible to use it as an aircraft material.

Claims (1)

【特許請求の範囲】 Li:1.00〜4.00% (重量%、以下同様) Zr:0.01〜0.20%および B :0.002〜1.0% C :0.01〜1.0% N :0.01〜1.0% P :0.001〜1.0% S :0.001〜1.0%のうちの一種または二種以
上を含有し、残部Alおよび不可避的不純物からなるこ
とを特徴とする高延性Al−Li合金。
[Claims] Li: 1.00 to 4.00% (wt%, the same applies below) Zr: 0.01 to 0.20% and B: 0.002 to 1.0% C: 0.01 to 1.0% N: 0.01 to 1.0% P: 0.001 to 1.0% S: Contains one or more of 0.001 to 1.0%, the balance being Al and unavoidable A highly ductile Al-Li alloy characterized by comprising impurities.
JP14301089A 1989-06-07 1989-06-07 High ductility al-li-zr alloy Pending JPH0310040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14301089A JPH0310040A (en) 1989-06-07 1989-06-07 High ductility al-li-zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14301089A JPH0310040A (en) 1989-06-07 1989-06-07 High ductility al-li-zr alloy

Publications (1)

Publication Number Publication Date
JPH0310040A true JPH0310040A (en) 1991-01-17

Family

ID=15328850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14301089A Pending JPH0310040A (en) 1989-06-07 1989-06-07 High ductility al-li-zr alloy

Country Status (1)

Country Link
JP (1) JPH0310040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306761A1 (en) * 2014-11-25 2017-10-26 Mitsubishi Heavy Industries, Ltd. Impeller and rotary machine
US10655634B2 (en) 2017-06-30 2020-05-19 Borgwarner Inc. Multi-piece compressor wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306761A1 (en) * 2014-11-25 2017-10-26 Mitsubishi Heavy Industries, Ltd. Impeller and rotary machine
US10655470B2 (en) * 2014-11-25 2020-05-19 Mitsubishi Heavy Industries, Ltd. Impeller and rotary machine
US10655634B2 (en) 2017-06-30 2020-05-19 Borgwarner Inc. Multi-piece compressor wheel

Similar Documents

Publication Publication Date Title
RU2109835C1 (en) Low-density aluminum-based alloy and material of manufacturing product therefrom
US6139653A (en) Aluminum-magnesium-scandium alloys with zinc and copper
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
EP0642598B1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
NZ205764A (en) Aluminium alloys containing lithium,magnesium and zinc and uses thereof
JP3278232B2 (en) Lightweight high strength magnesium alloy for casting
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH06279905A (en) Superplastic magnesium alloy
JPH0310040A (en) High ductility al-li-zr alloy
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
US2596486A (en) Titanium-base alloys
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JPH0218374B2 (en)
JP3387548B2 (en) Manufacturing method of magnesium alloy molded product
US3157496A (en) Magnesium base alloy containing small amounts of rare earth metal
JPH032218B2 (en)
JPH0432535A (en) High strength and high rigidity magnesium-lithium alloy
JP2711296B2 (en) Heat resistant aluminum alloy
JPH0665668A (en) Superplastic magnesium alloy
JP2768676B2 (en) Lithium-containing aluminum alloy produced by rapid solidification route
JP2604663B2 (en) Lightweight high strength magnesium alloy
JPH0379738A (en) High strength al alloy material
JPS6311643A (en) High strength aluminum alloy having superior heat resistance
JPH01290738A (en) Aluminum alloy having excellent heat resistance
JPH02258943A (en) High strength and high ductility al-be-li-cu-mg alloy