JPH0294566A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH0294566A
JPH0294566A JP63245990A JP24599088A JPH0294566A JP H0294566 A JPH0294566 A JP H0294566A JP 63245990 A JP63245990 A JP 63245990A JP 24599088 A JP24599088 A JP 24599088A JP H0294566 A JPH0294566 A JP H0294566A
Authority
JP
Japan
Prior art keywords
film
layer
solid
shield layer
light shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245990A
Other languages
Japanese (ja)
Inventor
Kumio Koorido
郡戸 久美男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63245990A priority Critical patent/JPH0294566A/en
Publication of JPH0294566A publication Critical patent/JPH0294566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the leakage amount of a light due to multiple reflection occurring between an optically shielding layer and a pixel electrode and to improve an optically shielding effect by presetting a reflection preventive film having smaller reflectivity than that of the shielding layer between the shielding layer and a transparent electrode. CONSTITUTION:A hydrogenated amorphous silicon photoconductive film 22 and an ITO transparent electrode 23 are deposited on a solid state image sensor chip. Further, a chromium oxide film as a reflection preventive film 24 and a chromium layer as an optically shielding layer 25 are deposited on the electrode 23 by a sputtering method. Then, a resist pattern 26 is formed in a desired pattern on the layer 25. With the pattern 26 as a mask the layer 26 and the film 24 are selectively etched, and the pattern 26 is removed. Even if an incident light is reflected on a pixel electrode 21 and advanced to the layer 25 side, the reflection at the layer 25 side is reduced due to the presence of the film 24. Thus, the leakage of a light due to multiple reflection between the layer 25 and the film 21 can be largely reduced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、固体撮像装置に係わり、特に固体撮像素子チ
ップ上に光導電膜を積層した積層型固体撮像装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a solid-state imaging device, and particularly to a stacked solid-state imaging device in which a photoconductive film is stacked on a solid-state imaging element chip.

(従来の技術) 近年、固体撮像装置の多画素化の進展に伴い、光を受光
するフォトダイオードの面積が益々小さくなり、取扱う
信号電荷量も少なくなっている。
(Prior Art) In recent years, with the progress of increasing the number of pixels in solid-state imaging devices, the area of photodiodes that receive light has become smaller and smaller, and the amount of signal charges handled has also become smaller.

このことは、必然的にSN比の低下を招き、深刻な問題
となっている。これを解決する一手段として、感光部を
CCD撮像素子チップ上に立体的に配置する光導電膜積
層型固体撮像装置が提案されている。
This inevitably leads to a decrease in the signal-to-noise ratio, which is a serious problem. As a means to solve this problem, a photoconductive film stacked solid-state imaging device has been proposed in which a photosensitive section is three-dimensionally arranged on a CCD imaging element chip.

第3図は従来の光導電膜積層型固体撮像装置の概略構成
を示す断面図である。p型St基板10にn−型の埋込
みチャネルCCD (垂直CCD11、n+型の蓄積ダ
イオード12及びp+型チャネルストッパ13が形成さ
れ、垂直CODII上には転送用ゲート電極となるポリ
Si電極14゜15が形成されている。蓄積ダイオード
12の部分では、熱酸化膜、CVD酸化膜等からなる酸
化膜16に、蓄積ダイオード12のn+部分が露出する
ようにコンタクトホールが形成された後、例えば八βや
M o S i等による引出し電極18が所定の形状に
形成される。次いで、例えばポリイミド或いはメルト工
程を通したBPSG (ボロン・リン・シリケートガラ
ス)等からなる表面平坦化膜19が形成され、さらにこ
の膜19にコンタクトホールを形成して引出し電極18
の一部を露出させた後、Al或いはTj等の画素電極2
1が所定の形状に形成される。
FIG. 3 is a sectional view showing the schematic structure of a conventional photoconductive film stacked solid-state imaging device. An n-type buried channel CCD (vertical CCD 11, an n+ type storage diode 12, and a p+ type channel stopper 13) are formed on a p-type St substrate 10, and a poly-Si electrode 14°15 serving as a transfer gate electrode is formed on the vertical CODII. In the storage diode 12 part, a contact hole is formed in the oxide film 16 made of a thermal oxide film, a CVD oxide film, etc. so that the n+ part of the storage diode 12 is exposed, and then, for example, 8β An extraction electrode 18 is formed in a predetermined shape using a material such as or MoSi.Next, a surface flattening film 19 made of, for example, polyimide or BPSG (boron phosphorus silicate glass) through a melt process is formed. Further, a contact hole is formed in this film 19 to form an extraction electrode 18.
After exposing a part of the pixel electrode 2 of Al or Tj,
1 is formed into a predetermined shape.

このように形成された固体撮像素子チップ上に、アモル
ファスSt等の光導電膜22をグロー放電や先CVD法
で形成し、さらにITO(インジウム・スズ・酸化膜)
等の透明電極23及び光シールド層25を形成すること
により積層型固体撮像装置が?L+られる。ここで、光
シールド層25は、画素電極21の間隙を覆うように形
成され、材料としてはCr、Mo、Ti等が用いられて
いる。
A photoconductive film 22 of amorphous St or the like is formed on the solid-state image sensor chip formed in this manner by glow discharge or a pre-CVD method, and then ITO (indium tin oxide film) is formed.
By forming a transparent electrode 23 and a light shield layer 25, a stacked solid-state imaging device can be obtained. L+ is received. Here, the light shield layer 25 is formed to cover the gap between the pixel electrodes 21, and is made of Cr, Mo, Ti, or the like.

また、光シールド層25のうち、251はオプティカル
ブラック用の光シールド層で、25□。
Further, among the light shield layers 25, 251 is a light shield layer for optical black, and is 25□.

25、はスミア低減のための先シールド層である。25 is a pre-shield layer for reducing smear.

しかしながら、この種の装置にあっては次のような問題
があった。即ち、入射光の一部が光シールド層25 (
251,25□、253)の裏面での反射と画素電極2
1での反射による多重反射によって、固体撮像素子チッ
プ側に光が漏れ込み、オプティカルブラック部の先シー
ルド層25.及びスミア低減のために設けた光シールド
層252゜25、の光シールド効果を低下させてしまう
問題があった。
However, this type of device has the following problems. That is, a part of the incident light passes through the optical shield layer 25 (
251, 25□, 253) and the reflection on the back surface of pixel electrode 2
Due to multiple reflections caused by reflection at 25.1, light leaks to the solid-state image sensor chip side, and the optical black portion is exposed to the shield layer 25.1. There is also a problem in that the light shielding effect of the light shield layer 252.25 provided to reduce smear is reduced.

(発明が解決しようとする課題) このように従来、光導電膜上に金属祠料等からなる光シ
ールド層を形成した積層型固体撮像装置においては、光
シールド層と画素′r+Sl!!!iとの間の多重反射
により固体撮像素子チップ側へ光層れが生じ、これが先
シールド効果を低減させる要因となっていた。
(Problem to be Solved by the Invention) As described above, in the conventional stacked solid-state imaging device in which a light shield layer made of a metal abrasive or the like is formed on a photoconductive film, the light shield layer and the pixel 'r+Sl! ! ! Due to multiple reflections with respect to the solid-state image sensor chip, optical layer deviation occurs toward the solid-state image sensor chip, which is a factor that reduces the front shielding effect.

本発明は、上記事情を考慮してなされたもので、その[
1的とするところは、光シールド層と画素電極との間の
多重反射に起因する光漏れを低減することができ、スミ
アのより一層の低減をはかりiする固体撮像装置を提供
することにある。
The present invention has been made in consideration of the above circumstances.
One objective is to provide a solid-state imaging device that can reduce light leakage caused by multiple reflections between a light shield layer and a pixel electrode, and further reduces smear. .

[発明の構成] (課題を解決するための手段) 本発明の骨子は、透明電極と光シールド層との間に反射
率の小さい材料からなる膜を設け、光ンールド層側にお
ける反射を防止(若しくは低減)することにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to provide a film made of a material with low reflectance between the transparent electrode and the light shield layer to prevent reflection on the light shield layer side ( or reduction).

即ち本発明は、半導体基板に信号電荷蓄積ダイオード及
び信号電荷転送部が形成され、且つ最上部に信号電荷蓄
積ダイオードに電気的に接続された画素電極が形成され
た固体撮像素子チップと、この固体撮像索子チップ上に
積層された光導電膜と、この光導電膜上に形成された透
明電極と、この透明電極上に前記画素電極の間隙を覆う
ように形成された光シールド層とを備えた固体撮像装置
において、前記光シールド層と透明電極との間に、光シ
ールド層よりも光に対する反射率の小さな材料からなる
反射防止膜を設けるようにしたものである。
That is, the present invention provides a solid-state image sensor chip in which a signal charge storage diode and a signal charge transfer section are formed on a semiconductor substrate, and a pixel electrode electrically connected to the signal charge storage diode is formed on the top, and this solid state image sensor chip. A photoconductive film laminated on an imaging probe chip, a transparent electrode formed on the photoconductive film, and a light shield layer formed on the transparent electrode so as to cover the gap between the pixel electrodes. In the solid-state imaging device, an antireflection film made of a material having a lower reflectance to light than the light shield layer is provided between the light shield layer and the transparent electrode.

(作 用) 本発明によれば、光シールド層と透明電極との間に、光
シールド層よりも小さな反射率の反射防止膜が存在する
ので、光シールド層と画素電極との間に起こる多重反射
による光の漏れ量が少なくなり、光シールド効果の向上
をはかることが可能となる。
(Function) According to the present invention, since an antireflection film having a smaller reflectance than the light shield layer is present between the light shield layer and the transparent electrode, multiplexing occurs between the light shield layer and the pixel electrode. The amount of light leaking due to reflection is reduced, making it possible to improve the light shielding effect.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる光導電膜積層型固体
撮像装置の概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a photoconductive film stacked solid-state imaging device according to an embodiment of the present invention.

この装置が第3図と異なる点は、光シールド層と透明電
極との間に、クロム等からなる反射防止膜を設けたこと
にある。即ち、ITO等からなる透明電極23とクロム
等からなる光シールド層25(25□、25□+  2
53 )との間に酸化クロム等からなる反射防止膜24
 (24,,24□。
This device differs from FIG. 3 in that an antireflection film made of chromium or the like is provided between the light shield layer and the transparent electrode. That is, a transparent electrode 23 made of ITO or the like and a light shield layer 25 (25□, 25□+2
53) and an antireflection film 24 made of chromium oxide, etc.
(24,,24□.

24.)が形成されている。ここで、酸化クロムはクロ
ムに比べて反射率が十分に小さいものであるから、反射
防止膜24の存在により光シールド層25側での反射は
少ないものとなり、光シールド層25と画素電極21と
の間の多重反射を低減することができる。
24. ) is formed. Here, since chromium oxide has a sufficiently lower reflectance than chromium, the presence of the antireflection film 24 reduces reflection on the light shield layer 25 side, and the light shield layer 25 and pixel electrode 21 It is possible to reduce multiple reflections between.

次に、上記装置の製造工程について第2図を参照して説
明する。
Next, the manufacturing process of the above device will be explained with reference to FIG. 2.

まず、第2図(a)に示す如く、p型シリコン基板10
の表面層にn−型の埋込みチャネルCCDからなる垂直
CCDII、n+型の蓄積ダイオード12及び各画素を
分離するためのp+型チャネルストッパ13を形成し、
さらに垂直CCDI l上にはゲート酸化膜を介して転
送用ゲート電極となるポリSt電極14.15を形成す
る。続いて、CVD法で5in2絶縁膜16を堆積した
後、図示しないレジストパターンを用いて選択エツチン
グし、蓄積ダイオード12の一部が露出するように絶縁
膜16に第1のコンタクトホール17を形成する。
First, as shown in FIG. 2(a), a p-type silicon substrate 10
A vertical CCD II consisting of an n-type buried channel CCD, an n+-type storage diode 12, and a p+-type channel stopper 13 for separating each pixel are formed on the surface layer of the pixel.
Furthermore, polySt electrodes 14 and 15, which serve as transfer gate electrodes, are formed on the vertical CCDI 1 via a gate oxide film. Subsequently, a 5 in 2 insulating film 16 is deposited by the CVD method, and then selectively etched using a resist pattern (not shown) to form a first contact hole 17 in the insulating film 16 so that a part of the storage diode 12 is exposed. .

次いで、第2図(11)に示す如く、例えばモリブデン
ポリサイドを用いて引出し電極18を形成したのち、全
面にCVD法でBPSG絶縁膜19を堆積し、さらにこ
の絶縁膜19の表面を平滑化する。続いて、引出し電極
18の一部が露出するように絶縁膜19に第2コンタク
トホール20を形成し、例えばチタンで画素電極21を
形成する。
Next, as shown in FIG. 2 (11), after forming an extraction electrode 18 using, for example, molybdenum polycide, a BPSG insulating film 19 is deposited on the entire surface by CVD, and the surface of this insulating film 19 is smoothed. do. Subsequently, a second contact hole 20 is formed in the insulating film 19 so that a part of the extraction electrode 18 is exposed, and a pixel electrode 21 is formed of, for example, titanium.

ここまでの工程で、固体撮像索子チップが形成されるこ
とになる。
Through the steps up to this point, a solid-state imaging probe chip is formed.

次いで、第2図(e)に示す如く、固体撮像素子チップ
上に、水素処理されたアモルファスシリコン光導電膜2
2とITO透明電極23を周知の方法により堆積する。
Next, as shown in FIG. 2(e), a hydrogen-treated amorphous silicon photoconductive film 2 is placed on the solid-state image sensor chip.
2 and an ITO transparent electrode 23 are deposited by a well-known method.

さらに、透明電極23上に反射防止膜24としての酸化
クロム膜と光シールド層25としてのクロム層をスパッ
タ法を用いて堆積する。
Furthermore, a chromium oxide film as an anti-reflection film 24 and a chromium layer as a light shield layer 25 are deposited on the transparent electrode 23 using a sputtering method.

次いで、第2図(d)に示す如く、光シールド層25上
にレジストパターン26を所望パターンに形成する。そ
して、レジストパターン26をマスクに光シールド層2
5及び反射防止膜24を選択エツチングし、レジストパ
ターン26を除去することにより、前記第1図に示す如
き積層型固体撮像装置が完成する。
Next, as shown in FIG. 2(d), a resist pattern 26 is formed in a desired pattern on the optical shield layer 25. Then, using the resist pattern 26 as a mask, the light shield layer 2 is
By selectively etching 5 and the antireflection film 24 and removing the resist pattern 26, a stacked solid-state imaging device as shown in FIG. 1 is completed.

かくして製造された本装置は、先シールド層25と透明
電極23との間に反射率の小さい酸化クロム等の反射防
止膜24が形成されているので、入射光が画素電極21
で反射され光シールド層25側に進んでも、反射防止膜
24の存在により光シールド層25側での反射は少ない
ものとなる。
In this device manufactured in this manner, an antireflection film 24 made of chromium oxide or the like having a low reflectance is formed between the front shield layer 25 and the transparent electrode 23, so that incident light is directed to the pixel electrode 21.
Even if the light is reflected by the light shield layer 25 and propagates toward the light shield layer 25, the reflection on the light shield layer 25 side is reduced due to the presence of the antireflection film 24.

このため、光シールド層25と画素電極21との間で起
こる多重反射による光の漏れ込みを大幅に低減すること
ができ、スミアの発生を著しく低減することができる。
Therefore, the leakage of light due to multiple reflections occurring between the light shield layer 25 and the pixel electrode 21 can be significantly reduced, and the occurrence of smear can be significantly reduced.

また、従来構成に加え反射防止膜24を設けるのみの簡
易な構成で実現し得る等の利点もある。
Further, there is an advantage that it can be realized with a simple structure that only requires the provision of the antireflection film 24 in addition to the conventional structure.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記光導電膜としてはアモルファスシリコ
ンに限るものではなく、Se−^5−Te。
Note that the present invention is not limited to the embodiments described above. For example, the photoconductive film is not limited to amorphous silicon, but may also be Se-^5-Te.

Zn5e−ZnCdTe等で代表される光導電膜を用い
ることができる。また、光シールド層としてはクロムの
代わりに、モリブデン、タングステン、チタン等の金属
材料や、モリブデン・シリサイド、チタン・シリサイド
等の金属珪化物等、光に対して透過率の小さいものであ
ればよい。さらに、反射防止膜としては酸化クロムの代
わりに、酸化チタン。
A photoconductive film typified by Zn5e-ZnCdTe or the like can be used. In addition, instead of chromium, the light shield layer may be made of metal materials such as molybdenum, tungsten, titanium, etc., or metal silicides such as molybdenum silicide, titanium silicide, etc., as long as they have low transmittance to light. . Furthermore, the anti-reflection coating uses titanium oxide instead of chromium oxide.

酸化モリブデン等の光に対して反射率の小さいものであ
ればよい。また、実施例では反射防止膜を単層としたが
、2種以上の材料の多層膜で反射防止膜を形成してもよ
い。また、実施例ではオプティカルブラック部の光シー
ルドと、スミア低減のために形成する光シールドの光漏
れ込みの低減について述べたが、これらのシールドの一
方しか用いない装置にも本発明を適用できるのは勿論で
ある。その他、本発明の要旨を逸脱しない範囲で、種々
変形して実施することができる。
Any material having a low reflectance to light, such as molybdenum oxide, may be used. Furthermore, although the antireflection film is a single layer in the embodiments, the antireflection film may be formed of a multilayer film of two or more materials. Furthermore, in the embodiment, the reduction of light leakage of the light shield of the optical black part and the light shield formed to reduce smear was described, but the present invention can also be applied to a device that uses only one of these shields. Of course. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、透明電極と光シー
ルド層との間に反射率の小さい材料からなる反射防止膜
を設け、光シールド層側における反射を小さくしている
ので、光シールド層と画素電極との間の多重反射に起因
する光漏れを低減することができ、スミアのより一層の
低減をはかり得る固体撮像装置を実現することができる
[Effects of the Invention] As detailed above, according to the present invention, an anti-reflection film made of a material with low reflectance is provided between the transparent electrode and the light shield layer to reduce reflection on the light shield layer side. Therefore, it is possible to reduce light leakage caused by multiple reflections between the light shield layer and the pixel electrode, and it is possible to realize a solid-state imaging device that can further reduce smear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる光導電膜積層型固体
撮像装置の概略構成を示す断面図、第2図は同実施例装
置の製造工程を示す断面図、第3図は従来装置の概略構
成を示す断面図である。 10・・・p型シリコン基板、11・・・ロー型層(垂
直CCD 11 ) 、12 ・−n+型層(蓄積ダイ
オード)  13・・・p4型層(チャネルストッパ)
14.15・・・ポリSi電極(転送用ゲート)、18
・・・引出し電極、21・・・画素電極、22・・・ア
モルファスシリコン膜(先導?1SII%)、23・・
・ITO電極(透明電極) 24・・・酸化クロム膜(
反射防止膜) 25・・・クロム膜(光シールド層)。 出願人代理人 弁理士 鈴江武彦 (C) (d) 第2図
FIG. 1 is a cross-sectional view showing the schematic structure of a photoconductive film stacked solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the same embodiment, and FIG. 3 is a conventional device. FIG. 10...p type silicon substrate, 11...low type layer (vertical CCD 11), 12...-n+ type layer (storage diode) 13...p4 type layer (channel stopper)
14.15...Poly-Si electrode (transfer gate), 18
...Extraction electrode, 21...Pixel electrode, 22...Amorphous silicon film (leading? 1SII%), 23...
・ITO electrode (transparent electrode) 24...Chromium oxide film (
Anti-reflection film) 25...Chromium film (light shield layer). Applicant's agent Patent attorney Takehiko Suzue (C) (d) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に信号電荷蓄積ダイオード及び信号電
荷転送部が形成され、且つ最上部に信号電荷蓄積ダイオ
ードに電気的に接続された画素電極が形成された固体撮
像素子チップと、この固体撮像素子チップ上に積層され
た光導電膜と、この光導電膜上に形成された透明電極と
、この透明電極上に前記画素電極の間隙を覆うように形
成された光シールド層とを備えた固体撮像装置において
、前記光シールド層と透明電極との間に、光シールド層
よりも光に対する反射率の小さな材料からなる反射防止
膜を設けたことを特徴とする固体撮像装置。
(1) A solid-state image sensor chip in which a signal charge storage diode and a signal charge transfer section are formed on a semiconductor substrate, and a pixel electrode electrically connected to the signal charge storage diode is formed on the top, and this solid-state image sensor A solid-state imaging device comprising a photoconductive film laminated on a chip, a transparent electrode formed on the photoconductive film, and a light shield layer formed on the transparent electrode so as to cover the gap between the pixel electrodes. A solid-state imaging device, characterized in that an anti-reflection film made of a material having a lower reflectance to light than the light shield layer is provided between the light shield layer and the transparent electrode.
(2)前記反射防止膜は、酸化クロム、酸化チタン又は
酸化モリブデンからなるものであることを特徴とする請
求項1記載の固体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the antireflection film is made of chromium oxide, titanium oxide, or molybdenum oxide.
JP63245990A 1988-09-30 1988-09-30 Solid-state image sensing device Pending JPH0294566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245990A JPH0294566A (en) 1988-09-30 1988-09-30 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245990A JPH0294566A (en) 1988-09-30 1988-09-30 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH0294566A true JPH0294566A (en) 1990-04-05

Family

ID=17141828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245990A Pending JPH0294566A (en) 1988-09-30 1988-09-30 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH0294566A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034333B1 (en) 1999-06-17 2006-04-25 Lutz Fink Semiconductor sensor, comprising a pixel structure and the use of said sensor in a vacuum system
US7172922B2 (en) * 2002-08-19 2007-02-06 Tower Semiconductor Ltd. CMOS image sensor array with black pixel using negative-tone resist support layer
WO2007019073A2 (en) * 2005-08-03 2007-02-15 Micron Technology, Inc. Backside silicon wafer design reducing image artifacts from infrared radiation
FR2893765A1 (en) * 2005-11-21 2007-05-25 St Microelectronics Sa Photosensible integrated circuit, e.g. electronic chip, production, for e.g. webcam, involves forming reflective layer between transistors and integrated circuit, where layer reflects photons not absorbed by silicon layers
JP2008153361A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Solid-state imaging device, and light detector and authentication equipment using the same
JP2009117802A (en) * 2007-09-07 2009-05-28 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
WO2011115283A1 (en) * 2010-03-19 2011-09-22 Fujifilm Corporation Photoelectric conversion layer stack-type solid-state imaging device and imaging apparatus
JP2014165499A (en) * 2013-02-22 2014-09-08 Samsung Electronics Co Ltd Photoelectric element and organic image sensor
US11253666B2 (en) 2016-07-22 2022-02-22 Nihon Kohden America, Inc. Masks, systems, and methods for assisting respiration including scattering chamber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034333B1 (en) 1999-06-17 2006-04-25 Lutz Fink Semiconductor sensor, comprising a pixel structure and the use of said sensor in a vacuum system
US7172922B2 (en) * 2002-08-19 2007-02-06 Tower Semiconductor Ltd. CMOS image sensor array with black pixel using negative-tone resist support layer
US7576361B2 (en) 2005-08-03 2009-08-18 Aptina Imaging Corporation Backside silicon wafer design reducing image artifacts from infrared radiation
WO2007019073A2 (en) * 2005-08-03 2007-02-15 Micron Technology, Inc. Backside silicon wafer design reducing image artifacts from infrared radiation
WO2007019073A3 (en) * 2005-08-03 2008-01-03 Micron Technology Inc Backside silicon wafer design reducing image artifacts from infrared radiation
US8044443B2 (en) 2005-11-21 2011-10-25 Stmicroelectronics S.A. Photosensitive integrated circuit equipped with a reflective layer and corresponding method of production
FR2893765A1 (en) * 2005-11-21 2007-05-25 St Microelectronics Sa Photosensible integrated circuit, e.g. electronic chip, production, for e.g. webcam, involves forming reflective layer between transistors and integrated circuit, where layer reflects photons not absorbed by silicon layers
US8610048B2 (en) 2005-11-21 2013-12-17 Stmicroelectronics S.A. Photosensitive integrated circuit equipped with a reflective layer and corresponding method of production
JP2008153361A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Solid-state imaging device, and light detector and authentication equipment using the same
JP2009117802A (en) * 2007-09-07 2009-05-28 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
WO2011115283A1 (en) * 2010-03-19 2011-09-22 Fujifilm Corporation Photoelectric conversion layer stack-type solid-state imaging device and imaging apparatus
JP2011243945A (en) * 2010-03-19 2011-12-01 Fujifilm Corp Photoelectric conversion layer laminate type solid-state imaging element and imaging device
JP2014165499A (en) * 2013-02-22 2014-09-08 Samsung Electronics Co Ltd Photoelectric element and organic image sensor
US10707432B2 (en) 2013-02-22 2020-07-07 Samsung Electronics Co., Ltd. Photoelectronic device and image sensor
US11253666B2 (en) 2016-07-22 2022-02-22 Nihon Kohden America, Inc. Masks, systems, and methods for assisting respiration including scattering chamber

Similar Documents

Publication Publication Date Title
JP2000012817A (en) Solidstate image pickup device and manufacture thereof
US6849476B2 (en) Method of manufacturing a solid-state imaging device
US9128341B2 (en) Visible sensing transistor, display panel and manufacturing method thereof
KR100194841B1 (en) Solid state phase detection device manufacturing method
JPH0294566A (en) Solid-state image sensing device
WO2011102250A1 (en) Display device
JPH05110049A (en) Infrared solid state imaging element and manufacture thereof
JPH10256518A (en) Solid state imaging element
JPH10214954A (en) Radiation image pickup device
JPH11103036A (en) Solid-state image-pickup element
JP2871831B2 (en) Solid-state imaging device
JPH04152674A (en) Solid-state image pickup device
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JP3496888B2 (en) Solid-state imaging device
JPH05226624A (en) Solid-state image pick-up device and its manufacture
JP2856774B2 (en) Solid-state imaging device
JP2807261B2 (en) Solid-state imaging device
JPH02244761A (en) Solid image pickup element and manufacture thereof
JP3276119B2 (en) Solid-state imaging device
JP2630407B2 (en) Charge-coupled device
JPH0730090A (en) Solid-state image sensing element
JP3296352B2 (en) Photoelectric conversion device, solid-state imaging device, and method of manufacturing the same
JPH0329368A (en) Solid-state image-pickup device
JPH04245474A (en) Solid-state image pick-up element
JPS6386474A (en) Solid-state image sensing device