JPH0294603A - Rolled anisotropic rare earth magnet and manufacture thereof - Google Patents

Rolled anisotropic rare earth magnet and manufacture thereof

Info

Publication number
JPH0294603A
JPH0294603A JP63247120A JP24712088A JPH0294603A JP H0294603 A JPH0294603 A JP H0294603A JP 63247120 A JP63247120 A JP 63247120A JP 24712088 A JP24712088 A JP 24712088A JP H0294603 A JPH0294603 A JP H0294603A
Authority
JP
Japan
Prior art keywords
rolling
slab
rare earth
magnet
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247120A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊夫 向井
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63247120A priority Critical patent/JPH0294603A/en
Publication of JPH0294603A publication Critical patent/JPH0294603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To make mass production of a magnet having a high magnetic characteristic and a low price possible by giving rolling press-down vertically to the growth direction of a columnar crystal of an R3Fe14B compound while cutting the columnar crystal into pieces by plastic deformation, and orientating an axis for facilitating magnetiza tion of individual crystal grains by crystal rotation in the press-down direction with high integration. CONSTITUTION:A rare earth magnet consisting of R (R denotes rare earths mainly composed of one or two kinds of Pr and Nd) of 8 to 25% in atomic percentage, B of 2 to 8% and the rest of Fe and inevitable impurities is manufactured by rolling. Further, this is a rolling press-down rare earth magnet having an anistropic degree P (P=Ir/Is, Ir: remaining magnetization in the direction of rolling press-down, Is: saturated magnetization of an alloy) above 0.75 and less than 1.0. And the manufactur ing method is that, when a magnet alloy is melted and casted by rapid cooling for manufacturing a cast alloy being (t) thick, (w) wide and (l) long, hot rolling is performed by making a flat cast piece wherein w/t is above 2, l/t is above 2 and (t) is 1 to 15mm while having a section of the flat cast piece as a rolling face. Thereby, an R-Fe-B plate-shaped magnet of high performance can be manufactured with high production efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R2Fe1.B化合物(ただしRはPrとN
dの1種又は2種を主体とする希土類元素)を主相とす
る圧延異方性希土類磁石とその製造方法に関するもので
ある。本発明磁石は、高性能で低価格になり得るという
可能性から、コンピューター周辺機器等広範な分野で利
用されることが期待される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides R2Fe1. Compound B (where R is Pr and N
The present invention relates to a rolled anisotropic rare earth magnet having a main phase containing one or two rare earth elements (d) and a method for manufacturing the same. The magnet of the present invention is expected to be used in a wide range of fields such as computer peripheral equipment because of its high performance and low cost.

〔従来の技術〕[Conventional technology]

R,Fe、 、B化合物を主相とする永久磁石材料を異
方性化t、高性能磁石を得る手段としては次の3つの手
段が公知である。
The following three methods are known for anisotropically producing a permanent magnet material containing R, Fe, B compounds as main phases, and for obtaining a high-performance magnet.

(1)単結晶サイズ以下(例えば3p)の磁石合金の粉
末を作成t、それを磁場中で配向させたのちにプレス成
形t、その成形体を焼結して異方性磁石を得る(特公昭
61−34242号公報)。
(1) Create magnet alloy powder with a size smaller than a single crystal (for example, 3p), orient it in a magnetic field, press-form it, and sinter the compact to obtain an anisotropic magnet (specially Publication number 61-34242).

(2)液体急冷により作成した微細結晶粒からなる急冷
薄帯を熱間プレスによりバルク化した後に、据え込み加
工(Dte−upset)により圧縮変形を行い、圧縮
方向に高い磁気特性を示す異方性磁石を得る(特開昭6
0−100402号公報)。
(2) After the quenched ribbon made of fine crystal grains created by liquid quenching is bulked by hot pressing, it is compressed and deformed by upsetting (Dte-upset), and the anisotropic material exhibits high magnetic properties in the compression direction. Obtaining a sex magnet (Unexamined Japanese Patent Publication No. 1986)
0-100402).

(3)バルク状の溶解・鋳造合金を熱間プレス等の熱間
加工により圧縮変形t、圧縮方向に高い磁気特性を示す
異方性磁石を得る(特開昭62−203302号公報)
(3) Obtain compressive deformation t and an anisotropic magnet exhibiting high magnetic properties in the compression direction by hot working such as hot pressing of a bulk melted/cast alloy (Japanese Patent Laid-Open No. 62-203302)
.

上記の3つの手段の中で(3)に示した手段は、(1)
又は(2)の手段において必須の粉末又はフレーク状の
薄帯を製造・処理する工程を省略しているので、生産効
率にすぐれる。特開昭63−114105号公報におい
ては、マクロ組織が柱状晶の鋳造合金を熱間加工により
圧縮変形t、異方性化することにより高い磁気特性が得
られるとされている。
Among the three means above, the means shown in (3) are (1)
Alternatively, since the step of manufacturing and treating the powder or flake-like ribbon, which is essential in the method (2), is omitted, the production efficiency is excellent. In JP-A-63-114105, it is said that high magnetic properties can be obtained by compressively deforming a cast alloy having a columnar macrostructure and making it anisotropic by hot working.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鋳造合金磁石を塑性加工によって異方性化する手段とし
て熱間プレスを用いる方法は量産性に欠ける。板状の異
方性磁石を得る手段としては、熱間圧延が最も効率的で
ある。しかるに、熱間圧延による高性能異方性磁石とそ
れを得る具体的手法については、何ら提供されていない
のが現状である。
The method of using hot pressing as a means of making a cast alloy magnet anisotropic by plastic working lacks mass productivity. Hot rolling is the most efficient means for obtaining plate-shaped anisotropic magnets. However, at present, nothing has been provided regarding a high-performance anisotropic magnet produced by hot rolling or a specific method for obtaining it.

本発明は、凝固組織の制御された合金鋳片に対して、磁
石の量産、低価格化を可能にする熱間圧延法を適用t、
高い磁気特性を有する圧延異方性希土類磁石とその製造
方法を提供するものである。
The present invention applies a hot rolling method to alloy slabs with a controlled solidification structure, which enables mass production and cost reduction of magnets.
The present invention provides a rolled anisotropic rare earth magnet having high magnetic properties and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、原子百分率で8〜25%のR(ただしRはP
rとNdの1種又は2種を主体とする希土類元素)、2
〜8%のB、及び残部がFeならびに不可避的不純物か
らなる希土類磁石において、圧延により製造した磁石で
あり、かつ異方化度P(ただしP = Ir / Is
、 Ir :圧延圧下方向の残留磁化、Is:合金の飽
和磁化)が0.75以上で1.0未満であることを特徴
とする圧延異方性希土類磁石である。
In the present invention, R is 8 to 25% in atomic percentage (wherein R is P
Rare earth elements mainly consisting of one or two of r and Nd), 2
A rare earth magnet consisting of ~8% B and the balance Fe and unavoidable impurities, the magnet is manufactured by rolling and has an anisotropy degree P (where P = Ir / Is
, Ir: residual magnetization in the direction of rolling reduction, Is: saturation magnetization of the alloy) is 0.75 or more and less than 1.0.

本発明の磁石の製造方法は、本発明に従った成分系の磁
石合金を溶解t、急冷鋳造により厚さt、幅w、長さ2
の鋳造合金を製造するに際t、W/tが2以上で、ff
i/tが2以上で、かつtが1〜15m5+である扁平
鋳片となt、該扁平鋳片の断面を圧延面として熱間圧延
することを特徴とする。
The method for producing a magnet of the present invention includes melting a magnet alloy having the composition according to the present invention, and then rapidly casting it to a thickness of t, width of w, and length of 2.
When manufacturing a cast alloy of t, W/t is 2 or more, ff
A flat slab having an i/t of 2 or more and a t of 1 to 15 m5+ is produced, and is characterized by hot rolling with the cross section of the flat slab serving as a rolling surface.

さらに、本発明の他の製造方法として、扁平鋳片を積層
して形成する積層鋳片を圧延する方法、その積層鋳片を
金属製容器に入れて圧延する方法、積層鋳片の積層面に
垂直な上下側面に扁平鋳片を置いて形成する複合鋳片を
圧延する方法、及びその複合鋳片を金属製容器に入れて
圧延する方法を提供する。
Furthermore, as other manufacturing methods of the present invention, a method of rolling a laminated slab formed by laminating flat slabs, a method of placing the laminated slab in a metal container and rolling it, and a method of rolling a laminated slab formed by laminating flat slabs, To provide a method for rolling a composite slab formed by placing flat slabs on vertical upper and lower sides, and a method for rolling the composite slab by placing it in a metal container.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

圧延異方性希土類磁石の性能指数として異方化度Pを、
P=Ir/Isとして定義した(但t、■r:圧延圧下
方向の残留磁化、■S:合金の飽和磁化)。
The degree of anisotropy P is the figure of merit of the rolled anisotropic rare earth magnet.
It was defined as P=Ir/Is (where t, ■r: residual magnetization in the direction of rolling reduction, ■S: saturation magnetization of the alloy).

Pが0.5の時は圧延体は完全等方性で、Pが1の時は
圧延体は完全異方性である。本発明に用いるPr又はN
dを主体とするR−Fe−B系の合金で、R3FeIJ
化合物が主相の実用磁石合金では4πIsはおおよそ1
3kGである。このような磁石合金が実用に供されるた
めにはPは0.75以上あることが必要である。このよ
うな高いPの値は、通常の圧延法では得られず、以下に
示すような鋳造合金の組織とそれに起因する異方性を考
慮した圧延法を用いて始めて得られるものである。
When P is 0.5, the rolled body is completely isotropic, and when P is 1, the rolled body is completely anisotropic. Pr or N used in the present invention
R-Fe-B alloy mainly composed of d, R3FeIJ
In practical magnetic alloys in which compounds are the main phase, 4πIs is approximately 1.
It is 3kG. In order for such a magnetic alloy to be put to practical use, P must be 0.75 or more. Such a high P value cannot be obtained by normal rolling methods, but can only be obtained by using a rolling method that takes into account the structure of the cast alloy and the anisotropy caused by it, as shown below.

2本の平行に設置された圧延ロール間隙で塑性加工を行
う熱間圧延においては、被圧延材内部に圧延面とほぼ垂
直な圧下方向に圧縮応力が働く。
In hot rolling, in which plastic working is performed in a gap between two rolling rolls installed in parallel, compressive stress acts inside the material to be rolled in a rolling direction substantially perpendicular to the rolling surface.

この圧縮応力によって被圧延材の個々の結晶粒内に塑性
流動が起り、結晶が回転する。R−Fe−B系の鋳造合
金の場合には、主相であるRzFetJ化合物の磁化容
易軸(C軸)が結晶回転によって圧下方向にそろう傾向
がある。このC軸の圧下方向への配向度がよいほど、圧
下方向(すなわち圧延板の板厚方向)に測って求められ
る残留磁化Irが高くなる。
This compressive stress causes plastic flow within individual crystal grains of the rolled material, causing the crystals to rotate. In the case of R-Fe-B based cast alloys, the axis of easy magnetization (C axis) of the RzFetJ compound, which is the main phase, tends to be aligned in the rolling direction due to crystal rotation. The better the degree of orientation of this C-axis in the rolling direction, the higher the residual magnetization Ir measured in the rolling direction (that is, the thickness direction of the rolled plate).

R−1e−B系合金のRzFe+J化合物の柱状晶の場
合には、その成長方向に対して垂直な面内の任意の方向
に磁化容易軸(C軸)が向く傾向がある。
In the case of columnar crystals of the RzFe+J compound of the R-1e-B alloy, the axis of easy magnetization (C-axis) tends to be oriented in any direction in a plane perpendicular to the growth direction.

したがって、圧延によってC軸を配向させる場合には、
圧下方向を柱状晶の成長方向に対して垂直にする圧延法
(柱状晶垂直圧下圧延)が効果的である。この圧延法に
対して、C軸配向に好ましくない圧延法は、圧下方向を
柱状晶の成長方向に対して平行にする圧延法(柱状晶平
行圧下圧延)である。本発明は柱状晶垂直圧下圧延を特
徴とt、この圧延法の適用により、0.75以上の異方
化度が達成され、高性能の圧延異方性希土類磁石が得ら
れる。
Therefore, when orienting the C axis by rolling,
A rolling method in which the rolling direction is perpendicular to the growth direction of columnar crystals (columnar crystal vertical reduction rolling) is effective. In contrast to this rolling method, a rolling method that is unfavorable for C-axis orientation is a rolling method in which the rolling direction is parallel to the growth direction of columnar crystals (columnar crystal parallel reduction rolling). The present invention is characterized by columnar crystal vertical reduction rolling. By applying this rolling method, a degree of anisotropy of 0.75 or more can be achieved and a high-performance rolled anisotropic rare earth magnet can be obtained.

本発明に用いる磁石の成分は特開昭62−203302
号公報記載の鋳造希土類−鉄系永久磁石の成分と類似で
ある。すなわち、原子百分率で8〜25%のR(ただし
RはPrとNdの1種又は2種を主体とする希土類元素
)、2〜8%のB、及び残部がFeならびに不可避的不
純物からなる。ここで、Rは8%未満では十分に高い保
磁力が得られず、25%を越えると残留磁束密度の低下
が著しい。本発明に従った成分系の鋳造合金においては
実用的に十分な保磁力の得られるBの範囲が2〜8%に
限られる。ここでRがPrの場合に高い磁石特性が得ら
れること、及びCuを添加することが磁石特性の改善に
有効であることが発表されている(下田ら、The 4
 th Joint MMM−1ntermag Co
nference (1215July+1988.V
ancouver)にて発表)。
The components of the magnet used in the present invention are disclosed in Japanese Patent Application Laid-Open No. 62-203302.
The composition is similar to that of the cast rare earth-iron permanent magnet described in the publication. That is, the atomic percentage consists of 8 to 25% R (R is a rare earth element mainly consisting of one or two of Pr and Nd), 2 to 8% B, and the balance is Fe and unavoidable impurities. Here, when R is less than 8%, a sufficiently high coercive force cannot be obtained, and when R exceeds 25%, the residual magnetic flux density is significantly reduced. In the cast alloy of the component system according to the present invention, the range of B in which a practically sufficient coercive force can be obtained is limited to 2 to 8%. It has been announced that high magnetic properties can be obtained when R is Pr, and that adding Cu is effective in improving magnetic properties (Shimoda et al., The 4
th Joint MMM-1ntermag Co
nference (1215July+1988.V
Announcement).

以下、本発明による圧延磁石の製造方法について説明す
る。鋳造合金を塑性加工して高特性を得るには、合金の
鋳造組織を微細化すると同時に、柱状晶をよく発達させ
る必要がある。我々の研究によれば、RgFe、、B化
合物の柱状晶の成長方向に対して直角方向に測った柱状
晶の直径が20t!m以下でなければ、熱間圧延によっ
て合金鋳片を異方性化しても実用的に十分な磁気特性(
Br及び(Bll)max)が得られない。このような
微細な柱状晶を得るためには、合金鋳片を急冷しなけれ
ばならず、そのために必然的に合金鋳片は扁平形状にな
る。厚さt、幅w、長さ2の扁平鋳片において、w/t
が2以上で、Il/tが2以上で、かつ厚さtが15m
m以下であれば、通常の量産性のある鋳造法によって柱
状晶を厚さ方向に発達成長せしめ、その柱状晶の直径を
20μm以下にすることができる。一方、扁平鋳片の厚
さが1闘未満になると、その製造が非効率的になる。よ
って、熱間圧延によって高特性の異方性磁石を得るには
鋳片の厚さLは1〜15mmに限定される。
Hereinafter, a method for manufacturing a rolled magnet according to the present invention will be explained. In order to obtain high properties by plastic working a cast alloy, it is necessary to refine the cast structure of the alloy and at the same time to develop columnar crystals well. According to our research, the diameter of the columnar crystals of RgFe, B compounds measured in the direction perpendicular to the growth direction is 20t! If the alloy slab is made anisotropic by hot rolling, it will still have practically sufficient magnetic properties (
Br and (Bll)max) cannot be obtained. In order to obtain such fine columnar crystals, the alloy slab must be rapidly cooled, and as a result, the alloy slab inevitably becomes flat. In a flat slab with thickness t, width w, and length 2, w/t
is 2 or more, Il/t is 2 or more, and the thickness t is 15 m
m or less, the diameter of the columnar crystals can be made to be 20 μm or less by growing the columnar crystals in the thickness direction by a normal casting method that is suitable for mass production. On the other hand, if the thickness of the flat slab becomes less than 1 inch, its production becomes inefficient. Therefore, in order to obtain an anisotropic magnet with high characteristics by hot rolling, the thickness L of the slab is limited to 1 to 15 mm.

厚さ1〜15mmの扁平鋳片(第1図(a))を本発明
に従い柱状晶垂直圧下圧延で圧延することは、扁平鋳片
の断面を圧延面として圧延することによって得られる。
A flat slab having a thickness of 1 to 15 mm (FIG. 1(a)) can be rolled by columnar vertical reduction rolling according to the present invention by rolling the flat slab with the cross section of the slab serving as the rolling surface.

しかしながら扁平鋳片の断面を圧延面として圧延するこ
とは作業性が悪いので第1図(b)に示すような積層鋳
片を作ることによって容易になる。すなわち、扁平鋳片
の幅方向と長さ方向を含む鋳片面を積層面として、扁平
鋳片を2枚以上積層して積層鋳片を作ることにより、圧
延可能な面積を有する圧延面を柱状晶の成長方向に対し
て平行に形づくることができる。ここで鋳片と鋳片との
接合には電子ビーム溶接等の非酸化性雰囲気中での溶接
を用いる。積層鋳片の熱間圧延は真空圧延機を用いて真
空中又は不活性ガス雰囲気中で行う。
However, rolling a flat slab using the cross section as the rolling surface has poor workability, so this can be facilitated by producing a laminated slab as shown in FIG. 1(b). In other words, by laminating two or more flat slabs to make a laminated slab, with the slab surface including the width direction and length direction of the flat slab as the lamination surface, the rolled surface with a rollable area becomes a columnar crystal. can be formed parallel to the direction of growth. Here, welding in a non-oxidizing atmosphere such as electron beam welding is used to join the slabs together. Hot rolling of the laminated slab is performed in a vacuum or in an inert gas atmosphere using a vacuum rolling mill.

熱間圧延によって圧下方向へのC軸の配向度を高めるた
めには、圧延時の圧下方向の圧縮応力をできるだけ大き
くすることが望ましい。そのためには、圧延1パス当り
の被圧延材の厚さ減少量を大きくする(大圧下圧延をす
る)必要がある。この大圧下圧延を上述のR−Fe−B
系扁平鋳片の積層鋳片に対して可能ならしめるのはバッ
ク圧延法である。すなわち、積層鋳片を金属製容器にで
きるだけ空隙を残さないような方法で装入t、溶接して
密閉後に容器と一緒に積層鋳片を圧延する方法である。
In order to increase the degree of orientation of the C axis in the rolling direction by hot rolling, it is desirable to increase the compressive stress in the rolling direction as much as possible during rolling. For this purpose, it is necessary to increase the amount of thickness reduction of the rolled material per rolling pass (rolling with large reduction). This large reduction rolling is performed as described above for R-Fe-B.
The back rolling method is possible for laminated slabs of flat slabs. That is, this is a method in which a laminated slab is charged into a metal container in a manner that leaves as few voids as possible, welded, and sealed, and then the laminated slab is rolled together with the container.

圧延前に積層鋳片の表面にA2□04、CaO等の剥離
剤を塗っておけば、圧延による鋳片と容器の溶着が起ら
ず圧延後は簡単に積層鋳片の圧延板を取り出すことがで
きる。このバック圧延法の適用により、大圧下圧延が可
能であるばかりでなく、容器内に積層鋳片を装入、密閉
するので加熱中の鋳片の酸化を最小限にとどめることが
できる。したがって、この場合は真空圧延機等は必要で
はなく、非常に効率よく高い磁気特性の圧延異方性磁石
を得ることができる。
If a release agent such as A2□04 or CaO is applied to the surface of the laminated slab before rolling, welding between the slab and the container due to rolling will not occur, and the rolled plate of the laminated slab can be easily taken out after rolling. Can be done. By applying this back rolling method, it is not only possible to perform large reduction rolling, but also to minimize oxidation of the slab during heating because the laminated slab is charged and sealed in a container. Therefore, in this case, a vacuum rolling mill or the like is not required, and a rolled anisotropic magnet with high magnetic properties can be obtained very efficiently.

上述の積層鋳片の熱間圧延において、個々の鋳片同志は
溶着t、一体化する。これは、1000°C前後の熱間
圧延温度ではR−Fe−B系合金ではRに冨む液相がか
なりの量出現するためである。この溶着によって形状の
大きい磁石が製造可能である。
In the hot rolling of the laminated slabs described above, the individual slabs are welded together and integrated. This is because a considerable amount of R-rich liquid phase appears in the R-Fe-B alloy at a hot rolling temperature of around 1000°C. By this welding, large-sized magnets can be manufactured.

さらに鋳片同志の溶着による一体化を完全なものとする
ために、第1図[有])の積層鋳片の圧延面に平行な上
下側面に薄めの扁平鋳片を少くとも一枚づつ配置して第
1図(C)に示すような複合鋳片を作り、それを圧延す
る方法が有効である。積層鋳片とその上下面に置いた扁
平鋳片との間には圧延による圧縮応力が働き、その応力
と液相出現との相乗効果によって圧延後は全鋳片が完全
に一体化t、強固でなめらかな面を持つ圧延板ができる
Furthermore, in order to completely integrate the slabs by welding them together, at least one thin flat slab is placed on the upper and lower sides parallel to the rolling surface of the laminated slab shown in Fig. 1. An effective method is to make a composite slab as shown in FIG. 1(C) and roll it. Compressive stress due to rolling acts between the laminated slab and the flat slabs placed on its upper and lower surfaces, and due to the synergistic effect of that stress and the appearance of a liquid phase, all slabs are completely integrated and strong after rolling. This produces a rolled plate with a smooth surface.

合金鋳片の異方性化のための熱間圧延は500°C以上
の温度で行うことができるが、良好な圧延性を得るため
には800〜1100°Cの温度範囲で圧延を行うこと
が望ましい。上記の温度範囲で鋳片を保定することによ
り磁石特性に有害なαFe相を消失させることができる
。本発明の柱状晶垂直圧下圧延の場合の圧延方向は特に
規定しないが、圧延性の点から、圧延面内にあって柱状
晶の成長方向に対して直角の方向が好ましい。
Hot rolling to make the alloy slab anisotropic can be performed at a temperature of 500°C or higher, but in order to obtain good rolling properties, rolling should be performed at a temperature range of 800 to 1100°C. is desirable. By holding the slab in the above temperature range, the αFe phase, which is harmful to magnetic properties, can be eliminated. The rolling direction in the columnar crystal vertical reduction rolling of the present invention is not particularly defined, but from the viewpoint of rolling properties, a direction within the rolling plane and perpendicular to the growth direction of the columnar crystals is preferred.

熱間圧延後に圧延板を400〜1000°Cの温度で焼
鈍することにより保磁力が向上する。最もすぐれた磁石
特性は500〜700℃の温度での焼鈍によって得られ
る。これは焼鈍によってR,Fe、、B化合物の結晶粒
の表面状態が変化するためと考えられる。
Coercive force is improved by annealing the rolled plate at a temperature of 400 to 1000°C after hot rolling. The best magnetic properties are obtained by annealing at temperatures between 500 and 700°C. This is thought to be because the surface state of the crystal grains of the R, Fe, and B compounds changes due to annealing.

〔作 用〕[For production]

圧延圧下がR,Fe、、B化合物の柱状晶の成長方向に
対して垂直に加えられると、第2図(a)、 (b)に
示すごとく、柱状晶(第2図(a))は塑性変形により
分断される一方結晶回転(第2図(b))を受ける。
When rolling pressure is applied perpendicularly to the growth direction of the columnar crystals of R, Fe, B compounds, the columnar crystals (Fig. 2(a)) become as shown in Fig. 2(a) and (b). While it is divided by plastic deformation, it undergoes crystal rotation (Fig. 2(b)).

この結晶回転により、個々の結晶粒の磁化容易軸は圧下
方向に高い集積度で配向する。このような高配向性を示
す圧延異方性希土類磁石は高い磁石特性を示す。
Due to this crystal rotation, the easy magnetization axes of individual crystal grains are oriented in the rolling direction with a high degree of integration. A rolled anisotropic rare earth magnet exhibiting such high orientation exhibits high magnetic properties.

本発明の製造方法に従って、積層鋳片又は複合鋳片を圧
延することにより、個々の鋳片が溶着により一体化する
ために任意の形状の板状磁石を得ることができる。
By rolling a laminated slab or a composite slab according to the manufacturing method of the present invention, a plate magnet of any shape can be obtained because the individual slabs are integrated by welding.

〔実施例〕〔Example〕

実施例1 原子百分率でFe−17%Pr−5%B−1,5%Cu
の組成を有する合金を高周波誘導溶解炉で溶解t、高効
率に抜熱の可能な鋳型に鋳造することにより厚さ6.5
mm、幅160mm、長さ160mmの扁平鋳片を作製
した。この鋳片においては厚さ方向にR2Fe、4B化
合物の柱状晶が成長している。その柱状晶の平均的サイ
ズは、第2図(a)に示すように、柱状晶の成長方向に
直角方向の直径で表わして約5鎖であった。
Example 1 Fe-17%Pr-5%B-1,5%Cu by atomic percentage
An alloy with a composition of
A flat slab with a width of 160 mm and a length of 160 mm was produced. In this slab, columnar crystals of R2Fe, 4B compounds grow in the thickness direction. As shown in FIG. 2(a), the average size of the columnar crystals was about 5 chains, expressed as the diameter in the direction perpendicular to the growth direction of the columnar crystals.

本鋳片を1000°Cで1時間加熱後に、2通りの圧延
法で圧延した。即ち、圧下方向を柱状晶の成長方向に平
行にする場合6(柱状晶平行圧下圧延)と本発明の方法
である圧下方向を柱状晶の成長方向に垂直にする場合(
柱状晶垂直圧下圧延)・の2通りである。柱状晶平行圧
下圧延の場合には、6.5閣厚さの扁平鋳片をそのまま
圧延に供した。柱状晶垂直圧下圧延の場合には、扁平鋳
片を厚さ方向を含む面を切断面として6.5mm間隔で
帯状に切断t、それら帯状鋳片を第1図(b)に示すよ
うに積層して圧延に供した。
After heating this slab at 1000°C for 1 hour, it was rolled using two rolling methods. That is, when the rolling direction is parallel to the growth direction of columnar crystals (6) (columnar crystal parallel reduction rolling) and when the rolling direction is perpendicular to the growth direction of columnar crystals (6), which is the method of the present invention,
There are two methods: columnar crystal vertical reduction rolling). In the case of columnar crystal parallel reduction rolling, a flat slab with a thickness of 6.5 mm was directly subjected to rolling. In the case of columnar crystal vertical reduction rolling, the flat slab is cut into strips at 6.5 mm intervals with the plane including the thickness direction as the cutting plane, and the strips are stacked as shown in Figure 1(b). It was then subjected to rolling.

圧延に際しては、鋳片を鉄製容器にできるだけ空隙なく
収納t、密閉後に、本発明のパック圧延を施した。圧延
は1パスで行い、圧延率が72%で6.5mm厚さの鋳
片から1.8mm厚さの圧延材を得た。柱状晶垂直圧下
圧延の場合には、圧延前にはそれぞれ分離した帯状鋳片
の集合体であったものが、パックから取り出した圧延板
においては完全に融着−磁化していた。保磁力を高める
ために600°Cで1時間の焼鈍を圧延板に施t、自記
磁束計により磁気特性を測定した。第1表に圧延板面に
垂直方向の磁気特性と異方化度を示t、第3図にそれぞ
れの減磁曲線を示す。第1表には、比較のために、はぼ
全体が等軸品からなる厚さ30卿の鋳片をほぼ同じ圧延
率で熱間圧延t、その圧延板に対して600°Cで1時
間の焼鈍を行った後に磁気特性を測定した結果も示して
いる。
During rolling, the slab was stored in an iron container with as few gaps as possible, and after being sealed, pack rolling of the present invention was performed. Rolling was performed in one pass, and a rolled material with a thickness of 1.8 mm was obtained from a slab with a thickness of 6.5 mm at a rolling rate of 72%. In the case of columnar crystal vertical reduction rolling, what was an aggregate of separate strip slabs before rolling was completely fused and magnetized in the rolled plate taken out from the pack. The rolled plate was annealed at 600°C for 1 hour to increase the coercive force, and its magnetic properties were measured using a self-recording magnetometer. Table 1 shows the magnetic properties and degree of anisotropy in the direction perpendicular to the surface of the rolled plate, and FIG. 3 shows the respective demagnetization curves. Table 1 shows, for comparison, that a slab of thickness 30 mm, the entire surface of which is equiaxed, is hot-rolled at approximately the same rolling rate, and the rolled plate is heated at 600°C for 1 hour. The results of measuring magnetic properties after annealing are also shown.

第1表から明らかなように、厚さ30備の鋳片の熱間圧
延によっては実用的に十分な磁気特性が得られていない
。保磁力iHcは十分であるが残留磁束密度Br及び最
大エネルギー積(BH) maxが低い。
As is clear from Table 1, practically sufficient magnetic properties cannot be obtained by hot rolling a slab with a thickness of 30mm. Although the coercive force iHc is sufficient, the residual magnetic flux density Br and the maximum energy product (BH) max are low.

この理由は、鋳片がほぼ等軸品からなり、その等軸品の
直径が約40μmと大きいためである。厚さ6.5mm
の扁平鋳片から得られた磁気特性は、上述の厚さ30I
I11の鋳片から得られた結果に比較して格段によい。
The reason for this is that the slab is made of substantially equiaxed products, and the diameter of the equiaxed products is as large as about 40 μm. Thickness 6.5mm
The magnetic properties obtained from the flat slab with the above-mentioned thickness of 30I
This is much better than the results obtained from I11 slab.

扁平鋳片の柱状晶平行圧下圧延の結果と本発明の柱状晶
垂直圧下圧延の結果とを比較すると、後者の場合の方が
Brにおいて13%、(Bll)waxにおいて25%
良い。異方化度Pについては、本発明の柱状晶垂直圧下
圧延においてのみ0.75以上になっている。ここで、
P=Ir/Isで、4 rc Ir−Br、 4 yr
 l5=12.8kGである。飽和磁化Isは本合金の
粉末磁場配向による異方性焼結磁石の測定から求めたも
のである。
Comparing the results of columnar crystal parallel reduction rolling of a flat slab with the results of columnar crystal vertical reduction rolling of the present invention, the latter case has a lower Br of 13% and a (Bll)wax of 25%.
good. The degree of anisotropy P is 0.75 or more only in the columnar vertical reduction rolling of the present invention. here,
P=Ir/Is, 4 rc Ir-Br, 4 yr
l5=12.8kG. The saturation magnetization Is was determined from measurements of an anisotropic sintered magnet of the present alloy using powder magnetic field orientation.

第2図(b)には、柱状晶垂直圧下圧延の場合の圧延後
のミクロ組織を示す。圧延によって、柱状晶は塑性変形
を受は結晶回転しながら分断されたのがわかる。
FIG. 2(b) shows the microstructure after rolling in the case of columnar crystal vertical reduction rolling. It can be seen that by rolling, the columnar crystals underwent plastic deformation and were divided while the crystals rotated.

実施例2 実施例1で詳述した扁平鋳片(厚さ6.5n+m)を厚
さ方向を含む面を切断面として15mm間隔で帯状に切
断t、それらの帯状鋳片を第1図Φ)に示すように積層
して積層鋳片を作成した。次にその積層鋳片の圧延面に
平行な上側面及び下側面に厚さ3.0閣の扁平鋳片を置
き、第1図(C)に示すような複合鋳片を形成した。こ
の複合鋳片を鉄製容器に収納t、密閉後に圧延を施した
。圧延は1000″Cで1時間加熱後に1バスで行った
。圧延率は72%で、21+nm厚さの複合鋳片から5
.9m+n厚さの圧延板を得た。この圧延材に600°
Cで1時間の焼鈍を施t、磁気特性を測定した。圧延板
面に垂直方向の磁気特性と異方化度Pは次の通りである
Example 2 The flat slab (thickness 6.5n+m) detailed in Example 1 was cut into strips at 15 mm intervals with the plane including the thickness direction as the cutting plane, and these strips were cut into strips (Fig. 1 Φ). A laminated slab was created by laminating the sheets as shown in the figure. Next, flat slabs having a thickness of 3.0 cm were placed on the upper and lower surfaces of the laminated slab parallel to the rolling surface to form a composite slab as shown in FIG. 1(C). This composite slab was stored in an iron container, sealed, and then rolled. Rolling was carried out in one bath after heating at 1000"C for 1 hour. The rolling ratio was 72%, and 5
.. A rolled plate with a thickness of 9m+n was obtained. 600° to this rolled material
It was annealed at C for 1 hour and its magnetic properties were measured. The magnetic properties in the direction perpendicular to the rolled plate surface and the degree of anisotropy P are as follows.

磁気特性:   1Hc= 9.4kOeBr=10.
3kG (Bll)max=23.1MGOe P=0.80 本実施例の場合は、積層鋳片の圧延面に平行な上下面に
扁平鋳片を置いて圧延したために、個々の鋳片が完全に
溶着t、−磁化された強固な圧延材を得ることができた
Magnetic properties: 1Hc=9.4kOeBr=10.
3kG (Bll)max=23.1MGOe P=0.80 In the case of this example, since the flat slabs were placed on the upper and lower surfaces parallel to the rolling surface of the laminated slab and rolled, the individual slabs were completely rolled. Welding t, - A strong magnetized rolled material could be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の圧延異方性希土類磁石とその製造方法の提供に
よって、異方化度Pが0.75以上である高性能のR−
Fe−B系板状磁石が高い生産効率で製造可能である。
By providing the rolled anisotropic rare earth magnet of the present invention and the manufacturing method thereof, a high-performance R-
Fe-B based plate magnets can be manufactured with high production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は柱状晶を有する扁平鋳片、第1図0))
は扁平鋳片を積層して得られる積層鋳片、及び第1図(
C)は扁平鋳片の複合的積層によって得られる複合鋳片
を表わす図である。 第2図(a)は扁平鋳片の柱状晶を表わす金属顕微鏡組
織写真、第2図(b)は熱間圧延後のRzFe+aB化
合物の結晶粒を示す金属顕微鏡組織写真である。 第3図は、熱間圧延によって得られる異方性磁石の磁化
(4π■)と外部磁界(H)の曲線の第2象限図(減磁
曲線)である。 第 図 Cb) (C)
Figure 1 (a) is a flat slab with columnar crystals, Figure 1 (0))
is a laminated slab obtained by laminating flat slabs, and Fig. 1 (
C) is a diagram showing a composite slab obtained by composite lamination of flat slabs. FIG. 2(a) is a metallurgical microscopic photograph showing columnar crystals of a flat slab, and FIG. 2(b) is a metallurgical microscopic photograph showing crystal grains of the RzFe+aB compound after hot rolling. FIG. 3 is a second quadrant diagram (demagnetization curve) of the curve of magnetization (4π■) and external magnetic field (H) of an anisotropic magnet obtained by hot rolling. Figure Cb) (C)

Claims (6)

【特許請求の範囲】[Claims] (1) 原子百分率で8〜25%のR(ただしRはPr
とNdの1種又は2種を主体とする希土類元素)、2〜
8%のB、及び残部がFeならびに不可避的不純物から
なる希土類磁石において、圧延により製造した磁石であ
り、かつ異方化度P(ただしP=Ir/Is、Ir:圧
延圧下方向の残留磁化、Is:合金の飽和磁化)が0.
75以上で1.0未満であることを特徴とする圧延異方
性希土類磁石。
(1) 8 to 25% R in atomic percentage (R is Pr
and rare earth elements mainly consisting of one or two of Nd), 2~
A rare earth magnet consisting of 8% B and the balance Fe and unavoidable impurities, and is a magnet manufactured by rolling, and has an anisotropy degree P (where P=Ir/Is, Ir: residual magnetization in the rolling direction, Is: saturation magnetization of the alloy) is 0.
A rolled anisotropic rare earth magnet characterized in that it is 75 or more and less than 1.0.
(2) 原子百分率で8〜25%のR(ただしRはPr
とNdの1種又は2種を主体とする希土類元素)、2〜
8%のB、及び残部がFeならびに不可避的不純物から
なる合金を溶解し、急冷鋳造により厚さt、幅w、長さ
lの合金鋳片を製造するに際し、鋳片形状がw/tが2
以上で、l/tが2以上で、かつtが1〜15mmであ
る扁平鋳片となし、該扁平鋳片の断面を圧延面として熱
間圧延することを特徴とする圧延異方性希土類磁石の製
造方法。
(2) 8 to 25% R in atomic percentage (R is Pr
and rare earth elements mainly consisting of one or two of Nd), 2~
When an alloy consisting of 8% B and the balance Fe and unavoidable impurities is melted and an alloy slab of thickness t, width w, and length l is produced by rapid cooling casting, the slab shape is w/t. 2
A rolled anisotropic rare earth magnet characterized by forming a flat slab having l/t of 2 or more and t of 1 to 15 mm, and hot rolling the flat slab with the cross section of the flat slab as a rolling surface. manufacturing method.
(3) 請求項2記載の扁平鋳片を、その幅方向と長さ
方向を含む鋳片面を積層面として、2枚以上積層して形
成される積層鋳片を、積層面に垂直な面を圧延面として
熱間圧延することを特徴とする圧延異方性希土類磁石の
製造方法。
(3) A laminated slab formed by laminating two or more of the flat slabs according to claim 2, with the slab surface including the width direction and length direction as the lamination surface, with the surface perpendicular to the lamination surface A method for manufacturing a rolled anisotropic rare earth magnet, characterized by hot rolling as a rolling surface.
(4) 請求項2記載の扁平鋳片を、その幅方向と長さ
方向を含む鋳片面を積層面として、2枚以上積層して形
成される積層鋳片を金属製容器に収納後密閉し、積層面
に垂直な面を圧延面として前記金属製容器と一緒に容器
内の積層鋳片を熱間圧延することを特徴とする圧延異方
性希土類磁石の製造方法。
(4) A laminated slab formed by laminating two or more flat slabs according to claim 2, with the slab surface including the width direction and length direction as the lamination surface, is stored in a metal container and then sealed. . A method for manufacturing a rolled anisotropic rare earth magnet, comprising hot rolling a laminated slab in the container together with the metal container, with a surface perpendicular to the lamination surface serving as the rolling surface.
(5) 請求項2記載の扁平鋳片を、その幅方向と長さ
方向を含む鋳片面を積層面として、2枚以上積層して形
成される積層鋳片に対して、積層面に垂直な上側面と下
側面に前記扁平鋳片を、その幅方向と長さ方向を含む鋳
片面を接触面として、少くとも1枚づつ配置することに
より形成した複合鋳片を、前記上側面及び下側面に平行
な面を圧延面として熱間圧延することを特徴とする圧延
異方性希土類磁石の製造方法。
(5) For a laminated slab formed by laminating two or more flat slabs according to claim 2, with the slab surface including the width direction and length direction as the lamination surface, A composite slab is formed by arranging at least one flat slab on each of the upper and lower surfaces, with the slab surfaces including the width and length directions serving as contact surfaces. 1. A method for producing a rolled anisotropic rare earth magnet, comprising hot rolling with a surface parallel to the rolling surface as the rolling surface.
(6) 請求項5記載の複合鋳片を金属製容器に収納後
密閉し、前記複合鋳片の上側面及び下側面に平行な面を
圧延面として前記金属製容器と一緒に容器内の複合鋳片
を熱間圧延することを特徴とする圧延異方性希土類磁石
の製造方法。
(6) The composite slab according to claim 5 is stored in a metal container and sealed, and the composite slab in the container is rolled with surfaces parallel to the upper and lower surfaces of the composite slab as rolling surfaces. A method for manufacturing a rolled anisotropic rare earth magnet, which comprises hot rolling a slab.
JP63247120A 1988-09-30 1988-09-30 Rolled anisotropic rare earth magnet and manufacture thereof Pending JPH0294603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247120A JPH0294603A (en) 1988-09-30 1988-09-30 Rolled anisotropic rare earth magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247120A JPH0294603A (en) 1988-09-30 1988-09-30 Rolled anisotropic rare earth magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0294603A true JPH0294603A (en) 1990-04-05

Family

ID=17158731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247120A Pending JPH0294603A (en) 1988-09-30 1988-09-30 Rolled anisotropic rare earth magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0294603A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252207A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Permanent magnet and manufacture thereof
JPH02252204A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Permanent magnet and manufacture thereof
KR101424503B1 (en) * 2013-05-08 2014-08-04 (주)엔텔스 Apparatus and mehtod for controlling traffic
US9111679B2 (en) 2011-02-23 2015-08-18 Toyota Jidosha Kabushiki Kaisha Method producing rare earth magnet
CN106887294A (en) * 2017-03-10 2017-06-23 钢铁研究总院 Many seamless permanent-magnet rare-earth rings of Hard Magnetic principal phase radial orientation and cold-forming process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252207A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Permanent magnet and manufacture thereof
JPH02252204A (en) * 1989-03-25 1990-10-11 Seiko Epson Corp Permanent magnet and manufacture thereof
US9111679B2 (en) 2011-02-23 2015-08-18 Toyota Jidosha Kabushiki Kaisha Method producing rare earth magnet
KR101424503B1 (en) * 2013-05-08 2014-08-04 (주)엔텔스 Apparatus and mehtod for controlling traffic
CN106887294A (en) * 2017-03-10 2017-06-23 钢铁研究总院 Many seamless permanent-magnet rare-earth rings of Hard Magnetic principal phase radial orientation and cold-forming process
CN106887294B (en) * 2017-03-10 2020-05-22 钢铁研究总院 Multi-hard magnetic main phase radial orientation seamless rare earth permanent magnet ring and low-temperature forming method

Similar Documents

Publication Publication Date Title
EP0231620B1 (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
US5580396A (en) Treatment of pulverant magnetic materials and products thus obtained
CN102403078B (en) Preparation method of anisotropic rare earth permanent magnet alloy material and magnetic powder
WO1992020081A1 (en) Method of producing a rare earth permanent magnet
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0294603A (en) Rolled anisotropic rare earth magnet and manufacture thereof
US5049335A (en) Method for making polycrystalline flakes of magnetic materials having strong grain orientation
JPH06302417A (en) Permanent magnet and its manufacture
JP2003031432A (en) Rare-earth sintered magnet and method of manufacturing the same
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
Mukai et al. New method of hot rolling for fabricating anisotropic Pr‐Fe‐B‐based magnets
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPH02250920A (en) Production of rare earth element-transition element -b magnet by forging
JPS646267B2 (en)
JPH04293206A (en) Pare earth elements-fe-b based anisotropic permanent magnet
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet
JP3061808B2 (en) Method for producing Fe-BR-based permanent magnet
JPH048923B2 (en)
JPH0617104A (en) Production of permanent magnet
JPH06251917A (en) Rare earth element permanent magnet
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron
JPH0645168A (en) Manufacture of r-fe-b magnet
JPH0410504A (en) Heat treatment method for rare-earth permanent magnet
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder