JPH0295412A - Gas separating film apparatus utilizing hollow yarn membrane - Google Patents

Gas separating film apparatus utilizing hollow yarn membrane

Info

Publication number
JPH0295412A
JPH0295412A JP24883188A JP24883188A JPH0295412A JP H0295412 A JPH0295412 A JP H0295412A JP 24883188 A JP24883188 A JP 24883188A JP 24883188 A JP24883188 A JP 24883188A JP H0295412 A JPH0295412 A JP H0295412A
Authority
JP
Japan
Prior art keywords
hollow fiber
gas
treated
fiber membrane
hollow yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24883188A
Other languages
Japanese (ja)
Inventor
Atsuo Kumano
淳夫 熊野
Yoichi Matsui
洋一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP24883188A priority Critical patent/JPH0295412A/en
Publication of JPH0295412A publication Critical patent/JPH0295412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate decrease of membrane separation efficiency due to local channelling or stagnation by directing a stream of gas to be treated flowing through a hollow yarn membrane layer toward an axial direction and increasing a flow rate of the gas as much as possible. CONSTITUTION:A discharging duct 6 of a gas to be treated is provided to a central part of a core and the duct is opened at an end of the hollow yarn membrane 5. Further, the duct 6 is opened at each end 11, 17, 15 of an unopened side of the hollow yarn membrane 5 into a hollow yarn membrane layer. Furthermore, parts except an inlet 12 for introduced gas to be treated at the open end side of the hollow yarn membrane among peripheral cylindrical parts of an assembled body 1 of the hollow yarn membrane are covered with an impermeable film 9 which inhibits permeation of the gas to be treated. A ratio (L/D) of a distance L in axial direction of the part covered with the impermeable film 9 to a discharge D in a diametral direction is regulated to >=5. By increasing a flow rate of the gas to be treated which flows through the hollow yarn membrane layer as large as possible by directing the direction of the stream of the gas to be treated flowing through the hollow yarn membrane layer to the axial direction, reduction of membrane separation efficiency due to local channelling or stagnation is eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、膜壁が気体に対して選択透過性を有する中空
糸膜よりなる気体針RM装置に間し、?11処理気体の
流速を増大させ、被処理気体を中空糸膜面へ均一に分配
供給することにより分離効率の向、Eを可能とした中空
糸膜型気体分離M装置に間するものである9 (従来の技術) 選択透過性を有する中空糸膜を束ねてその少なくとも一
端を接合固化し樹脂壁を形成さけてなる中空糸膜組立体
は、従来よりIr1体の透過、透析、限外ろ過、逆浸透
分な0.X体外ggなどに広く活用されている9この種
の気体外gi1%装置においては、被処理気体を中空糸
膜面へよどみなく均ズに分配供給することが1分離効率
を高める上でffi要な要件となる。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a gas needle RM device comprising a hollow fiber membrane whose membrane wall has permselectivity for gas. 11 This is a hollow fiber membrane type gas separation M device that enables improved separation efficiency and E by increasing the flow rate of the treated gas and uniformly distributing and supplying the gas to be treated to the hollow fiber membrane surface.9 (Prior Art) Hollow fiber membrane assemblies, which are made by bundling hollow fiber membranes having permselectivity and bonding and solidifying at least one end thereof to avoid forming a resin wall, have conventionally been used for permeation of Ir1, dialysis, ultrafiltration, Reverse osmosis is 0. In this type of external gaseous GI 1% device, which is widely used for X-in vitro GG, etc., it is important to uniformly distribute and supply the gas to be treated to the hollow fiber membrane surface without stagnation. This is a requirement.

即ち、中空糸膜による気体分離においては、一般の固液
分離などで採用される全量ろ過方式を採ることはまれで
、クロスフロ一方式と称して、被処理気体の全てをろ過
するのではなく、膜表面で濃縮された低透過性成分の一
部を流し出す方式が採用される。
In other words, in gas separation using hollow fiber membranes, it is rare to use the total volume filtration method used in general solid-liquid separation, and it is called a cross-flow one-way method, which does not filter all of the gas to be processed. A method is adopted in which a portion of the low-permeability components concentrated on the membrane surface is flushed out.

そのため、クロスフロ一方式においては、従来の分離操
作で要求される以上に、被処理気体を膜面へ均一に分配
供給させなければならない、 しかし、膜面での流れが
不均一になると中空糸i組立体の一部で局所的に流量が
大きい部分が生じ、そにでは高透過性成分の多くが膜を
透過せず、非透過側へ流れ出てしまうため膜の分離性能
を著しく低下させる。特に空気からの窒素富化など低透
過性成分の濃縮に用いる場合で被処理気体の流量が透過
気体のTfAQに対して充分大きくない場合はどこの傾
向が顕著である。
Therefore, in the cross-flow one-way system, the gas to be treated must be distributed and supplied to the membrane surface more uniformly than required in conventional separation operations. However, if the flow on the membrane surface becomes uneven, the hollow fiber i There are parts of the assembly where the flow rate is locally high, and in those parts most of the highly permeable components do not pass through the membrane but flow out to the non-permeable side, significantly reducing the separation performance of the membrane. This tendency is particularly noticeable when the flow rate of the gas to be treated is not sufficiently large compared to the TfAQ of the permeate gas when used for concentrating low permeability components such as nitrogen enrichment from air.

従来の中空糸11型気体分ai**iの一例では、中空
糸膜が筒状ケーシング内にほぼ均一に充填され。
In an example of the conventional hollow fiber type 11 gas component ai**i, the hollow fiber membrane is filled almost uniformly into a cylindrical casing.

かつそれぞれの中空糸膜は両側の樹脂壁を貫通してその
外側に間口しており、w1処+1!気体はvX吠ケーシ
ングに設けられた人口および出口より供給排気される構
造となっている。しかし、この構造の装置では被処理気
体が中空糸膜層の中心部まで浸透せず、その大部分が中
空糸膜層の外層、換言すれば筒状ケーシングの内壁近傍
に沿フて流れてしま゛う欠点があり。
Moreover, each hollow fiber membrane penetrates the resin walls on both sides and has an opening on the outside, so that w1 +1! The structure is such that gas is supplied and exhausted from an outlet and an outlet provided in the vX casing. However, in a device with this structure, the gas to be treated does not penetrate to the center of the hollow fiber membrane layer, and most of it flows along the outer layer of the hollow fiber membrane layer, in other words, near the inner wall of the cylindrical casing. There are some drawbacks.

有効に膜分離を行なう膜面積が小さく、H置容積あたり
の処理気体流量が小さいという欠点があった。
The disadvantages are that the membrane area for effective membrane separation is small and the flow rate of gas to be processed per H storage volume is small.

特開昭52−63179号公報、特開昭154−110
183号公報、特開昭62−13G211号公報には、
上記分離膜装置とほぼ同じ円筒軸方向流が主体の被処理
流体流路型式をとる型で、上記分離膜装置の不均一流を
改良した例が示されている。しかしながら、先の2つの
例(特開昭52−63179号公報、特開昭54−11
0183号公報)では被処理気体流入口流路を確保する
ための構造にまだ改良の余地を夕1している。すなわち
、特開昭52−03179号公報では、m口接着部のみ
で中空糸膜束を接着固化させ、他端は無接着とし、この
部位を彼処Fl!流体入口としている。したがって、中
空糸膜束の配置が被処理流体の流速いかんでは、固定さ
れず。
JP-A-52-63179, JP-A-154-110
No. 183 and JP-A-62-13G211,
An example is shown in which the non-uniform flow of the above separation membrane device is improved, using a type of fluid flow path to be processed in which flow is mainly in the cylindrical axial direction, similar to the above separation membrane device. However, the previous two examples (JP-A-52-63179, JP-A-54-11)
No. 0183), there is still room for improvement in the structure for securing the inlet flow path for the gas to be treated. That is, in Japanese Patent Application Laid-Open No. 52-03179, the hollow fiber membrane bundle is bonded and solidified only at the m-end bonded part, the other end is left unbonded, and this part is attached to Fl! It is used as a fluid inlet. Therefore, the arrangement of the hollow fiber membrane bundle is not fixed depending on the flow rate of the fluid to be treated.

収縮やずれが生じて、不均一流が発生する13造である
It is a 13-structure structure that shrinks and shifts, causing non-uniform flow.

従来の中空糸模型分離膜装置の他の一例では、多数の孔
を有する中空管の周りに中空糸膜な密に、かつ均一に配
置し、中空管に供給された被処I!!!?A体は多数の
孔から放出されて中空糸膜F’を積切って流れるように
なっている。この構造は被処理流体が中空糸膜層の全域
にわたって均一に分散される点で前述のものよりも優れ
ているが、l被処理流体が柱状の中空糸膜層内さ方向お
よび半径方向に分散して流れるために、中空糸膜層を通
過する被処理流体の流速が小さく、中空糸膜層における
中空糸密度のわずかなむらによって被処理流体が偏流し
1分離性能を低下させてしまう欠点があった。
In another example of a conventional hollow fiber model separation membrane device, hollow fiber membranes are densely and uniformly arranged around a hollow tube having a large number of holes, and the treated I! ! ! ? Body A is released from a large number of holes and flows through the hollow fiber membrane F'. This structure is superior to the above-mentioned structure in that the fluid to be treated is uniformly dispersed over the entire area of the hollow fiber membrane layer. Because of this, the flow rate of the fluid to be treated passing through the hollow fiber membrane layer is low, and slight unevenness in the density of hollow fibers in the hollow fiber membrane layer causes the fluid to be treated to drift and reduce separation performance. there were.

一方、1キ開昭62−13・6211号公報には、非透
過性フィルムで中空 糸膜組立体の外周を被い中空糸膜層内の被処理流体を軸
方向に流す例が示されている。しかし、これらの例では
非透過性フィル11で被われた部分の軸方向距離と径方
向距離とのI’SIJ係については何ら触れられておら
ず、軸方向距離が径方向距離のll +rt以下の場合
は中空糸膜層を通過する被処理流体が軸方向に流れる割
合が少ないばかりか被処理流体の流入口、流出口付近即
ち、径方向と軸方向の流れが混在する領域で発生する局
所的なよどみの影響が大きく9分離膜装置としての分離
効率は従来のものに比べて改善されないものであまた。
On the other hand, Japanese Patent Publication No. 62-13-6211 discloses an example in which the outer periphery of a hollow fiber membrane assembly is covered with an impermeable film and the fluid to be treated in the hollow fiber membrane layer is caused to flow in the axial direction. There is. However, in these examples, there is no mention of the I'SIJ relationship between the axial distance and the radial distance of the portion covered with the non-transparent film 11, and the axial distance is less than or equal to the radial distance ll + rt. In this case, not only is there a small proportion of the fluid to be treated flowing through the hollow fiber membrane layer in the axial direction, but also local flow occurs near the inlet and outlet of the fluid to be treated, i.e. in areas where radial and axial flows coexist. The effect of stagnation is large, and the separation efficiency of the separation membrane device is not improved compared to conventional ones.

さらに、被処理流体を中空糸膜組立体のコア中央部に有
する管路の孔より供給する場合、被処理流体が農耕に中
空糸膜に接する膜面積が小さいため、多くの高速の被処
理流体が一度に中空糸膜の一部分に集中する。そのため
被処理流体中に中空糸膜を劣化させへ不純物が含まれる
と局所的に中空糸膜の劣化を加速するものである。逆に
、流入口と流出口を反対にし被処理流体を外周面倒より
流入させる1合は。
Furthermore, when the fluid to be treated is supplied through the hole in the conduit in the center of the core of the hollow fiber membrane assembly, the membrane area in contact with the hollow fiber membrane is small, so the fluid to be treated is often fed at high speed. is concentrated in one part of the hollow fiber membrane at a time. Therefore, if impurities that degrade the hollow fiber membranes are contained in the fluid to be treated, the deterioration of the hollow fiber membranes will locally be accelerated. On the other hand, if the inlet and outlet are reversed and the fluid to be treated flows in from the outer periphery.

上記の問題点は解決されるが、7α体のような粘度の高
い流体では、中心方向の流れにより中空糸膜層が圧密化
され有効膜面積の減少、被処理流体中の不純物の蓄積が
生じるなどの問題がある。被処理流体が気体のような粘
度の低い流体ではこの様な問題<、1生じないが以上の
点については特開昭132−1362目号公報 は何ら考慮されていない。
Although the above problems are solved, in the case of a highly viscous fluid such as 7α, the flow toward the center compacts the hollow fiber membrane layer, resulting in a decrease in the effective membrane area and the accumulation of impurities in the fluid to be treated. There are problems such as. Such a problem does not occur if the fluid to be treated is a low viscosity fluid such as gas, but the above point is not taken into consideration at all in Japanese Patent Application Laid-Open No. 132-1362.

(発明が解決しようとする問題点) 本発明は上記の様な事情に着目してなされたものであっ
て、中空糸MHI立体の円筒部内における被処理気体の
流れを均一化することが可能である。即ぢ中空糸11層
を流れる被処理気体を軸方向の流れとすることによりそ
の流速をできる限り大きくして9局部的@流やよどみに
よって生じる膜分離効率の低下を解消することのできる
技術を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made with attention to the above-mentioned circumstances, and it is possible to equalize the flow of the gas to be treated within the cylindrical portion of the hollow fiber MHI solid body. be. We have developed a technology that can eliminate the decrease in membrane separation efficiency caused by local flow and stagnation by making the gas to be treated flowing through the 11 layers of hollow fibers flow in the axial direction, increasing the flow velocity as much as possible. This is what we are trying to provide.

(問題点を解決するための手段) すなわち1本発明に係る中空糸膜型気体分離膜装置は、
′m処理気体の排出管路をコア中央部に有し一端部て中
空糸膜が開口している円rJ型の通訳透過性中空糸膜組
立体に於いて、その排出管路が、中空糸膜の非開口側の
一端部で中空糸膜層に開口し該中空糸膜組立体の外周円
筒部カイ被処理気体を透過さぜない非透過性フィルムで
被われ、該非透過性フィルムで被われた部分の軸方向距
離りと径方向距fJIDの比(L/D)が3−以上であ
る構造をなしている。
(Means for solving the problems) That is, the hollow fiber membrane type gas separation membrane device according to the present invention has the following features:
In a circular rJ-type interpreter-permeable hollow fiber membrane assembly in which a process gas discharge pipe is located in the center of the core and the hollow fiber membrane is open at one end, the discharge pipe is connected to the hollow fiber membrane. The hollow fiber membrane layer is opened at one end of the non-opening side of the membrane, and the outer cylindrical part of the hollow fiber membrane assembly is covered with an impermeable film that does not allow the gas to be processed to pass through. The structure is such that the ratio (L/D) of the axial distance to the radial distance fJID is 3 or more.

以下、実施例図面を参照しつつ1本発明の具体的な構成
及び作用について説明する。第1図は0本発明に係る中
空糸!1型気体分社膜装廣の一具体例を示す断面図であ
り、1は中空糸Nx紺立体、2は中空糸膜組立体を収容
する円筒容器、3およびllは端板である。中空糸膜組
立体1は中空糸膜F’5.芯管6゜樹脂壁7.8から構
成され、中空糸膜層5の外周面は中空糸膜開口端側の樹
脂壁7の近傍の被処理気体流入口】2を除き非透過性フ
ィルム9で被われ、さらにその上を強化支持部材lOで
補強されている。
Hereinafter, a specific configuration and operation of the present invention will be explained with reference to the drawings. Figure 1 shows 0 hollow fibers according to the present invention! It is a sectional view showing a specific example of a type 1 gas separation membrane assembly, in which 1 is a hollow fiber Nx dark blue solid body, 2 is a cylindrical container that accommodates a hollow fiber membrane assembly, and 3 and 11 are end plates. The hollow fiber membrane assembly 1 includes a hollow fiber membrane F'5. It consists of a core tube 6° and a resin wall 7.8, and the outer peripheral surface of the hollow fiber membrane layer 5 is covered with an impermeable film 9, except for the gas inlet to be treated near the resin wall 7 on the open end side of the hollow fiber membrane. It is covered and further reinforced with a reinforcing support member IO.

非透過性フィルム9で被われた部分の軸方向距〃しと径
方向距UDとの比(L/D)はr以上必要であり2図−
1には8の場合を示している。芯管6には中空糸膜層5
内の中空糸膜非開口端部で孔11が設けられている。樹
脂!il!7では中空糸膜I!Tは該先端部を開口した
状態でそのまわりを樹脂で一体的に固着される一方、樹
脂壁8では中空糸膜群はm鎖固着されている。端板3は
中空糸膜の内部t′R路に連絡する透過気体出口13を
持ち、I!J脂壁7との間に気体室14を形成している
。一方、端板4は、中空糸膜層5の中心部に通じる非透
過気体出口1.5および供給気体人口16を有している
The ratio (L/D) between the axial distance and the radial distance UD of the portion covered with the non-transparent film 9 must be equal to or greater than r, as shown in Figure 2.
1 shows the case of 8. A hollow fiber membrane layer 5 is provided in the core tube 6.
A hole 11 is provided at the non-open end of the hollow fiber membrane. resin! Il! In 7, hollow fiber membrane I! T is integrally fixed with resin around the tip with its tip open, while the hollow fiber membrane group is fixed in m-strands on the resin wall 8. The end plate 3 has a permeate gas outlet 13 that communicates with the internal t'R path of the hollow fiber membrane and has an I! A gas chamber 14 is formed between it and the J fat wall 7. On the other hand, the end plate 4 has a non-permeable gas outlet 1.5 leading to the center of the hollow fiber membrane layer 5 and a supply gas port 16.

第1図に例示した中空糸膜型気体分離膜装置を用いて気
体分離を行なう場合、被処理気体は供wIyC体人口1
6から円筒容器2の内面と中空糸膜組立体1の外周面で
囲まれる環状流路18を流れ、非透過性フィルムで被わ
れない外周部位からなる被処理気体流入口12を通して
、中空糸膜層5へ導入される。
When gas separation is performed using the hollow fiber membrane type gas separation membrane device illustrated in FIG.
6, the hollow fiber membrane flows through an annular flow path 18 surrounded by the inner surface of the cylindrical container 2 and the outer peripheral surface of the hollow fiber membrane assembly 1, and passes through the to-be-treated gas inlet 12 consisting of the outer peripheral portion not covered with an impermeable film. Introduced into layer 5.

中空糸膜層6内部での被処理気体の流れは、まず。The flow of the gas to be treated inside the hollow fiber membrane layer 6 is as follows.

樹TiI璧7近傍を半径方向に流れ2次いで芯管軸方向
へ流れ、樹脂壁8付近で再度半径方向の流れとなり。
It flows in the radial direction near the TiI wall 7, then flows in the axial direction of the core tube, and then flows in the radial direction again near the resin wall 8.

芯管6に設けられた孔11より排出される。この開。It is discharged through a hole 11 provided in the core tube 6. This opening.

気体分離操作により中空糸膜を透過した気体は気体室1
4にて集められ、透過気体排出口13より系外へ抜き出
される。一方、前述の孔11に入った非透過気体は、非
透過気体導管17を経て、非透過気体出口15を通って
系外へ排出される。
The gas that has passed through the hollow fiber membrane during the gas separation operation is transferred to gas chamber 1.
The permeated gas is collected at 4 and extracted from the system through the permeated gas outlet 13. On the other hand, the non-permeable gas that has entered the aforementioned hole 11 passes through the non-permeable gas conduit 17 and is discharged out of the system through the non-permeable gas outlet 15.

本発明による中空糸I5!型気気体離膜装置では、従来
のような、多孔芯管全域より放射方向に被処理気体を分
配する方式の分離Ii装置に比較して、3〜80倍に被
処理気体線速を増大させることが可能である。大きな流
速は、中空糸IIP’内での気体の偏流やよどみを減じ
るばかりか、膜分離操作に特有の膜面近傍での濃度分F
jF!厚みを低減させて、膜分離効率を上昇させる。
Hollow fiber I5 according to the invention! The type gas separation device increases the linear velocity of the gas to be treated by 3 to 80 times compared to the conventional Separation II device which distributes the gas to be treated in the radial direction from the entire area of the porous core tube. Is possible. A large flow rate not only reduces the uneven flow and stagnation of gas within the hollow fiber IIP', but also reduces the concentration F near the membrane surface, which is specific to membrane separation operations.
jF! Reduce thickness and increase membrane separation efficiency.

ただし、これは非透過性フCルムで被われた部分の軸方
同和At Lと怪力同和11 Dの比(L/D)が5以
上の場合であり、(L/D)が、5″より71・ぐい場
合は。
However, this is the case where the ratio (L/D) of the axial dot sum At L and the superhuman strength dot D of the part covered with the non-transparent film is 5 or more, and (L/D) is 5" If it is more than 71.

中空糸膜層を通過する被処理流体が軸方′向に流れる割
合が少ないばかりか被処理流体の流入口、流出口付近即
ち、径方向と軸方向の流れが混在する領域で発生する局
所的なよどみの影響が大きく9分離膜装置としての分離
効率は従来のもの(こ比べて改善されるものではない。
Not only is there a small proportion of the fluid to be treated flowing in the axial direction through the hollow fiber membrane layer, but also local flow occurs near the inlet and outlet of the fluid to be treated, i.e. in areas where radial and axial flows coexist. The influence of stagnation is large, and the separation efficiency of the separation membrane device is not improved compared to the conventional one.

また1本発明の様に被処理気体流入口及び流出口を設定
することにより、被処理気体中の不純物により中空糸膜
が局所的に劣化を集中して受けることなく中空糸膜組立
体の中空糸膜層内の被処理気体の流速を増大させること
を可能としている。さらに、この場合の被処理気体と透
過気体との流れパターンの関係は所謂、自流となり、中
空糸膜の分離効率を高くしているものである。
In addition, by setting the inlet and outlet of the gas to be treated as in the present invention, the hollow fiber membrane can be prevented from being locally degraded due to impurities in the gas to be treated. This makes it possible to increase the flow rate of the gas to be treated within the thread membrane layer. Furthermore, the relationship between the flow patterns of the gas to be treated and the permeated gas in this case is a so-called self-flow, which increases the separation efficiency of the hollow fiber membrane.

ただし1本発明における中空糸膜の配置方法は。However, the method for arranging the hollow fiber membranes in the present invention is as follows.

中空糸膜組立体の軸芯に対する角度で60度以下に保持
されていることが望ましい、60度より大きい場合、上
記の向流の流れパターンでの分N効率が得られにくいか
らである。特に、中空糸Il!!組立体の軸芯に対す中
空糸膜の角度が45度以下の方がより望ましい。
It is desirable that the angle with respect to the axis of the hollow fiber membrane assembly is kept at 60 degrees or less, because if it is larger than 60 degrees, it is difficult to obtain the minute N efficiency in the countercurrent flow pattern described above. Especially hollow fiber Il! ! It is more desirable that the angle of the hollow fiber membrane with respect to the axis of the assembly is 45 degrees or less.

本発明で使用される中空糸膜としては、従来より中空糸
模型気体分離Ii装置用として知られたすべての遍択透
過性中空糸膜が編げられるが、Mも一般的な形状特性は
外径が0.01〜1m、次式%式% で定義される中空率が3〜80%で、その膜壁が気体に
刻して選択透過性を示すものであり、これらの中空糸膜
はセルロース系、セルロースエステル系。
As the hollow fiber membrane used in the present invention, all selectively permeable hollow fiber membranes conventionally known for hollow fiber model gas separation II devices can be knitted, but M also has general shape characteristics. These hollow fiber membranes have a diameter of 0.01 to 1 m, a hollow ratio of 3 to 80% as defined by the following formula: Cellulose-based, cellulose ester-based.

セルロースエーテル系、ポリアミド系、ポリイミド系、
ポリスルホン系、シリコン系、ビニール系等の重合体よ
りなるものである。
Cellulose ether type, polyamide type, polyimide type,
It is made of polymers such as polysulfone, silicone, and vinyl.

本発明において樹脂壁を構成する樹脂は、硬化前に流動
性のある液体であって硬化にょフて固化して硬い樹脂と
なるものが好ましく1例えばエポキシ樹脂、シリコーン
樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、ポ
リエステルアクリレート樹脂などが用いられる。
In the present invention, the resin constituting the resin wall is preferably a fluid liquid before curing and solidifies into a hard resin. For example, epoxy resin, silicone resin, polyurethane resin, unsaturated polyester. Resin, polyester acrylate resin, etc. are used.

本発明で用いる非透過性フィルムは、被処理流体を実質
的に透過しないフィルム軟材料であれば特に限定はない
が、市販のプラスチラフ製フィルム、ゴム製シート、目
の小さな布などを用りるのが好ましい、該非透過性フィ
ルムの上に巻つける支持部材には、天然繊維2合成高分
子繊11t、無機繊維などの線状物または織物自体が使
われるか、これらに接着剤を付着させた形のものが使用
される。この支持部剤によって中空糸膜組立体内部とそ
の外部との圧力差が維持される。
The non-permeable film used in the present invention is not particularly limited as long as it is a soft film material that does not substantially permeate the fluid to be treated, but commercially available Plastirif films, rubber sheets, small-mesh cloth, etc. can be used. It is preferable that the support member wrapped around the non-permeable film is made of natural fibers, 2 synthetic polymer fibers, 11 tons of synthetic polymer fibers, linear materials such as inorganic fibers, or woven fabrics themselves, or they are coated with an adhesive. shapes are used. The support agent maintains a pressure difference between the interior of the hollow fiber membrane assembly and the exterior thereof.

(発明の効果) 本発明の中空糸膜型気体分離膜装置によれば、被処理気
体は、1&l脂壁近傍で中空糸膜層断面全体にわたって
供給されたのち、中空糸膜層内を該層表面部。
(Effects of the Invention) According to the hollow fiber membrane type gas separation membrane device of the present invention, the gas to be treated is supplied over the entire cross section of the hollow fiber membrane layer near the 1&l fat wall, and then flows inside the hollow fiber membrane layer into the layer. surface area.

芯部を問わず均一に中空糸膜束の円筒軸方向へ流れる。It flows uniformly in the cylindrical axis direction of the hollow fiber membrane bundle regardless of the core.

この方式では、流速がかなり大きくとれるため。With this method, the flow velocity can be quite high.

短絡流や死空間を生じることがない。No short circuit current or dead space is created.

(実施rA) 以下に実施例を示して2本発明の有効性を示す。(Implementation rA) Two examples are shown below to demonstrate the effectiveness of the present invention.

実施例 直径0.16m、中空$14%の選択透過性を有するセ
ルローストリアセテート製の中空糸膜を。
Example A hollow fiber membrane made of cellulose triacetate having a diameter of 0.16 m and a permselectivity of 14%.

端部のみ円周上に孔を設けた芯管の外周側に円筒状に軸
心に対し巻角度30〜50度で配置し、外径120mの
中空糸++X屑を形成し、さらにその外周側にポリエチ
レン製非透過性フィルムを設置し、その上をエポキシ樹
脂を含浸させたガラスクロスをまきつけて強化した。非
透過性フィルムで被われた部分の軸方同和gtLと怪力
同和HDとの比(L/D)は8である。該中空糸膜組立
体の両側をエポキシ樹脂により接着固化して、−万端側
は各中空糸膜の先端を開口させ、中空糸膜組立体を製作
した。この中空糸窒素である通常空気 供給側圧カニ5kg/c己G。
A hollow fiber ++X scrap with an outer diameter of 120 m is formed by cylindrical winding at an angle of 30 to 50 degrees with respect to the axis on the outer circumferential side of a core tube with a hole on the circumference only at the end, and further on the outer circumferential side. A non-permeable polyethylene film was installed on the surface, and a glass cloth impregnated with epoxy resin was wrapped over it to strengthen it. The ratio (L/D) of the axial dowa of the part covered with the non-transparent film to the axial dowa of gtL and the force of dowa of HD is 8. Both sides of the hollow fiber membrane assembly were bonded and solidified with epoxy resin, and the tips of each hollow fiber membrane were opened on the negative side to produce a hollow fiber membrane assembly. This hollow fiber nitrogen usually has an air supply side pressure of 5kg/cmG.

透過側圧力’ Okg / all G 。Permeate side pressure’ Okg / all G .

温度:22℃ =f価結果として非透過空気中のrlI素濃度を表−1
に示す1表中の回収率は、中空糸膜!X!膜分幻装置へ
の供給空気流量に対する非通過空気?A量の割合を百分
率で表わした数値である。
Temperature: 22°C = f number result: rlI elementary concentration in non-permeated air Table-1
The recovery rates in Table 1 shown in Table 1 are for hollow fiber membranes! X! Non-passing air relative to the supply air flow rate to the membrane divider? This is a numerical value expressed as a percentage of the amount of A.

比較例1 図−2に示す多数の孔を有する中空管の周りに中空糸膜
を配置し、被処理気体が、該複数孔より中空糸!lJI
層に向かって放射状に分配される従来の中空糸膜型気体
分離膜装置について、実施例と同様の膜分離操作を行な
ったものである。
Comparative Example 1 A hollow fiber membrane was arranged around a hollow tube having a large number of holes as shown in Fig. 2, and the gas to be treated was transported through the hollow fibers through the plurality of holes! lJI
The same membrane separation operation as in the example was performed on a conventional hollow fiber membrane type gas separation membrane device that is distributed radially toward the layers.

比較例2 非透過性フィルムで被われた部分の軸方向距離1.と怪
力同和KI Dとの比(L/D)が3であることを除い
て実施例と同様の中空糸膜型気体分離膜装置について、
実施例と同様の膜分萬1操作を行なフたものである。
Comparative Example 2 Axial distance of portion covered with non-transparent film 1. Regarding the hollow fiber membrane type gas separation membrane device similar to the example except that the ratio (L/D) between
The same membrane separation procedure as in the example was performed.

比較例3 r!!i−3に示す芯管6に設けた孔11が中空糸膜間
ロ柑脂壁7截傍にあり非透過性フィルムで被われない外
周部位の被処理気体流入口が他端の樹脂壁8近傍に設置
されている中空糸玖気体外離膜装屓で*施例と同様の膜
分離操作をおこなったものである。但し。
Comparative example 3 r! ! The hole 11 provided in the core tube 6 shown in i-3 is located near the hollow fiber intermembrane resin wall 7, and the gas inlet to be treated in the outer peripheral area not covered with the non-permeable film is located at the other end of the resin wall 8. The same membrane separation operation as in the *Example was performed using a hollow fiber gas outer membrane device installed nearby. however.

非透過性フィルムで被われた部分の軸方向距離りと径方
向距離りとの比(L/D)が実施例と同じ8である。
The ratio of the axial distance to the radial distance (L/D) of the portion covered with the non-transparent film was 8, the same as in the example.

以上の比較例の評11i結果も表−】に示す9表中の値
は前述のように非透過空気中の酸素濃度であり。
The values in Table 9, which also show the results of evaluation 11i of the above comparative examples, are the oxygen concentrations in the non-permeated air, as described above.

この非透過空気中の酸素濃度が小さいほど気体分離L!
装置の分離効率が高いことを表わしている。
The lower the oxygen concentration in this non-permeable air, the more gas separation L!
This indicates that the separation efficiency of the device is high.

比較例1.2の場合は実施例の場合に比べて非透過側酸
素濃度が高いため中空糸膜層内に偏流、死空間が生じ、
N票が充分透過されないまま非透過側に流れでたものと
推定される。即ち、比較例1の場合は中空糸膜層内の流
速がおそいため偏流が生じ、比較例2の場合は樹脂壁7
.8付近に生じる死空間のvA域が軸方向流れの領域に
比べ無視できない大きさであるため分離効率が低下した
ものと推定される。
In the case of Comparative Example 1.2, the oxygen concentration on the non-permeation side was higher than in the case of the example, so drifting and dead space occurred in the hollow fiber membrane layer.
It is presumed that N votes were not passed through sufficiently and flowed to the non-transmission side. That is, in the case of Comparative Example 1, the flow velocity within the hollow fiber membrane layer is slow, resulting in uneven flow, and in the case of Comparative Example 2, the flow velocity within the hollow fiber membrane layer is slow, and the
.. It is presumed that the separation efficiency is reduced because the vA region of the dead space that occurs around 8 is not negligible compared to the region of axial flow.

比較例3の場合は被処理気体と膜透過気体とのフローパ
ターンが同方向である所謂、並流であり中空糸!i層内
の流れが均一であフても本発明の向流に比べ分離効率は
低く、rli素−度は高い、 実施例の場合は非透過空
気中の酸素濃度が比較例の場合に比べ小さく中空糸膜層
内の流れが均一化されているものと推定される。
In the case of Comparative Example 3, the flow patterns of the gas to be treated and the gas permeating through the membrane are in the same direction, so-called parallel flow, and it is a hollow fiber! Even if the flow in the i-layer is uniform, the separation efficiency is lower and the rli element is higher than in the countercurrent flow of the present invention. It is presumed that the flow within the small hollow fiber membrane layer is uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図。 第3図は比較例を示す断面図である。 】:中空糸IJ1組立体 2:円筒容器 3.4一端板 5:中空糸膜層 6:芯管 7.8:樹脂壁 9:非透過性フィルム 10:強化支持部材 11:孔 12:11I処理気体流入口 13:透過気体出口 14:気体室 15=非透過気体出口 16:供給気体入口 17:非透過気体導管 18:環状流路 FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention. FIG. 3 is a sectional view showing a comparative example. ]: Hollow fiber IJ1 assembly 2: Cylindrical container 3.4 One end plate 5: Hollow fiber membrane layer 6: Core tube 7.8: Resin wall 9: Non-transparent film 10: Reinforced support member 11: Hole 12:11I processing gas inlet 13: Permeated gas outlet 14: Gas chamber 15 = non-permeable gas outlet 16: Supply gas inlet 17: Non-permeable gas conduit 18: Annular channel

Claims (1)

【特許請求の範囲】[Claims] (1)被処理気体の排出管路をコア中央部に有し一端で
中空糸膜が開口している円筒型の選択透過性中空糸膜組
立体において、排出管路が中空糸膜の非開口側の一端部
で中空糸膜層に開口しており、かつ該中空糸膜組立体の
外周円筒部のうち中空糸膜開口端側の被処理気体流入口
を除く部分が、被処理気体を透過させない非透過性フィ
ルムで被われ該非透過性フィルムで被われた部分の軸方
向距離Lと径方向距離Dの比(L/D)が5以上である
ことを特徴とする中空糸膜型気体分離膜装置。
(1) In a cylindrical permselective hollow fiber membrane assembly in which the exhaust pipe for the gas to be treated is located in the center of the core and the hollow fiber membrane is open at one end, the exhaust pipe is not opened in the hollow fiber membrane. It opens into the hollow fiber membrane layer at one end of the side, and the part of the outer cylindrical part of the hollow fiber membrane assembly excluding the gas inlet to be treated on the open end side of the hollow fiber membrane permeates the gas to be treated. Hollow fiber membrane type gas separation, characterized in that the ratio (L/D) of the axial distance L to the radial distance D of the portion covered with the non-permeable film is 5 or more. Membrane device.
JP24883188A 1988-09-30 1988-09-30 Gas separating film apparatus utilizing hollow yarn membrane Pending JPH0295412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24883188A JPH0295412A (en) 1988-09-30 1988-09-30 Gas separating film apparatus utilizing hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24883188A JPH0295412A (en) 1988-09-30 1988-09-30 Gas separating film apparatus utilizing hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPH0295412A true JPH0295412A (en) 1990-04-06

Family

ID=17184073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24883188A Pending JPH0295412A (en) 1988-09-30 1988-09-30 Gas separating film apparatus utilizing hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPH0295412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136555A (en) * 1980-12-31 1982-08-23 Fujisawa Pharmaceut Co Ltd Novel peptide and its preparation
JPS57140751A (en) * 1981-01-29 1982-08-31 Fujisawa Pharmaceut Co Ltd Novel peptide, its preparation and use
JPS57145845A (en) * 1981-01-29 1982-09-09 Fujisawa Pharmaceut Co Ltd Novel peptide and its preparation
JP2008178872A (en) * 2006-12-29 2008-08-07 Ube Ind Ltd Shell feed-type gas separation membrane module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631404A (en) * 1986-06-20 1988-01-06 Toyobo Co Ltd Hollow yarn type membrane separation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631404A (en) * 1986-06-20 1988-01-06 Toyobo Co Ltd Hollow yarn type membrane separation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136555A (en) * 1980-12-31 1982-08-23 Fujisawa Pharmaceut Co Ltd Novel peptide and its preparation
JPS57140751A (en) * 1981-01-29 1982-08-31 Fujisawa Pharmaceut Co Ltd Novel peptide, its preparation and use
JPS57145845A (en) * 1981-01-29 1982-09-09 Fujisawa Pharmaceut Co Ltd Novel peptide and its preparation
JP2008178872A (en) * 2006-12-29 2008-08-07 Ube Ind Ltd Shell feed-type gas separation membrane module

Similar Documents

Publication Publication Date Title
Wan et al. Design and fabrication of hollow fiber membrane modules
US4750918A (en) Selective-permeation gas-separation process and apparatus
JPS631404A (en) Hollow yarn type membrane separation device
US4451369A (en) Fluid separation apparatus
KR950008632B1 (en) Multiple stage counter current hollow fiber membrane module
US5128037A (en) Spiral wound filtration membrane cartridge
KR940004620B1 (en) Hollow fiber multimembrane cell and permeators
US3526001A (en) Permeation separation device for separating fluids and process relating thereto
US4352736A (en) Wound flattened hollow fiber assembly having plural spaced core sections
US4430219A (en) Hollow fiber package body and its production
US5580452A (en) Moving liquid membrane modules
US5160042A (en) Double ended hollow fiber bundle and fluids separation apparatus
RU1811415C (en) Process of separation of gas mixtures
EP0513207A1 (en) Spiral-wound membrane separation device with feed and permeate/sweep fluid flow control
US20070095756A1 (en) System and method for removal of contaminants from feed solution
JPS61278306A (en) Improved hollow fiber membrane having inside lap
WO2004069391A1 (en) Hollow fiber membrane module and module arrangement group thereof
US7208088B2 (en) Spiral wound filtration membrane cartridge with chevron seal
JPH0295412A (en) Gas separating film apparatus utilizing hollow yarn membrane
US20020168491A1 (en) Hollow fiber membrane contactor and method for making same
JPH0259016A (en) Gas separation membrane module
JPS5931361B2 (en) Hollow fiber separation equipment
JP3994294B2 (en) Hollow fiber membrane module and manufacturing method thereof
US20030192821A1 (en) Spiral wound filtration membrane cartridge with chevron seal
JPH0386219A (en) Hollow-fiber membrane module