JPH03100124A - Production of cr-ni stainless steel sheet excellent in surface quality - Google Patents

Production of cr-ni stainless steel sheet excellent in surface quality

Info

Publication number
JPH03100124A
JPH03100124A JP23553689A JP23553689A JPH03100124A JP H03100124 A JPH03100124 A JP H03100124A JP 23553689 A JP23553689 A JP 23553689A JP 23553689 A JP23553689 A JP 23553689A JP H03100124 A JPH03100124 A JP H03100124A
Authority
JP
Japan
Prior art keywords
slab
stainless steel
rolling
cast
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23553689A
Other languages
Japanese (ja)
Inventor
Masanori Ueda
上田 全紀
Shinichi Teraoka
慎一 寺岡
Hidehiko Sumitomo
住友 秀彦
Toshiyuki Suehiro
末広 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23553689A priority Critical patent/JPH03100124A/en
Publication of JPH03100124A publication Critical patent/JPH03100124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a sheet metal excellent in surface characteristics by casting a stainless steel having a composition represented by the prescribed equation by a synchronous continuous casting method to a thickness close to product thickness and then carrying out cooling, cold rolling, and temper rolling under respectively prescribed conditions. CONSTITUTION:A Cr-Ni stainless steel having a composition in which delta-Fe, Cal(%) defined by an equation is regulated to -2 to 10% is refined. This steel is cast by using a continuous caster in which the wall surface of a mold is moved synchronously with a cast slab under the condition of 100 deg.C/sec cooling rate at the time of solidification, by which a cast strip of <=10mm thickness is prepared. Subsequently, this cast strip is cooled down to <=650 deg.C at >=20 deg.C/sec average cooling rate and coiled. Then the above cast strip is pickled and cold- rolled at >=40% rolling reduction, and the resulting steel sheet is annealed and subjected to temper rolling at 0.3-1.5% elongation percentage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳片と鋳型内壁面間に相対速度差のない、い
わゆる同期式連続鋳造法によって鋳片厚さを製品厚さに
近いサイズとしてCr−Ni系ステンレス1M薄板を製
造するプロセスにおいて、鋳片段階から組織を微細化し
て優れた表面性状を有するCr−Ni系ステンレス鋼薄
板を製造する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses a so-called synchronous continuous casting method in which there is no relative speed difference between the slab and the inner wall surface of the mold, so that the thickness of the slab can be reduced to a size close to the thickness of the product. The present invention relates to a method for producing a Cr-Ni stainless steel thin plate having excellent surface properties by refining the structure from the slab stage in the process of manufacturing a 1M thin Cr-Ni stainless steel plate.

〔従来の技術〕[Conventional technology]

従来、連続鋳造法を用いてステンレス鋼薄板を製造する
には、鋳型を鋳造方向に振動させながら厚さ100■以
上の鋳片に鋳造し、得られた鋳片の表面手入れを行い、
加熱炉において1000°C以上に加熱した後、粗圧延
機および仕上圧延機列からなるホットストリップミルに
よって熱間圧延を施し、厚さ数置のホットストリップと
していた。
Conventionally, in order to manufacture stainless steel thin plates using the continuous casting method, a slab is cast with a thickness of 100 mm or more while the mold is vibrated in the casting direction, and the surface of the resulting slab is treated.
After heating to 1000° C. or higher in a heating furnace, hot rolling was performed in a hot strip mill consisting of a rough rolling mill and a finishing rolling mill row to form a hot strip several orders of magnitude thick.

こうして得られたホットストリップを冷間圧延するに際
しては、最終製品に要求される形状(平坦さ)、材質、
表面性状を確保するために、強い熱間加工を受けたホッ
トストリップを軟化させるための熱延板焼鈍を行うとと
もに、表面のスケール等を酸洗工程の後に研削によって
除去していた。
When cold rolling the hot strip obtained in this way, the shape (flatness), material, and
In order to secure the surface quality, hot-rolled sheets were annealed to soften the hot strips that had undergone intense hot working, and scales and the like on the surface were removed by grinding after the pickling process.

この従来のプロセスぐおいては、長大な熱間圧延設備で
、材料の加熱および加工のために多大のエネルギーを必
要とし、生産性の面でも優れた製造プロセスとは言い難
かった。また、最終製品は、100mm以上の厚さの鋳
片から多くの加工が加えられて製造されるために集合組
織が発達し、製品に、ユーザーにおいてプレス加工等を
加えるときはその異方性を考慮することが必要となる等
使用上の制約も多かった。
This conventional process requires a large amount of energy to heat and process the material using a long hot rolling facility, and it cannot be said to be an excellent manufacturing process in terms of productivity. In addition, because the final product is manufactured from a cast slab with a thickness of 100 mm or more and subjected to many processes, the texture develops, and when the user applies press processing etc. to the product, its anisotropy is There were also many restrictions on use that needed to be taken into consideration.

処で、100m+以上の厚さの鋳片をホットストリップ
に圧延するために、長大な熱間圧延設備と多大なエネル
ギ、圧延動力を必要とするいう問題を解決すべく、最近
、連続鋳造の過程でホットストリップと同等か或いはそ
れに近い厚さの鋳片(薄帯)を得るプロセスの研究が進
められている。たとえば、「鉄と鋼、 ’85. A1
97〜°85.^256において特集された論文に、ホ
ットストリップを連続鋳造によって直接的に得るプロセ
スが開示されている。このような連続鋳造プロセスにあ
っては、得ようとする鋳片(ストリップ)のゲージが1
〜10圓の水準であるときはツインドラム方式が、また
鋳片のゲージが20〜50mmの水準であるときはツイ
ンベルト方式が検討されている。
Recently, in order to solve the problem of requiring a long hot rolling equipment and a large amount of energy and rolling power to roll slabs with a thickness of 100 m+ or more into hot strip, we have recently developed a continuous casting process. Research is underway on a process to obtain slabs (thin strips) with a thickness equal to or close to that of hot strip. For example, "Tetsu to Hagane, '85. A1
97~°85. The article featured in ^256 discloses a process for obtaining hot strip directly by continuous casting. In such a continuous casting process, the gauge of the slab to be obtained is 1.
The twin drum method is being considered when the gauge is 10 mm to 10 mm, and the twin belt method is being considered when the gauge of the slab is 20 to 50 mm.

しかしながら、これらの連続鋳造プロセスにおいては鋳
造段階にも未だ問題があるとされ、製品の材質や表面性
状に関して問題が解決したという段階には至っていない
However, in these continuous casting processes, there are still problems at the casting stage, and the problems regarding the material and surface quality of the product have not yet been resolved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

新しいプロセスとして開発が進められている、ホットス
トリップと同等か或はそれに近い厚さの鋳片(薄帯)を
連続鋳造によって得ることを前提とするプロセスにおい
ては、鋳造から製品までの工程が簡略化されるために、
ステンレス鋼製品の表面特性が、鋳片性状に敏怒に影響
されることになる。即ち、優れた表面性状を有する製品
を得るためには、優れた鋳片を得る必要がある。
The process from casting to product is simplified in a process that is being developed as a new process and is based on the premise of obtaining slabs (thin strips) with the same or similar thickness as hot strip through continuous casting. In order to become
The surface properties of stainless steel products are strongly influenced by the properties of the slab. That is, in order to obtain a product with excellent surface properties, it is necessary to obtain an excellent slab.

本発明は、ステンレス鋼薄板製品に特有の光沢むらやロ
ービング現象と呼ばれる表面欠陥のないCr−Ni系ス
テンレス鋼薄板を得ることができる簡潔な製造プロセス
を提供することを目的としてなされた。
The present invention has been made with the object of providing a simple manufacturing process capable of obtaining a Cr--Ni stainless steel thin plate free of surface defects called uneven gloss and roving phenomenon that are characteristic of stainless steel thin plate products.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、δ−Fe、cal (%)=3(Cr
+1.5Si+Mo+Nb+Ti)  2.8{Ni+
0.5Mn+0,5Cu+30(C+N) )  19
.8(%)で定義されるδ−Fe、cal(%)の値が
一2〜10%となる組成を有するCr−Ni系ステンレ
ス鋼を、鋳型壁面が鋳片と同期して移動する連続鋳造機
によって、凝固時の冷却速度を100℃/sec以上と
して厚さ10印以下の薄帯状鋳片に鋳造し、得られた鋳
片を可及的高温から650°C以下の温度まで20°(
/sec以上の平均冷却速度で冷却してから巻き取り、
酸洗を施した後、圧下率40%以上の冷間圧延を行い、
焼鈍を行った後、伸び率0.3〜1.5%の調質圧延を
行うことを特徴とする表面品質の優れたCr−Ni系ス
テンレス鋼薄板の製造方法である。
The gist of the present invention is that δ-Fe, cal (%) = 3(Cr
+1.5Si+Mo+Nb+Ti) 2.8{Ni+
0.5Mn+0.5Cu+30(C+N)) 19
.. Continuous casting in which the mold wall surface moves in synchronization with the slab is a Cr-Ni stainless steel having a composition with a δ-Fe defined as 8 (%) and a cal (%) value of 12 to 10%. A thin strip slab with a thickness of 10 marks or less is cast using a machine at a cooling rate of 100°C/sec or more during solidification, and the obtained slab is heated at a temperature of 20° (
Winding after cooling at an average cooling rate of /sec or more,
After pickling, cold rolling is performed at a reduction rate of 40% or more,
This is a method for manufacturing a Cr--Ni stainless steel thin plate with excellent surface quality, which is characterized by performing annealing and then skin pass rolling at an elongation rate of 0.3 to 1.5%.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

SO3304鋼を基本成分とする溶鋼を、内部水冷方式
の双ロール(ツインドラム)連続鋳造試験機によって鋳
造して2〜4−厚さの薄帯とし、冷却して巻き取った。
Molten steel containing SO3304 steel as a basic component was cast into a 2- to 4-thick ribbon using an internal water-cooled twin-roll (twin-drum) continuous casting machine, which was cooled and wound.

こうして得られた鋳片(薄帯)を、デスケーリングした
後直接冷間圧延し、最終焼鈍し、酸洗して2B製品を得
た。これらの製品の表面性状を、従来の、溶鋼を連続鋳
造して100m以上の厚さを有する鋳片とし、これを再
加熱後、ホットストリブミルによって熱間圧延し、冷間
圧延して得られた製品の表面性状と詳細に比較検討した
The thus obtained slab (thin ribbon) was descaled, directly cold rolled, finally annealed, and pickled to obtain a 2B product. The surface quality of these products can be improved by conventional continuous casting of molten steel to obtain a slab with a thickness of 100 m or more, which is then reheated, hot rolled in a hot strip mill, and then cold rolled. A detailed comparison was made with the surface properties of the products.

その結果、溶鋼を、内部水冷方式の双ロール(ツインド
ラム)連続鋳造試験機によって鋳造した鋳片から製造し
た2B製品板には、次のような表面欠陥が発生する可能
性があることが判明した。
As a result, it was found that the following surface defects may occur in 2B product sheets manufactured from slabs cast from molten steel using an internal water-cooled twin-roll (twin-drum) continuous casting testing machine. did.

(1)ロービング・・・冷延時に表面に微細な凹凸を生
じる。
(1) Roving: Fine irregularities are created on the surface during cold rolling.

(2)光沢むら・・・鋳片(薄帯)巻取り中の材料の組
織鋭敏化や粒界酸化またはγ 粒粗大化による光沢むらが発生 する。
(2) Unevenness in gloss: Unevenness in gloss occurs due to the sensitization of the structure of the material during rolling up of the slab (thin ribbon), grain boundary oxidation, or coarsening of γ grains.

これらの製品表面性状に関する問題は、従来のプロセス
ではみられない、薄鋳片(薄帯)を直接、連続鋳造によ
って得る過程を含むプロセス固有の問題である。
These problems regarding product surface properties are unique to the process, which involves the process of directly obtaining thin slabs (thin strips) by continuous casting, which is not seen in conventional processes.

発明者等は、これらの製品表面性状に関する問題の原因
を詳細に検討した結果、冷間圧延前の材料のγ粒径が大
きい場合や、鋳片のCr炭化物析出温度域の冷却不充分
の場合にこれらの表面欠陥が顕著に生じることを解明し
た。
As a result of a detailed study of the causes of problems related to the surface properties of these products, the inventors found that the problem may occur when the γ grain size of the material before cold rolling is large or when the slab is insufficiently cooled in the Cr carbide precipitation temperature range. It was revealed that these surface defects occur significantly.

こうして、ロービング対策としては、冷間圧延前の材料
の表層300趨のγ粒径を粒度Nl16以上、即ち50
tna以下とすることが、また光沢むら対策としては、
鋳片の巻取りまでの冷却を制御することが、薄鋳片を直
接、連続鋳造によって得る過程を含むプロセスを採ると
きに、望ましいことを明らかにした。
In this way, as a countermeasure against roving, the γ grain size in the surface layer 300 of the material before cold rolling is increased to a grain size of N116 or more, that is, 50
tna or less, and as a countermeasure against uneven gloss,
It has been shown that controlling the cooling of the slab until it is rolled up is desirable when employing a process that involves obtaining thin slabs directly by continuous casting.

以下にこれらの対策について更に詳細に説明する。These measures will be explained in more detail below.

冷間圧延用の材料として、鋳片の表層300mのγ粒径
を50pm以下にするための手段として、次のような種
々の考え方がある。即ち、 (1)I鋳片そのもののγ粒を小さくする、(2)薄鋳
片を、鋳造に引続き熱間加工して、再結晶細粒化する、 (3)!l鋳片を、冷間加工し、焼鈍して、再結晶細粒
化する、 等である。
As a material for cold rolling, there are various ideas as follows as means for reducing the γ grain size in the surface layer 300 m of a slab to 50 pm or less. That is, (1) reduce the γ grains of the I slab itself, (2) hot-work the thin slab after casting to recrystallize it to make it finer, and (3)! The slab is cold-worked, annealed, recrystallized to make it fine-grained, and so on.

本発明は特に上記の(1)鋳片そのもののγ粒を小さく
する方法に関するものである。
The present invention particularly relates to the above (1) method of reducing the γ grains of the slab itself.

まず双ロール法や単ロール法等の薄鋳片のγ粒そのもの
を小さくする方法としては、凝固時のγ粒を小さくする
と共に、その後のγ粒の成長を抑制するために、高温か
ら冷却することが重要である。
First, as a method to reduce the size of the γ grains in thin slabs such as the twin roll method or the single roll method, in addition to reducing the size of the γ grains during solidification, cooling from a high temperature is used to suppress the subsequent growth of the γ grains. This is very important.

以上の考え方に従って本発明者等は各種組成の18Cr
  8 Niを基本とする溶鋼を実験室の小型双ロール
や単ロールで鋳造し、鋳造直下の急冷を行なって、ステ
ンレス鋼の表面品質、特に表面のうねりの原因となるロ
ービングに注目して研究を実施した。この結果、先に述
べた冷延前の鋳片の表層300趨について、1粒径を平
均粒度隘6以上、即ち平均粒径として50庫以下とする
ことが望ましいことが判明した。
Based on the above idea, the present inventors have developed various compositions of 18Cr.
8 We cast Ni-based molten steel using small twin rolls or a single roll in the laboratory, and rapidly cooled it immediately after casting to conduct research on the surface quality of stainless steel, focusing in particular on the rovings that cause surface waviness. carried out. As a result, it was found that for the surface layer 300 of the slab before cold rolling mentioned above, it is desirable that the average grain size of each grain be 6 or more, that is, 50 or less as an average grain size.

双ロール法や単ロール法等により鋳造した薄鋳片の1粒
は、凝固後2.速に成長する。したがって凝固完了後は
ただちに冷却を開始して、平均冷却速度20℃/sec
以上で冷却し、650°C以下の温度で巻き取ることが
必要である。
A single grain of thin slab cast by the twin roll method or single roll method, etc., undergoes 2. Grow quickly. Therefore, cooling is started immediately after solidification is completed, and the average cooling rate is 20°C/sec.
It is necessary to cool the film at a temperature above 650°C and to wind it up at a temperature below 650°C.

更に上記の冷却に加えて、合金組成もγ粒径の微細化に
重要であることが判明した。
Furthermore, in addition to the above-mentioned cooling, it has been found that alloy composition is also important for refining the γ grain size.

第1図はFe −Cr−Ni系三元系の平衡状態図にお
けるCreq + N ieq # 30%相当部の断
面状態図を文献(Transaction of JW
Rl、 Vol、14. No、1+ 1985+p1
25)から引用したものである。CreqとN1eqは
次の通りで、成分から計算される。
Figure 1 shows the cross-sectional phase diagram of a portion corresponding to Creq + Nieq # 30% in the equilibrium phase diagram of the Fe-Cr-Ni ternary system, based on the literature (Transaction of JW
Rl, Vol, 14. No, 1+ 1985+p1
25). Creq and N1eq are as follows and are calculated from the components.

Creq=Cr (%)+1,5XSi(%)+Na(
%)+Nb (%) +Ti (%) Nieq=Ni (%) +1/2Mn(%) +1/
2Cu(%)+30(C(%)十N(%)) まずCreqが小さ(て、■のケースではCreq=1
7.3%で初晶はγで凝固し完全γ相である。この場合
のγ相は液相線直下の1450°C以上で晶出し以後成
長する。一方Creqが大きくなり■のケースCreq
 =19.5%以上では初品はδ相で凝固を完了し、固
相反応として約1370℃からはじめてγ相が析出し始
め、以後成長に移るが、先に述べたCreqの小さいケ
ースに比較すると1粒の成長は大いに抑制される。これ
は鋳造直後の高温域がγ粒の成長を支配することからも
十分考えられることである。Creqがこれらの中間域
では包共晶反応が加わって複雑になるが、γ粒の成長を
抑制するにはδ凝固をさせるような成分系が有利である
。特にδ凝固を活用してTの析出開始を遅らせる成分選
択と、高温域を急冷する方法の組合せがγ粒の成長を抑
制して微細化するためには効果的である。
Creq=Cr (%)+1,5XSi(%)+Na(
%) +Nb (%) +Ti (%) Nieq=Ni (%) +1/2Mn (%) +1/
2Cu (%) + 30 (C (%) 1 N (%)) First, Creq is small (in the case of ■, Creq = 1
At 7.3%, the primary crystal solidifies in γ and is a complete γ phase. In this case, the γ phase crystallizes and grows at 1450° C. or higher, just below the liquidus line. On the other hand, if Creq becomes larger, ■Creq
= 19.5% or more, the initial product completes solidification in the δ phase, and the γ phase begins to precipitate at about 1370°C as a solid phase reaction, and then begins to grow, but compared to the case with small Creq mentioned earlier. As a result, the growth of a single grain is greatly suppressed. This is entirely conceivable because the high temperature region immediately after casting controls the growth of γ grains. When Creq is in these intermediate ranges, the peritectic reaction is added and becomes complicated, but in order to suppress the growth of γ grains, a component system that causes δ solidification is advantageous. In particular, the combination of component selection that utilizes δ solidification to delay the start of T precipitation and a method of rapidly cooling the high temperature region is effective for suppressing the growth of γ grains and making them fine.

多くの成分系で実験した結果、 δ−Pe、cal (%) = 3 (Cr41.5S
i+Mo+Nb+Ti)−2,8{Ni+1/2Mn+
1/2Cu)  84(C+N)−19,8(%)で示
されるδ−Fe、cal (%)を−2以上で10%ま
でとすることが有効であることが判明した。δ−Fe、
cal (%)が10%超ではこれらの効果は飽和する
As a result of experiments with many component systems, δ-Pe, cal (%) = 3 (Cr41.5S
i+Mo+Nb+Ti)-2,8{Ni+1/2Mn+
1/2Cu) 84(C+N)-19.8 (%) It has been found that it is effective to control δ-Fe, cal (%), to -2 or more and up to 10%. δ-Fe,
When cal (%) exceeds 10%, these effects are saturated.

こうして、合金組成の適性化と凝固後の冷却制御によっ
て表層300−の1粒径を50μ以下とする鋳片が得ら
れる。
In this way, by optimizing the alloy composition and controlling the cooling after solidification, a slab having a grain size of 50 μm or less in the surface layer 300- can be obtained.

該鋳片は、デスケーリングの後、冷間圧延、焼鈍、(焼
鈍雰囲気に応じて酸洗工程が入る事もある)、調質圧延
工程を経て薄板製品とされる。
After descaling, the slab is made into a thin plate product through cold rolling, annealing (depending on the annealing atmosphere, a pickling process may be included), and temper rolling.

冷延工程においては鋳片の形状を整えるとともに、デス
ケーリング時に発生するミクログループ等を消して製品
板に良好な表面性状を得るために40%以上の圧下率を
必要とする。本プロセスでは冷延素材(薄鋳片)の表層
300趨の平均1粒径を50−以下としているので冷延
板のロービングは極めて小さい、低圧下率では高圧下率
の時よりロービングの発生が大きく冷延板には多少ロー
ビングが認められるが、後で説明する調質圧延で解消出
来る程度のロービングである。
In the cold rolling process, a rolling reduction of 40% or more is required in order to adjust the shape of the slab, eliminate microgroups etc. that occur during descaling, and obtain good surface properties on the product sheet. In this process, the average grain size of the 300 grains in the surface layer of the cold-rolled material (thin slab) is set to 50- or less, so the roving of the cold-rolled sheet is extremely small. Although some roving is observed in the cold-rolled sheet, the roving can be eliminated by temper rolling, which will be explained later.

焼鈍工程では製品板の材質確保のため焼鈍後の仮の結晶
粒度阻が6〜8になるように焼鈍温度、焼鈍時間をコン
トロールすることが必要である。
In the annealing process, it is necessary to control the annealing temperature and annealing time so that the tentative grain size after annealing is 6 to 8 in order to ensure the quality of the product plate.

然る後調質圧延を行うが、従来プロセス(熱延工程を含
む)では冷延時のロービングの発生が無かったので調質
圧延では製品板の表面を整えるとともに幾分かの材質コ
ントロールを行う程度の軽い調質圧延であったが(圧延
率0.3%程度)、本プロセスでは冷延時に発生する軽
いロービングを矯正して良好な表面を得るため調質圧延
での圧下率を若干多めに(0,3〜1.5%)する事が
必要である。
After that, skin pass rolling is performed, but since conventional processes (including the hot rolling process) did not cause roving during cold rolling, skin pass rolling only prepares the surface of the product sheet and controls the material quality to some extent. However, in this process, in order to correct the light roving that occurs during cold rolling and obtain a good surface, the rolling reduction in skin pass rolling is slightly higher. (0.3 to 1.5%).

以上の本発明プロセスによって、良好な表面性状を有し
材質も良好なCr−Ni系ステンレス鋼薄板製品が得ら
れる。
By the above-described process of the present invention, a Cr--Ni stainless steel sheet product having good surface properties and good material quality can be obtained.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

18Cr −8Ni系を基本としNi量を主として変化
させたステンレス鋼を溶製し、内部水冷方式の双ロール
鋳造機を用いて、1.6 cmから7.3鵬厚みの鋳片
に鋳造した。成分例は第1表の通りである。
Stainless steels based on the 18Cr-8Ni system with mainly varying amounts of Ni were melted and cast into slabs from 1.6 cm to 7.3 cm thick using an internal water-cooled twin roll casting machine. Examples of ingredients are shown in Table 1.

δ−Fe、cal (%)を−3,78〜7.93 (
%)まで変化させた。
δ-Fe, cal (%) -3,78~7.93 (
%).

鋳造機の出側には高圧窒素ガスを吹きつける冷却手段に
引き続いて、内部冷却方式のロールによる冷却手段を配
置して、種々の冷却速度で鋳片を冷却した。また、冷却
速度によってはミスト冷却手段もロール冷却のあとに配
置した。こうして、鋳造板厚、したがって鋳造速度によ
って異なるが、巻き取りまでを平均冷却速度10〜30
0℃/ 513Cの種々の冷却速度で冷却し、950〜
400℃の範囲の種々の温度で巻き取った。
On the exit side of the casting machine, a cooling means for blowing high-pressure nitrogen gas was followed by a cooling means for internally cooling rolls, and the slabs were cooled at various cooling rates. Depending on the cooling rate, a mist cooling means was also placed after the roll cooling. In this way, the average cooling rate until winding is 10 to 30, depending on the casting plate thickness and therefore the casting speed.
Cooled at various cooling rates of 0℃/513C, 950~
It was wound at various temperatures in the range of 400°C.

得られた鋳片の組織を観察した結果、本発明鋼では表層
300−までの平均γ粒径が50/m以下であった。こ
れらの鋳片を酸洗した後、50%または85%の圧下率
で冷延し、焼鈍後、伸び率0.6〜1.2%で調質圧延
した。得られた製品の表面にはロービングも光沢むらも
発生せず良好であった。一方比較鋼においては、δ−F
e、cal (%)が−2%未満でδ凝固の効果が発揮
されなかったり、巻き取りまでの平均冷却速度が不足し
たり、巻き取り温不良であった。
As a result of observing the structure of the obtained slab, it was found that in the steel of the present invention, the average γ grain size up to the surface layer 300 was 50/m or less. After pickling these slabs, they were cold rolled at a rolling reduction of 50% or 85%, annealed, and then temper rolled at an elongation of 0.6 to 1.2%. The surface of the obtained product was in good condition with no roving or uneven gloss. On the other hand, in comparative steel, δ−F
When e, cal (%) was less than -2%, the effect of δ solidification was not exhibited, the average cooling rate until winding was insufficient, or the winding temperature was poor.

以下余白 〔発明の効果〕 本発明に従い、製品厚さに近い厚さの薄帯を連続鋳造に
よって直接的に得る簡潔なプロセスにより、表面品質の
優れたCr−Ni系ステンレス鋼薄板を得ることができ
る。
Margins below [Effects of the Invention] According to the present invention, a Cr-Ni stainless steel thin plate with excellent surface quality can be obtained by a simple process of directly obtaining a thin strip with a thickness close to the product thickness by continuous casting. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Fe −Cr−Ni系三元系平衡状態図にお
けるCreq+N1eqζ30%相当部の断面状態図で
ある。
FIG. 1 is a cross-sectional state diagram of a portion corresponding to Creq+N1eqζ30% in the Fe-Cr-Ni ternary system equilibrium state diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、δ−Fe.cal(%)=3(Cr+1.5Si+
Mo+Nb+Ti)−2.8{Ni+0.5Mn+0.
5Cu+30(C+N)}−19.8(%)で定義され
るδ−Fe.cal(%)の値が−2〜10%となる組
成を有するCr−Ni系ステンレス鋼を、鋳型壁面が鋳
片と同期して移動する連続鋳造機によって、凝固時の冷
却速度を100℃/sec以上として厚さ10mm以下
の薄帯状鋳片に鋳造し、得られた鋳片を可及的高温から
650℃以下の温度まで20℃/sec以上の平均冷却
速度で冷却してから巻き取り、酸洗を施した後、圧下率
40%以上の冷間圧延を行い、焼鈍を行った後、伸び率
0.3〜1.5%の調質圧延を行うことを特徴とする表
面品質の優れたCr−Ni系ステンレス鋼薄板の製造方
法。
1, δ-Fe. cal(%)=3(Cr+1.5Si+
Mo+Nb+Ti)-2.8{Ni+0.5Mn+0.
5Cu+30(C+N)}-19.8(%) δ-Fe. Cr-Ni stainless steel having a composition with a cal (%) value of -2 to 10% is cast using a continuous casting machine in which the mold wall surface moves in synchronization with the slab, and the cooling rate during solidification is set at 100°C/100°C. sec or more and cast into a thin strip-shaped slab with a thickness of 10 mm or less, cool the obtained slab from the highest possible temperature to a temperature of 650 ° C or less at an average cooling rate of 20 ° C / sec or more, and then coil it, Excellent surface quality characterized by performing pickling, cold rolling with a rolling reduction of 40% or more, annealing, and then skin pass rolling with an elongation of 0.3 to 1.5%. A method for manufacturing a Cr-Ni stainless steel thin plate.
JP23553689A 1989-09-13 1989-09-13 Production of cr-ni stainless steel sheet excellent in surface quality Pending JPH03100124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553689A JPH03100124A (en) 1989-09-13 1989-09-13 Production of cr-ni stainless steel sheet excellent in surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23553689A JPH03100124A (en) 1989-09-13 1989-09-13 Production of cr-ni stainless steel sheet excellent in surface quality

Publications (1)

Publication Number Publication Date
JPH03100124A true JPH03100124A (en) 1991-04-25

Family

ID=16987434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553689A Pending JPH03100124A (en) 1989-09-13 1989-09-13 Production of cr-ni stainless steel sheet excellent in surface quality

Country Status (1)

Country Link
JP (1) JPH03100124A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513443A (en) * 2003-07-01 2009-04-02 クラウン パッケージング テクノロジー、インコーポレイテッド Closing member
JP2014529682A (en) * 2011-08-17 2014-11-13 リージェンツオブ ザ ユニバーシティ オブ ミネソタ Formation technology of iron nitride permanent magnet and iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263930A (en) * 1989-04-05 1990-10-26 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in surface quality

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263930A (en) * 1989-04-05 1990-10-26 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in surface quality

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513443A (en) * 2003-07-01 2009-04-02 クラウン パッケージング テクノロジー、インコーポレイテッド Closing member
JP4879736B2 (en) * 2003-07-01 2012-02-22 クラウン パッケージング テクノロジー、インコーポレイテッド How to control the pressure in the can
CN107103975B (en) * 2011-08-17 2020-06-16 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2014529682A (en) * 2011-08-17 2014-11-13 リージェンツオブ ザ ユニバーシティ オブ ミネソタ Formation technology of iron nitride permanent magnet and iron nitride permanent magnet
CN107103975A (en) * 2011-08-17 2017-08-29 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O

Similar Documents

Publication Publication Date Title
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JPH02133528A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
US5188681A (en) Process for manufacturing thin strip or sheet of cr-ni-base stainless steel having excellent surface quality and material quality
JPH08300124A (en) Production of austenitic stainless steel thin cast slab
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0219426A (en) Manufacture of cr-ni stainless steel sheet having excellent quality and surface property
JPH02133522A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH08176676A (en) Production of chromium-nickel-type stainless steel sheet excellent in surface quality
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JPH0559446A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH02267225A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JP2784026B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality
JPH04333347A (en) Production of stainless steel cast strip having excellent corrosion resistance and machinability
JPH0796685B2 (en) Method for producing Cr-Ni series stainless steel thin plate with excellent surface quality and material