JPH0294684A - Semiconductor laser and laser array - Google Patents

Semiconductor laser and laser array

Info

Publication number
JPH0294684A
JPH0294684A JP24721388A JP24721388A JPH0294684A JP H0294684 A JPH0294684 A JP H0294684A JP 24721388 A JP24721388 A JP 24721388A JP 24721388 A JP24721388 A JP 24721388A JP H0294684 A JPH0294684 A JP H0294684A
Authority
JP
Japan
Prior art keywords
low
quantum level
laser
reflection
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24721388A
Other languages
Japanese (ja)
Inventor
Makoto Ishikawa
信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24721388A priority Critical patent/JPH0294684A/en
Publication of JPH0294684A publication Critical patent/JPH0294684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To acquire high output characteristics by forming a reflective multilayer film consisting of dielectrics of two different types on end surfaces of both resonators and by making the multilayer film front high low reflection and rear low high reflection against an oscillation wavelength relevant to a first (second) quantum level. CONSTITUTION:Reflective multilayer films 12 consisting of dielectrics of two different types are formed on end surfaces of both resonators. The multilayer film is made front high reflection and rear low reflection against an oscillation wavelength relevant to a first quantum level, and front low reflection and rear high reflection against an oscillation wavelength relevant to a second quantum level. That is, an oscillation wavelength shifts to the short wavelength side from the first quantum level to the second quantum level by use of a quantum well layer as an active layer 4 as changing from low output conditions to high output conditions. The device is stable to return light and characteristics of low noises can be realized. When oscillation relevant to the second quantum level starts, front reflectance at the wavelength becomes low reflectance. Characteristics of high external differential efficiency and high output can be acquired in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ディスク等の光源として最適な情報処理用
半導体レーザ及びレーザ索子を共通の基板上に複数箇設
けてなるレーザアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser array comprising a plurality of information processing semiconductor lasers and laser probes on a common substrate, which are suitable as light sources for optical disks and the like.

〔従来の技術〕[Conventional technology]

DRAW%E−DRAW等の光ディスクの読みだし用光
源としては、読みだし時の誤シを防ぐためK、雑音レベ
ルの低い半導体レーザが望まれる。光デイスク装置では
ピックアップの構造上、ディスク盤面からの戻〕光が光
源である半導体レーザに入射しやすい。一般に横モード
の制御された屈折率導波型半導体レーザでは、光の干渉
性が高いがら、との戻り光と出射光とが干渉し、モード
ホップノイズが発生する。このモードホップノイズにょ
シ光源の雑音レベルが上昇し、システム上問題となる。
As a light source for reading optical discs such as DRAW%E-DRAW, a semiconductor laser with a low noise level is desired to prevent errors during reading. In optical disk devices, due to the structure of the pickup, light returned from the disk surface is likely to enter the semiconductor laser that is the light source. Generally, in a refractive index guided semiconductor laser in which the transverse mode is controlled, although the light coherence is high, the returning light and the emitted light interfere with each other, causing mode hop noise. This mode hop noise increases the noise level of the light source, causing a system problem.

こうした半導体レーザの戻シ光誘起雑音の低減を図るた
めに、従来は第3図に示すような構造が提案されていた
。この構造では、基板に形成した溝によって水平横方向
に屈折率分布が形成してあシ、n−GaAs電流ブロッ
ク層15によりて発光領域に効率的に電流が注入される
。さらに共振器両端面にはa−8i/A110Bの多層
構造から成る高反射膜が形成されている。共振器端面の
反射率が高いから、レーザ内部の光密度が高くなシ、利
得の飽和効果が効率的に働いて、軸モードにおける主/
副モード比が大きくなる。この大きな主/副モード比に
より、発振軸モードの安定性が高くなセ、モード競合雑
音が低減される7、また端面の反射率が高いから、戻プ
光が共振器内に入射しにくく、実質的に戻り光量そのも
のを低減することが可能となる。この両者の効果によシ
、戻9光が存在する場合でも、低い雑音レベルを維持す
ることが出来る(シャープ技報 第30号 1984p
35〜4(2)。
In order to reduce such feedback-induced noise in a semiconductor laser, a structure as shown in FIG. 3 has been proposed in the past. In this structure, a refractive index distribution is formed in the horizontal and lateral directions by grooves formed in the substrate, and current is efficiently injected into the light emitting region by the n-GaAs current blocking layer 15. Further, high reflection films having a multilayer structure of A-8i/A110B are formed on both end faces of the resonator. Since the reflectance of the cavity end face is high, the optical density inside the laser is high, and the gain saturation effect works efficiently to reduce the main /
Minor mode ratio increases. This large main/minor mode ratio increases the stability of the oscillation axis mode, reduces mode competition noise7, and also reduces reflected light from entering the resonator due to the high reflectance of the end facets. It becomes possible to substantially reduce the amount of returned light itself. Due to both of these effects, a low noise level can be maintained even in the presence of return light (Sharp Technical Report No. 30, 1984 p.
35-4(2).

第4図は、この高反射端面を有する低雑音レーザを応用
して実現した高出力・低雑音レーザアレイの軸方向断面
図である(第4図は基板の上面に平行な面で切断して示
す断面図である)。50〜100μm間隔で同一基板上
にモノリシックに集積化したレーザアレイの共振器端面
に5ift膜2′1とAu膜22を用いて、高出力レー
ザでは前面低反射、裏面高反射、低雑音レーザでは、前
面、裏面とも高反射とする。高出力レーザでは、出射端
の反射率が低いから、外部微分量子効率が高くなシ、2
0 mW以上の高出力特性が得られ、一方低雑音レーザ
では前述の原理によ)、戻り光に強い低雑音特性が得ら
れる。DRAW光ディスクシステムではデータを書き込
んだ直後に読みだし、誤シ訂正をする必要から、単体レ
ーザでは1トラツクにデータを書き込むのにディスクが
2回転する必要があった。この点、高出力・低雑音レー
ザアレイを用いれば、高出力レーザで書き込んだ直後に
低雑音レーザで読みだし訂正することが可能となり、転
送し・−トを倍に高めることが出来る(昭和60年庁 
電子通信全国大会 講演番号287)。
Fig. 4 is an axial cross-sectional view of a high-output, low-noise laser array realized by applying this low-noise laser with a high-reflection end face (Fig. FIG. A 5ift film 2'1 and an Au film 22 are used on the resonator end face of a laser array monolithically integrated on the same substrate at intervals of 50 to 100 μm, and a high-power laser has a low reflection on the front surface, a high reflection on the back surface, and a low-noise laser has a low reflection on the front surface and a high reflection on the back surface. , both the front and back surfaces are highly reflective. In high-power lasers, the external differential quantum efficiency is not high because the reflectance at the emission end is low.
A high output characteristic of 0 mW or more can be obtained, and on the other hand, in a low-noise laser (based on the above-mentioned principle), a low-noise characteristic that is resistant to return light can be obtained. In a DRAW optical disk system, it is necessary to read data immediately after writing it and correct errors, so with a single laser, the disk needs to rotate twice to write data on one track. In this regard, if a high-output, low-noise laser array is used, it becomes possible to read and correct the data using a low-noise laser immediately after writing with a high-output laser, thereby doubling the transfer rate (1986). year agency
National Electronic Communication Conference Lecture No. 287).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし従来の構造では出射端面が高反射となって窃るか
ら、光の外部への取り出し効率が低い。
However, in the conventional structure, the output end face is highly reflective and steals light, so the efficiency of extracting light to the outside is low.

そζ−で、 20tyxW以上の高出力を得ることが困
難でおシ、同一の半導体レーザを用いて書き込みを行な
うことができない。
Therefore, it is difficult to obtain a high output of 20 tyxW or more, and writing cannot be performed using the same semiconductor laser.

また高出力・低雑音レーザアレイでは、出射側共振器端
面において50〜100μmごとに反射率を変化させな
ければならず、特殊なパッシベイション技術が必要とな
る。さらにこうしたレーザアレイでは高出力レーザは書
き込み専用、低雑音レーザは再生専用であるから、並列
書き込み並列読みだし用のプレイ光源として利用するこ
とはできない。こうした高出力特性の困難さ、アレイレ
ーザにおけるパッシベイション方法が従来の技術の問題
点であった。このように従来の半導体レーザには解決す
べき課題があシ、本発明はその課題の解決を目的とする
In addition, in a high-output, low-noise laser array, the reflectance must be changed every 50 to 100 μm at the output-side resonator end face, which requires a special passivation technique. Furthermore, in such a laser array, the high-power laser is used only for writing and the low-noise laser is used only for reproduction, so it cannot be used as a play light source for parallel writing and parallel reading. Difficulties in achieving such high output characteristics and passivation methods in array lasers have been problems in the conventional technology. As described above, conventional semiconductor lasers have problems to be solved, and the present invention aims to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザは、活性層に量子井戸を用いた横
モード制御型半導体レーザにおいて、両共振器端面に異
なる二種類の誘電体からなる反射多層膜を形成し、前記
多層膜が第1量子準位に相当する発振波長く対しては、
前面高反射、裏面像反射となり、第2量子準位に相当す
る発振波長に対しては、前面低反射、裏面高反射となる
ことに特徴がある。
The semiconductor laser of the present invention is a transverse mode control type semiconductor laser using a quantum well in the active layer, in which a reflective multilayer film made of two different types of dielectrics is formed on both cavity end faces, and the multilayer film is a first quantum well. For the long oscillation wave corresponding to the level,
The front surface has a high reflection and the back surface has an image reflection, and for the oscillation wavelength corresponding to the second quantum level, the front surface has a low reflection and the back surface has a high reflection.

また、本発明のレーザアレイは、上記構成の半導体レー
ザの素子を共通の半導体基板に複数筒集積してなプ、前
記複数筒の半導体レーザ素子では片側電極が互いに独立
に設けてあることを特徴とする。
Further, the laser array of the present invention is characterized in that a plurality of semiconductor laser elements having the above configuration are integrated in a plurality of cylinders on a common semiconductor substrate, and in the semiconductor laser elements of the plurality of cylinders, electrodes on one side are provided independently from each other. shall be.

〔作用〕[Effect]

本発明の構造では活性層4に量子井戸層を用いているか
ら低出力状態から高出力状態に変化するにつれて、発振
波長が第一量子準位から第二量子準位へと短波長側にシ
フトする(アビライド フィジックスレター Appl
 、 Phys、 Lett、 49(24)。
In the structure of the present invention, a quantum well layer is used in the active layer 4, so as the output state changes from a low output state to a high output state, the oscillation wavelength shifts from the first quantum level to the second quantum level toward the short wavelength side. (Aviride Physics Letter Appl
, Phys., Lett., 49(24).

15.9−1629 1986)。両共振器面に形成し
た誘電体多層膜12は、第一量子準位に相当する発振波
長く対しては、前面が高反射率になっているから、戻夛
光に対して安定゛とな)、低雑音な特性が得られる。一
方電流の注入状態が上がり、第二量子準位に相当する発
振が始まると、その波長における前面の反射率は低反射
率になるから、外部微分効率の高い、高出力な特性が得
られる。このとき、裏面の誘電体多層膜は低反射率から
高反射率に変化するから、各発振波長に対する発振しき
い値利得は変化せず、発振波長がスムースに変化する。
15.9-1629 1986). The dielectric multilayer film 12 formed on both resonator surfaces has a high reflectance on the front surface for the long oscillation wave corresponding to the first quantum level, so it is stable against return light. ), low noise characteristics can be obtained. On the other hand, when the current injection state increases and oscillation corresponding to the second quantum level begins, the reflectance of the front surface at that wavelength becomes low, resulting in high external differential efficiency and high output characteristics. At this time, since the dielectric multilayer film on the back surface changes from low reflectance to high reflectance, the oscillation threshold gain for each oscillation wavelength does not change, and the oscillation wavelength changes smoothly.

従って前面の反射率が低出力時と高出力時で変化するこ
とKよシ、再生時の低出力時には、戻シ光に対して強い
低雑音特性を、書き込み時の高出力時には、外部微分効
率の高い高出力特性を同一素子で得ることができる。
Therefore, the reflectance of the front surface changes between low output and high output.At low output during playback, low noise characteristics that are strong against reflected light are achieved, and at high output during writing, external differential efficiency It is possible to obtain high output characteristics with the same element.

またア1/イレーザに応用した場合でも出射側の反射率
をレーザピッチごとく変化させる必要がなく、従来の簡
便なパッシベイシ茸ン技術だけで高出力−低雑音レーザ
アレイを実現することができる。さらに、本発明の半導
体レーザを用いれば、同一素子で書き込みと再生が可能
であるので、各レーザの役割を分担した記録直後読みだ
しだけでなく、レーザアレイの個数分だけ転送速度を上
げることができる並列書き込み、並列読みだし用のプレ
イ光源としても利用することができる。
Furthermore, even when applied to an A1/eraser, there is no need to change the reflectance on the emission side according to the laser pitch, and a high-output, low-noise laser array can be realized using only the conventional and simple passive bass technology. Furthermore, if the semiconductor laser of the present invention is used, it is possible to write and read with the same element, so it is possible to increase the transfer speed by the number of laser arrays, in addition to reading immediately after recording, in which the role of each laser is divided. It can also be used as a play light source for parallel writing and reading.

〔実施例〕〔Example〕

以下に図面を参照して本発明に係わる一実施例を詳しく
説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明になる高出力、低雑音型の半導体レーザ
を示す斜視図、第2図は第1図の実施例を2箇だけ配列
してなるレーザアレイを示す斜視図である1、第1図、
第2図において1はn型GaAs基板、2はn型A1a
iGa(L+sAsクラッド層、3はn型AlAs/G
aAs超格子光ガイド層、4はGaAs単一量子井戸活
性層、5はp型AIAa/GaAa超格子光ガイド層、
6はp型A1asGao、aAsり2ラド層、7はn型
GaAs電流ブロック層、8はP型A1asGaaaA
s埋め込み層、9はn型G a A s電極層、10は
n型電極、11はp型電極、12はT i O!/8 
i 0@誘電体多層膜、13は電極分離溝をそれぞれ示
す。
FIG. 1 is a perspective view showing a high-output, low-noise semiconductor laser according to the present invention, and FIG. 2 is a perspective view showing a laser array formed by arranging only two of the embodiments shown in FIG. Figure 1,
In Fig. 2, 1 is an n-type GaAs substrate, 2 is an n-type A1a
iGa (L+sAs cladding layer, 3 is n-type AlAs/G
aAs superlattice light guide layer, 4 a GaAs single quantum well active layer, 5 a p-type AIAa/GaAa superlattice light guide layer,
6 is p-type A1asGao, aAs layer 2, 7 is n-type GaAs current blocking layer, 8 is P-type A1asGaaaA
s buried layer, 9 is an n-type GaAs electrode layer, 10 is an n-type electrode, 11 is a p-type electrode, 12 is T i O! /8
i 0 @ dielectric multilayer film, 13 indicates an electrode separation groove, respectively.

第1図の半導体レーザを製作するには、まずn型G a
 A s基板1上KMOVPE気相成長法によシ成長層
2,3,4,5,6,7を順次に形成する。それぞれの
層厚は贋に、1.5μm、0.1μm、0.01μm、
0.1μm。
To manufacture the semiconductor laser shown in Fig. 1, first the n-type Ga
Growth layers 2, 3, 4, 5, 6, and 7 are sequentially formed on the As substrate 1 by KMOVPE vapor phase epitaxy. The respective layer thicknesses are 1.5 μm, 0.1 μm, 0.01 μm,
0.1 μm.

0.3μm、10μmとした。その後フォトリングラフ
イーとウェットエツチングの手法によりp型A1o、s
G a O,r5 A sクラッド層6まで到達する幅
4.0μmのストライプ溝を形成する。再びMOVPE
法によシ埋め込み層8,9を形成し、n型電極1O1p
型電極11を形成する。n型GaAs電流ブロック層7
の吸収効果によシ水平方向に屈折率分布が形成され、横
モードの安定した量子井戸型半導体レーザが形成される
。さらに共振器長300μmでへき開面を形成した後、
電子ビーム蒸着法によ、9Ti01/Sin、の*’v
体多体膜層膜へき開面に形成する。
They were set to 0.3 μm and 10 μm. After that, p-type A1o,s was etched using photophosphorography and wet etching techniques.
A stripe groove with a width of 4.0 μm reaching the G a O, r5 As cladding layer 6 is formed. MOVPE again
The buried layers 8 and 9 are formed by the method, and the n-type electrode 1O1p is
A mold electrode 11 is formed. n-type GaAs current blocking layer 7
Due to the absorption effect, a refractive index distribution is formed in the horizontal direction, and a quantum well type semiconductor laser with a stable transverse mode is formed. Furthermore, after forming a cleavage plane with a cavity length of 300 μm,
*'v of 9Ti01/Sin by electron beam evaporation method
A multi-body membrane layer is formed on the membrane cleavage plane.

T i Ot / S i Ot の層厚はそれぞれ、
9λs/(4ns)−9λs/(40z)とし、交互に
3層ずつ形成する。ここで、nl l nfはTi01
とSin、の屈折率であシ、λ3は前面では0.857
μm、裏面では0.793μmとする。なおλ5は反射
率が最も高くなる波長を意味する。以上で本発明に係わ
る一実施例の高出力、低雑音型半導体レーザが形成され
る。
The layer thicknesses of T i Ot / S i Ot are respectively,
9λs/(4ns)−9λs/(40z), and three layers are formed alternately. Here, nl l nf is Ti01
and Sin, and λ3 is 0.857 at the front.
μm, and 0.793 μm on the back surface. Note that λ5 means the wavelength at which the reflectance is the highest. In the above manner, a high-output, low-noise semiconductor laser according to an embodiment of the present invention is formed.

第2図は本発明の構造を応用して、高出力・低雑音レー
ザアレイを実現した例である。本発明の半導体レーザ素
子を100μm間隔で形成した後、p側の再発光部の中
間にn型GaAs基板1に到達するまで、幅5.0μm
の電極分離溝13を形成する。
FIG. 2 is an example of a high-output, low-noise laser array realized by applying the structure of the present invention. After forming the semiconductor laser elements of the present invention at intervals of 100 μm, the width is 5.0 μm until reaching the n-type GaAs substrate 1 in the middle of the re-emitting part on the p side.
electrode separation grooves 13 are formed.

さらに両へき開面に前記の誘電体多層膜12を形成して
本発明に係わる一実施例である高出力、低雑音レーザア
レイが形成される。
Further, the dielectric multilayer film 12 described above is formed on both cleavage planes to form a high-output, low-noise laser array, which is an embodiment of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の構造では活性層4に量子井戸層を用いているか
ら低出力状態から高出力状態に変化するにつれて、発振
波長が第一量子準位から第二量子準位へと短波長側にシ
フトする(アプライド フィジックス レター App
l 、 Phys、 Lett、 49(24)、is
、p−16291986)。井戸幅100大の実施例の
構造では発振波長は0.84μmから0.81μmへと
シフトする。
In the structure of the present invention, a quantum well layer is used in the active layer 4, so as the output state changes from a low output state to a high output state, the oscillation wavelength shifts from the first quantum level to the second quantum level toward the short wavelength side. (Applied Physics Letter App
l, Phys, Lett, 49(24), is
, p-16291986). In the structure of the embodiment with a well width of 100, the oscillation wavelength shifts from 0.84 μm to 0.81 μm.

第5図は実施例に用いた誘電体多層膜の反射率の波長依
存性を示すグラフである。第一量子準位に相当する0、
84μmでは、前面〜90%、裏面〜10%の反射率と
なるが、第二量子準位に相当する0、81μmでは前面
〜10%、裏面〜90%の反射率となる。従って、第一
量子準位が発振する低出力状態では、前面反射率が高く
、戻〕光に対して強い低雑音特性が得られ、第二量子準
位が発振する高出力状態では、前面反射率が低く、外部
微分効率の高い高出力な特性が得られる。このとき、端
面反射率の相乗平均は両状態でほぼ同じであシ、発振し
きい値利得に差はないから、発振波長は第一量子準位か
ら第二量子準位にスムースに変化する。以上から本発明
の構造によればDRAW、E−DRAW等の光ディスク
の書き込み再生を同一素子で行なうことが可能となる。
FIG. 5 is a graph showing the wavelength dependence of the reflectance of the dielectric multilayer film used in the example. 0 corresponding to the first quantum level,
At 84 μm, the reflectance is 90% on the front surface and 10% on the back surface, but at 0.81 μm, which corresponds to the second quantum level, the reflectance is 10% on the front surface and 90% on the back surface. Therefore, in a low-power state where the first quantum level oscillates, the front reflectance is high and strong low-noise characteristics are obtained for returning light, and in a high-power state where the second quantum level oscillates, the front reflectance is high. High output characteristics with low efficiency and high external differential efficiency can be obtained. At this time, the geometric mean of the end face reflectance is almost the same in both states, and there is no difference in the oscillation threshold gain, so the oscillation wavelength changes smoothly from the first quantum level to the second quantum level. As described above, according to the structure of the present invention, it is possible to write and reproduce optical discs such as DRAW and E-DRAW using the same element.

またアレイレーザに応用した場合でも出射側の反射率を
レーザピッチととに変化させる必要がなく、従来の簡便
なパッシベイク覆ン技術だけで高出力・低雑音レーザア
レイを実現することができる。さらに同一素子で書き込
みと再生が可能であるので、各レーザの役割を分担した
記録直後読みだしだけでなく、レーザアレイの個数分だ
け転送速度を上げることができる並列書き込み、並列読
みだし用のアレイ光源としても利用することができる。
Furthermore, even when applied to an array laser, there is no need to change the reflectance on the emission side depending on the laser pitch, and a high-output, low-noise laser array can be realized using only the conventional and simple passive baking technique. Furthermore, since writing and reproducing can be performed using the same element, it is not only possible to read out data immediately after recording, in which the role of each laser is divided, but also to use arrays for parallel writing and parallel reading, which can increase the transfer speed by the number of laser arrays. It can also be used as a light source.

以上の実施例ではn型基板を用いて説明したが、本発明
によれば、p型基板を用いても全く同様な構造が可能で
あシ、また他の材料系であるG a I nAsP、A
IGaInP等でも同様な構造を実現することが出来る
Although the above embodiments have been explained using an n-type substrate, according to the present invention, a completely similar structure can be achieved even if a p-type substrate is used. A
A similar structure can be realized using IGaInP or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図の実施例と同じ構造の半導体レーザを複数箇備えてな
るレーザアレイの斜視図、第3図は従来の低雑音半導体
レーザの構造を示す斜視図、第4図は従来の第3図の半
導体レーザを応用したレーザアレイを示す断面図、第5
図は本発明の効果を示す特性図である。 1 ・・−−−−n型Ga A s基板、2−− n型
A1asGao、sAsり2ラド層、3 = −n型A
lAs/GaAs超格子光ガイド層、4・・・・・・G
aAs単一量子井戸活性層、5==D 製AlAs/G
aAs超格子光ガイド層、6−−−−−−p型Al u
、s Ga o、5A s クラッド層、7− = n
型GaAs電流ブロック層、8−−−−−− P型Al
 cLs Gao、5As埋め込み層、9・・・・・・
n型GaAs電極層、10・・・・・・n型電極、11
・・・・・・p型電極、12・・・・・・TiO*/5
iQ1誘電体多層膜、13・・・・・・電極分離溝、1
4・・・・・・p型G a A s基板、15・・・・
・・n型G a A sブロック層、16・・・・・・
p型A1g、4Ga象gAsクラッド層、17 ・・・
・・・AIo、xs Gao、+5sAs活性層、18
 = −n型A1aaGao、sAsクラッド層、19
−= ”−n型GaAs電極層、20・・・・・・a−
8i/A1103多層膜反射鏡、21・・・・・・5i
02換、22・・・・・・Au膜、23・・・・・・発
光ストライプ。 代理人 弁理士  本 庄 伸 介 −n−AlAs/GaAs g 本讃)尤勿゛イド層・
・Ga As 軍−毫手井戸j占1°七層・p−AlA
s/GaAs Je9 ji’)光層°゛イドイ16η
02/5iOz  言告電イAζ号層 1’l負。 第1図
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
A perspective view of a laser array comprising a plurality of semiconductor lasers having the same structure as the embodiment shown in the figure, FIG. 3 is a perspective view showing the structure of a conventional low-noise semiconductor laser, and FIG. 4 is a perspective view of the conventional semiconductor laser shown in FIG. Cross-sectional view showing a laser array using a laser, No. 5
The figure is a characteristic diagram showing the effects of the present invention. 1...---n-type GaAs substrate, 2--n-type A1asGao, sAs layer, 3 = -n-type A
lAs/GaAs superlattice light guide layer, 4...G
aAs single quantum well active layer, 5==D made of AlAs/G
aAs superlattice light guide layer, 6-------p-type Al u
, s Ga o, 5A s cladding layer, 7- = n
Type GaAs current blocking layer, 8------- P type Al
cLs Gao, 5As buried layer, 9...
n-type GaAs electrode layer, 10...n-type electrode, 11
......p-type electrode, 12...TiO*/5
iQ1 dielectric multilayer film, 13... Electrode separation groove, 1
4...p-type GaAs substrate, 15...
... n-type Ga As block layer, 16...
p-type A1g, 4Ga elephant gAs cladding layer, 17...
...AIo, xs Gao, +5sAs active layer, 18
= −n-type A1aaGao, sAs cladding layer, 19
-= ”-n-type GaAs electrode layer, 20...a-
8i/A1103 multilayer reflector, 21...5i
02 conversion, 22... Au film, 23... Luminous stripe. Agent Patent Attorney Shinsuke Honjo - n-AlAs/GaAs
・GaAs Army-Mite Ido j 1° 7th layer・p-AlA
s/GaAs Je9 ji') Optical layer °゛idoi16η
02/5iOz Kobeden IAζ layer 1'l negative. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)活性層に量子井戸を用いた横モード制御型半導体
レーザにおいて、両共振器端面に異なる二種類の誘電体
からなる反射多層膜を形成し、前記多層膜が第1量子準
位に相当する発振波長に対しては、前面高反射、裏面低
反射となり、第2量子準位に相当する発振波長に対して
は、前面低反射、裏面高反射となることを特徴とする半
導体レーザ。
(1) In a transverse mode controlled semiconductor laser using a quantum well in the active layer, a reflective multilayer film made of two different types of dielectrics is formed on both cavity end faces, and the multilayer film corresponds to the first quantum level. A semiconductor laser characterized in that the front surface has high reflection and the back surface has low reflection for an oscillation wavelength corresponding to the second quantum level, and the front surface has low reflection and the back surface has high reflection for an oscillation wavelength corresponding to a second quantum level.
(2)請求項1記載の半導体レーザの素子を共通の半導
体基板に複数箇集積してなり、前記複数箇の半導体レー
ザ素子では片側電極が互いに独立に設けてあることを特
徴とするレーザアレイ。
(2) A laser array comprising a plurality of semiconductor laser elements according to claim 1 integrated on a common semiconductor substrate, wherein the plurality of semiconductor laser elements have electrodes on one side independently of each other.
JP24721388A 1988-09-30 1988-09-30 Semiconductor laser and laser array Pending JPH0294684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24721388A JPH0294684A (en) 1988-09-30 1988-09-30 Semiconductor laser and laser array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24721388A JPH0294684A (en) 1988-09-30 1988-09-30 Semiconductor laser and laser array

Publications (1)

Publication Number Publication Date
JPH0294684A true JPH0294684A (en) 1990-04-05

Family

ID=17160130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24721388A Pending JPH0294684A (en) 1988-09-30 1988-09-30 Semiconductor laser and laser array

Country Status (1)

Country Link
JP (1) JPH0294684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282219A (en) * 1992-02-27 1994-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser structure having a non-reflection film
JP2001077456A (en) * 1999-09-07 2001-03-23 Sony Corp Semiconductor laser and coating film for optical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282219A (en) * 1992-02-27 1994-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser structure having a non-reflection film
JP2001077456A (en) * 1999-09-07 2001-03-23 Sony Corp Semiconductor laser and coating film for optical component

Similar Documents

Publication Publication Date Title
US5710847A (en) Semiconductor optical functional device
US7418019B2 (en) Multi-wavelength semiconductor laser
CN1327582C (en) Semiconductor laser device and optical pickup apparatus using the same
US6680958B1 (en) Semiconductor laser and method of production of the same
JPH0888439A (en) Semiconductor laser and its production
US20060233210A1 (en) Semiconductor laser device, method for manufacturing the same, and optical pickup device using the same
US20040184501A1 (en) Semiconductor laser device and optical pick up apparatus using the same
JPH09167873A (en) Semiconductor laser device
JPS61287289A (en) Semiconductor laser device for light memory
JPH0294684A (en) Semiconductor laser and laser array
JPH0337877B2 (en)
JPH0750814B2 (en) Multi-point emission type semiconductor laser device
JP3642711B2 (en) Semiconductor laser element
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JP3837821B2 (en) Optical pickup device using compound semiconductor laser
JPH02152292A (en) Semiconductor laser device
JPS61228692A (en) Semiconductor laser
JPS63213387A (en) Semiconductor laser device
JPH01194381A (en) Integrated type semiconductor laser
JPH071818B2 (en) Integrated semiconductor laser
JPH04302481A (en) Semiconductor optical element
JP2001077456A (en) Semiconductor laser and coating film for optical component
JPS63161688A (en) Semiconductor laser
JPS6211288A (en) Semiconductor laser device