JPH0293362A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0293362A
JPH0293362A JP63243870A JP24387088A JPH0293362A JP H0293362 A JPH0293362 A JP H0293362A JP 63243870 A JP63243870 A JP 63243870A JP 24387088 A JP24387088 A JP 24387088A JP H0293362 A JPH0293362 A JP H0293362A
Authority
JP
Japan
Prior art keywords
vibrators
ultrasonic
probe
unimorph
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63243870A
Other languages
Japanese (ja)
Inventor
Mamoru Izumi
守 泉
Shuji Suzuki
修次 鈴木
Shiro Saito
斉藤 史郎
Shinichi Hashimoto
新一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63243870A priority Critical patent/JPH0293362A/en
Publication of JPH0293362A publication Critical patent/JPH0293362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a mechanical sector probe or array probe dynamically changeable in its concn. point by simple constitution by deforming disc-shaped vibrators so as to curve the same into a recessed surface shape or deforming said vibrators so as to bend the same into a trough shape in the direction right-angled to the arrangement direction. CONSTITUTION:A thin metal plate 12 is bonded to the rear of the ultrasonic transmitting-receiving surface of disc-shaped piezoelectric ceramic 11 and a DC electric field is applied in the contraction direction of the ceramic to depress a unimorph on the ceramic side. A mechanical sector probe easy to drive a focus is obtained. In the case of an array probe, a rectangular bimorph 22 is provided to the rear of flexible vibrators 21 and a high regidity material 23 is bonded to the center thereof to prevent the bending deformation in the longitudinal direction and the vibrators 21 and bent and deformed in the direction right-angled to the arrangement direction. In the case of unimorph constitution, separated metal elastic plates 32 are bonded to the rear of the vibrator array and the central parts of the arranged unimorphs are supported by the support material 33. The vibrators 31 are bent in the longitudinal direction by DC bias. The curvature of the vibrators can be continuously changed and a sound field is smoothed and there is no effect of a side lobe.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、超音波診断装置や超音波探傷装置において
、超音波ビームを送受する超音波プローブに関し、超音
波ビームの集束点を動的に変える手段を工夫して方位分
解能の向上を計るものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an ultrasonic probe that transmits and receives an ultrasonic beam in an ultrasonic diagnostic device or an ultrasonic flaw detection device. The aim is to improve azimuth resolution by devising a means to dynamically change the points.

(従来の技術) 超音波により物体内部の構造をイメージングする装置は
、医学分野の超音波診断装置および非破壊検査機器であ
る超音波探傷装置など広く使用されている。これらの装
置において超音波ビームを送受する超音波プローブは、
超音波ビームを走査させる方式により2つに分けられる
(Prior Art) Devices that image the internal structure of objects using ultrasonic waves are widely used, such as ultrasonic diagnostic devices in the medical field and ultrasonic flaw detection devices that are non-destructive testing devices. The ultrasound probes that transmit and receive ultrasound beams in these devices are
It is divided into two types depending on the method of scanning the ultrasonic beam.

1つは、1つの超音波振動子を機械的に動かし超音波ビ
ームを走査させるもので1回転及び首振り運動で扇状に
超音波ビームを走査するものが多く、これらはメカニカ
ルセクタプローブと呼ばれている。メカニカルセクタプ
ローブに使われる超音波振動子は、方位分解能を良くす
るために円板振動子の超音波放射面を凹面形状にして超
音波ビームを集束している。しかしながら、この方法で
は固定焦点となるため、集束点近傍の超音波ビームは細
く高い方位分解能が得られるが、集束点から離れた位置
での方位分解能は低く問題であった。
One is to mechanically move a single ultrasonic transducer to scan the ultrasonic beam, and most of them scan the ultrasonic beam in a fan shape with one rotation and oscillating motion, and these are called mechanical sector probes. ing. The ultrasonic transducer used in the mechanical sector probe focuses the ultrasonic beam by making the ultrasonic radiation surface of the disk transducer concave in order to improve the azimuth resolution. However, since this method has a fixed focus, the ultrasonic beam near the focal point is thin and has high lateral resolution, but the lateral resolution at positions far from the focal point is low and problematic.

そこで円板振動子あるいはその電極を同心リング状に分
割したアニユラ−アレイ構成とすれば、分割された各振
動子を駆動するタイミングを制御することにより集束点
を任意に設定できる電子集束法が使える。距離方向の広
い範囲に細いビームを形成するダイナミックフォーカス
法は、受信時の集束点を電子集束法で連続的に可変する
ことにより行われ、広範囲に高い方位分解能を実現でき
る。
Therefore, if we use an annular array configuration in which the disc oscillator or its electrodes are divided into concentric rings, we can use the electron focusing method that allows the focusing point to be set arbitrarily by controlling the timing of driving each divided oscillator. . The dynamic focus method, which forms a thin beam over a wide range in the distance direction, is performed by continuously varying the focal point during reception using the electronic focusing method, and can achieve high azimuth resolution over a wide range.

しかし、この方法は超音波プローブ及びその駆動回路の
規模が大きくなる問題があった。また、このような配列
振動子は駆動時に隣接する振動子に電気的に信号が漏れ
たり、機械的に振動が伝わるなどのクロストークが発生
し、超音波ビームの音場を乱す問題もあった。
However, this method has a problem in that the scale of the ultrasonic probe and its driving circuit becomes large. Additionally, when such arrayed transducers are driven, crosstalk occurs, such as electrical signals leaking to adjacent transducers or mechanical vibrations being transmitted, which can disturb the sound field of the ultrasound beam. .

もう1つは、複数の矩形状の振動子を直線状に配列した
アレイプローブを用いた電子走査方式である。複数の矩
形状の振動子を同時に駆動して1つの超音波ビームを送
受し、駆動振動子群を1振動子づつシフトして超音波ビ
ームを走査するリニア走査と、フェイズドアレイの原理
で駆動振動子群の各振動子の駆動タイミングを制御して
超音波ビームを斜め方向に送受し、超音波ビームを扇状
に走査するセクタ走査の2方式がある。この様な走査方
式を電子走査と呼んでいる。この電子走査の場合の超音
波ビームの集束法は、先に述べたように各振動子の駆動
タイミングを制御することで、振動子の配列方向には、
ダイナミックフォーカスも実現できる。しかしながら、
振動子の配列方向と直交する方向には、この効果は及ば
ず、一般に振動子前面に音響レンズを設けて方位分解能
の向上を計っているが、前記したように固定焦点のため
に広い範囲で高い方位分解能が得られない問題があった
。振動子をマトリクス状に配列して、2次元に電子集束
駆動する方法も考えられるが、超音波プローブの構造が
複雑になり、また駆動回路の規模が膨大となる問題があ
る。
The other is an electronic scanning method using an array probe in which a plurality of rectangular transducers are arranged in a linear manner. Linear scanning, in which multiple rectangular transducers are simultaneously driven to transmit and receive a single ultrasound beam, and the ultrasound beam is scanned by shifting the drive transducer group one transducer at a time, and drive vibration based on the principle of a phased array. There are two methods: sector scanning, in which the driving timing of each transducer in the child group is controlled to send and receive the ultrasonic beam in an oblique direction, and in which the ultrasonic beam is scanned in a fan shape. This type of scanning method is called electronic scanning. In the case of electronic scanning, the method of focusing the ultrasound beam is to control the drive timing of each transducer as described above, so that in the arrangement direction of the transducers,
Dynamic focus is also possible. however,
This effect does not extend to the direction perpendicular to the direction in which the transducers are arranged, and generally an acoustic lens is installed in front of the transducer to improve lateral resolution. There was a problem that high azimuth resolution could not be obtained. A method of arranging transducers in a matrix and driving two-dimensional electron focusing is also considered, but there are problems in that the structure of the ultrasonic probe becomes complicated and the scale of the drive circuit becomes enormous.

また、アレイプローブによる電子集束法では、配列され
た振動子の幅により集束された超音波波面が階段状とな
るために特有のサイドローブが発生し、方位分解能を低
下させる問題もあった・(発明が解決しようとする課題
) 上述したように、メカニカルセクタプローブおよびアレ
イプローブにおいて、電子集束法で方位分解能を向上さ
せるためのダイナミックフォーカスを実現させるには、
振動子構成が複雑になり、さらにそれらの駆動回路の規
模が膨大になり、システム全体が高価になる問題があっ
た。また、電子集束法では特有のサイドローブやクロス
トークが発生し、方位分解能向上の妨げとなっていた。
In addition, in the electron focusing method using an array probe, the width of the arrayed transducers makes the focused ultrasound wavefront step-like, resulting in characteristic side lobes, which reduce azimuth resolution. Problems to be Solved by the Invention) As mentioned above, in order to achieve dynamic focusing for improving lateral resolution using the electron focusing method in mechanical sector probes and array probes,
There was a problem in that the vibrator configuration became complicated, and the scale of the drive circuit for these became enormous, making the entire system expensive. In addition, the electron focusing method produces sidelobes and crosstalk that are characteristic of the electron focusing method, which hinders the improvement of lateral resolution.

本発明は従来の問題を解決した超音波プローブを提供す
るものである。
The present invention provides an ultrasonic probe that solves the conventional problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上述したダイナミックフォーカスを容易に行う
ために、柔軟性を有する圧電振動子の一方の面に屈曲変
形する圧電バイモルフを具備し、超音波の送信および受
信の間、圧電バイモルフを屈曲動作させ、圧電振動子の
曲率を動的に変化させる手段、あるいは超音波プローブ
の圧電振動子の一方の面に弾性板を張付けたユニモルフ
構造とし、前記圧電振動子の超音波駆動信号に直流バイ
アスを印加し直流電圧で前記ユニモルフを屈曲変形させ
、圧電振動子の曲率を動的に変化させる手段を設けた超
音波プローブである。
(Means for Solving the Problems) In order to easily perform the above-mentioned dynamic focusing, the present invention includes a piezoelectric bimorph that bends and deforms on one surface of a flexible piezoelectric vibrator, and transmits and receives ultrasonic waves. During the process, the piezoelectric bimorph is bent to dynamically change the curvature of the piezoelectric vibrator, or a unimorph structure is used in which an elastic plate is attached to one surface of the piezoelectric vibrator of the ultrasonic probe. This ultrasonic probe is provided with means for dynamically changing the curvature of a piezoelectric vibrator by applying a DC bias to an ultrasonic drive signal and bending and deforming the unimorph with a DC voltage.

(作 用) 本発明の手段によりメカニカルセクタプローブの場合は
、円板の振動子を凹面状に湾曲変形させ、アレイプロー
ブの場合は配列方向に直交する方向にとよ状に屈曲変形
させることにより、比較的単純な構成で、集束点をダイ
ナミックに可変することができる。
(Function) By the means of the present invention, in the case of a mechanical sector probe, the disc vibrator is curved and deformed into a concave shape, and in the case of an array probe, it is bent and deformed into a serpentine shape in a direction perpendicular to the arrangement direction. , the focal point can be dynamically varied with a relatively simple configuration.

(実施例) 第1図には、本発明のバイモルフ型可変焦点プローブの
原理を示す。メカニカルセクタプローブに用いられる円
板振動子1の超音波送受面でないもう一方の面に同じ大
きさのバイモルフ2が接合されている。バイモルフ2は
、2枚の圧電薄板を接合した構造で、片方の圧電板に外
周が広がる方向に直流電界を加え、もう片方には縮む方
向に直流電界を加えると、円板の場合凹面状に湾曲変形
する。しかも変形の大きさは印加電界に依存する。
(Example) FIG. 1 shows the principle of the bimorph type variable focus probe of the present invention. A bimorph 2 of the same size is bonded to the other surface, which is not the ultrasonic wave transmitting/receiving surface, of a disk vibrator 1 used in a mechanical sector probe. Bimorph 2 has a structure in which two piezoelectric thin plates are joined.When a DC electric field is applied to one piezoelectric plate in the direction in which its outer circumference expands, and to the other in the direction in which it contracts, the disk becomes concave. Curved and deformed. Moreover, the magnitude of the deformation depends on the applied electric field.

したがって、第1図のような構成にすると、円板振動子
1がPVDFのような高分子圧電材料か、あるいは圧電
セラミックと高分子材料の2相からなり柔軟性を有する
複合圧電材料を用いれば、バイモルフ2に応じて凹面状
に変形し、凹面振動子として超音波ビームを集束できる
。バイモルフ2に印加する直流電界を駆動電源4で制御
することで凹面振動子の曲率を可変でき、方位分解能を
改善するダイナミックフォーカス駆動が容易に行なえる
Therefore, if the configuration shown in Fig. 1 is used, the disk vibrator 1 may be made of a polymer piezoelectric material such as PVDF, or a flexible composite piezoelectric material consisting of two phases of piezoelectric ceramic and polymer material. , deforms into a concave shape according to the bimorph 2, and can focus an ultrasound beam as a concave transducer. By controlling the DC electric field applied to the bimorph 2 with the drive power source 4, the curvature of the concave vibrator can be varied, and dynamic focus drive that improves azimuth resolution can be easily performed.

この際バイモルフ2は、ゼロ電界でダイナミックフォー
カス範囲の中央に焦点を持つ曲率にしておくことが効果
的である。
At this time, it is effective to make the bimorph 2 have a curvature that has a focus at the center of the dynamic focus range with zero electric field.

第2図には、本発明のユニモルフ型可変焦点プローブの
原理を示す。ユニモルフは圧電セラミック11の超音波
送受面でないもう一方の面に金属薄板などの弾性材料1
2を接合した構造で、圧電セラミック11が縮む方向に
直流電界を印加すると、ユニモルフは圧電セラミック側
が凹面に湾曲変形する。これを超音波プローブとして駆
動するには、圧電セラミック11に超音波プローブの振
動子の働きを兼用させ、駆動源13は、超音波励起パル
スに湾曲変形を制御する直流電界をバイアスとして加え
た信号を振動子11に印加すればよい。このような方法
でも凹面振動子の曲率を可変でき、方位分解能を改善す
るダイナミックフォーカス駆動が容易にできる。
FIG. 2 shows the principle of the unimorph variable focus probe of the present invention. The unimorph has an elastic material 1 such as a thin metal plate on the other side of the piezoelectric ceramic 11 that is not the ultrasonic transmitting/receiving surface.
When a DC electric field is applied in the direction in which the piezoelectric ceramic 11 contracts, the piezoelectric ceramic side of the unimorph deforms into a concave shape. In order to drive this as an ultrasonic probe, the piezoelectric ceramic 11 also functions as a vibrator of the ultrasonic probe, and the drive source 13 generates a signal that is a biased DC electric field that controls the bending deformation of the ultrasonic excitation pulse. may be applied to the vibrator 11. With this method, the curvature of the concave vibrator can be varied, and dynamic focus driving that improves azimuth resolution can be easily performed.

また、1枚の振動子の曲率を可変して集束点を移動する
ため、配列振動子で生じるクロストークの問題も起こら
ない。
Furthermore, since the focal point is moved by varying the curvature of one transducer, the problem of crosstalk that occurs with arrayed transducers does not occur.

以上メカニカルセクタプローブ用としての可変焦点を説
明したが、アレイプローブの場合は、第3図に示すよう
に柔軟性振動子21の裏面に矩形状のバイモルフ22を
設け、バイモルフ22の中央部に剛性の高い材料23を
接合して長手方向に屈曲変形しないような構造にすると
、配列方向に直交する方向に屈曲変形する。ユニモルフ
構成の場合は、第4図に示すように、振動子アレイ31
の裏面に振動子31と同様に分離された弾性板32を接
合し、配列ユニモルフはその中央部を支持材33で支持
する。
The variable focus for mechanical sector probes has been explained above, but in the case of array probes, as shown in FIG. If the material 23 having a high temperature is bonded to form a structure that does not bend and deform in the longitudinal direction, the material 23 will bend and deform in a direction perpendicular to the arrangement direction. In the case of a unimorph configuration, as shown in FIG.
A separate elastic plate 32 is bonded to the back surface of the unimorph in the same way as the vibrator 31, and the array unimorph is supported at its center by a support member 33.

これら分前されている振動子31は、その駆動素子群の
信号ラインに直流バイアスを印加することで矩形状振動
子の長手方向に屈曲変形する。これらは、それぞれ電子
集束法との併用で2次元にダイナミックフォーカスが可
能になり、方位分解能の向上が達成できる。
These divided vibrators 31 are bent and deformed in the longitudinal direction of the rectangular vibrator by applying a DC bias to the signal line of the drive element group. When these methods are used together with the electron focusing method, two-dimensional dynamic focusing becomes possible, and an improvement in lateral resolution can be achieved.

本発明によるダイナミックフォーカス法は、振動子の曲
率を機械的に連続に可変できるため、電子集束法の段階
的な集束点の移動と異なり音場がスムーズになり1階段
状の超音波波面によるサイドローブの影響もない。
In the dynamic focusing method according to the present invention, the curvature of the transducer can be mechanically and continuously varied, so unlike the stepwise movement of the focal point in the electronic focusing method, the sound field is smooth and the side effects are created by a one-step ultrasonic wavefront. There is no influence from the robe.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、圧電バイモルフによる
機械的な変形を利用して凹面振動子の曲率を動的に可変
できるため、構造が簡単で安価なダイナミックフォーカ
スが実現できる。しかも配列振動子による電子集束の階
段状の超音波波面による特有のサイドローブやクロスト
ークの影響もなく、高い方位分解能が達成できる。
As described above, according to the present invention, the curvature of the concave vibrator can be dynamically varied using mechanical deformation by the piezoelectric bimorph, so that a dynamic focus with a simple structure and low cost can be realized. Furthermore, high lateral resolution can be achieved without the influence of side lobes or crosstalk peculiar to the step-like ultrasonic wavefront of electron focusing by the array transducer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイモルフ構造の可変焦点の原理を示
す断面図、第2図は本発明のユニモルフ構造の可変焦点
の原理を示す断面図、第3図は本発明のアレイプローブ
に用いたバイモルフ構造の可変焦点の原理を示す斜視図
、第4図は本発明のアレイプローブに用いたユニモルフ
構造の可変焦点の原理を示す斜視図。 1・・・柔軟性圧電振動子 2・・・バイモルフ3・・
・超音波振動子駆動源 4・・・バイモルフ駆動電源 5・・・超音波ビーム   F・・・集束点11・・・
圧電セラミック(振動子) 12・・・弾性材料     13・・・振動子駆動信
号源21・・・柔軟性圧電振動子 22・・・バイモル
フ23・・・剛性材料 31・・・圧電セラミック(振動子) 32・・・弾性材料     33・・・支持材第 図 第 図 第 図
Fig. 1 is a cross-sectional view showing the principle of variable focus of the bimorph structure of the present invention, Fig. 2 is a cross-sectional view showing the principle of variable focus of the unimorph structure of the present invention, and Fig. 3 is a cross-sectional view showing the principle of variable focus of the unimorph structure of the present invention. FIG. 4 is a perspective view showing the principle of variable focus of the bimorph structure; FIG. 4 is a perspective view showing the principle of variable focus of the unimorph structure used in the array probe of the present invention. 1... Flexible piezoelectric vibrator 2... Bimorph 3...
・Ultrasonic transducer drive source 4...Bimorph drive power source 5...Ultrasonic beam F...Focusing point 11...
Piezoelectric ceramic (vibrator) 12... Elastic material 13... Vibrator drive signal source 21... Flexible piezoelectric vibrator 22... Bimorph 23... Rigid material 31... Piezoelectric ceramic (vibrator) ) 32...Elastic material 33...Supporting material

Claims (1)

【特許請求の範囲】 1)超音波を送受する超音波プローブにおいて、柔軟性
を有する圧電振動子の一方の面に屈曲変形する圧電バイ
モルフを具備し、超音波の送信および受信の間、圧電バ
イモルフを屈曲動作させ、圧電振動子の曲率を動的に変
化させることを特徴とする超音波プローブ。 2)超音波を送受する超音波プローブにおいて、圧電振
動子はその一方の面に弾性板を張付けたユニモルフ構造
とし、前記圧電振動子の超音波駆動信号に直流バイアス
を印加し直流電圧で前記ユニモルフを屈曲変形させ、圧
電振動子の曲率を動的に変化させることを特徴とする超
音波プローブ。
[Claims] 1) An ultrasonic probe that transmits and receives ultrasonic waves, which includes a piezoelectric bimorph that bends and deforms on one surface of a flexible piezoelectric vibrator, and during transmission and reception of ultrasonic waves, the piezoelectric bimorph An ultrasonic probe characterized by dynamically changing the curvature of a piezoelectric vibrator by bending it. 2) In an ultrasonic probe that transmits and receives ultrasonic waves, the piezoelectric vibrator has a unimorph structure with an elastic plate attached to one surface, and a DC bias is applied to the ultrasonic drive signal of the piezoelectric vibrator to generate a DC voltage. An ultrasonic probe characterized by dynamically changing the curvature of a piezoelectric vibrator by bending and deforming the piezoelectric vibrator.
JP63243870A 1988-09-30 1988-09-30 Ultrasonic probe Pending JPH0293362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243870A JPH0293362A (en) 1988-09-30 1988-09-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243870A JPH0293362A (en) 1988-09-30 1988-09-30 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0293362A true JPH0293362A (en) 1990-04-04

Family

ID=17110204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243870A Pending JPH0293362A (en) 1988-09-30 1988-09-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0293362A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340809A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Phased array probe and ultrasonic test equipment using it
JP2010526467A (en) * 2007-05-03 2010-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for forming a microbeam using an adjustable fluid lens
WO2010100921A1 (en) 2009-03-04 2010-09-10 パナソニック株式会社 Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
WO2012086124A1 (en) * 2010-12-20 2012-06-28 Necカシオモバイルコミュニケーションズ株式会社 Oscillator device and electronic instrument
JP2013141524A (en) * 2012-01-11 2013-07-22 Seiko Epson Corp Ultrasonic transducer, ultrasonic probe, diagnostic instrument and electronic instrument
CN105987960A (en) * 2015-03-19 2016-10-05 Imal 有限责任公司 Ultrasonic transmitter
KR20210073848A (en) * 2019-12-11 2021-06-21 주식회사 리메드 Extracorporeal shockwave terapy device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340809A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Phased array probe and ultrasonic test equipment using it
JP2010526467A (en) * 2007-05-03 2010-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for forming a microbeam using an adjustable fluid lens
WO2010100921A1 (en) 2009-03-04 2010-09-10 パナソニック株式会社 Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
JP5194128B2 (en) * 2009-03-04 2013-05-08 パナソニック株式会社 Ultrasonic transducer, ultrasonic probe and ultrasonic diagnostic apparatus
WO2012086124A1 (en) * 2010-12-20 2012-06-28 Necカシオモバイルコミュニケーションズ株式会社 Oscillator device and electronic instrument
JP2013141524A (en) * 2012-01-11 2013-07-22 Seiko Epson Corp Ultrasonic transducer, ultrasonic probe, diagnostic instrument and electronic instrument
US9348213B2 (en) 2012-01-11 2016-05-24 Seiko Epson Corporation Ultrasonic transducer, ultrasonic probe, diagnostic instrument, and electronic instrument
CN105987960A (en) * 2015-03-19 2016-10-05 Imal 有限责任公司 Ultrasonic transmitter
KR20210073848A (en) * 2019-12-11 2021-06-21 주식회사 리메드 Extracorporeal shockwave terapy device

Similar Documents

Publication Publication Date Title
US5991239A (en) Confocal acoustic force generator
JP4675444B2 (en) Apparatus and method for multiplexing transducers
US5060651A (en) Ultrasonic diagnostic apparatus
US4242912A (en) Method and apparatus for producing cross-sectional images using ultrasound
US4159462A (en) Ultrasonic multi-sector scanner
US5083568A (en) Ultrasound diagnosing device
EP0019267B1 (en) Piezoelectric vibration transducer
US6299580B1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
US4194510A (en) Ultrasonic focusing system
US20040066708A1 (en) Ultrasonic transmitting and receiving apparatus
JPH09173335A (en) Multifocus ultrasonic lens
JPH02217000A (en) Ultrasonic wave probe
JP2004533885A (en) Variable multidimensional apodization control for ultrasonic transducers
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
KR20120063449A (en) Ultrasound probe and untrasound diagnostic apparatus
US4644214A (en) Probe for electronic scanning type ultrasonic diagnostic apparatus
JPH0293362A (en) Ultrasonic probe
JP2004105257A (en) Ultrasonic wave transmitting/receiving system
KR19990045153A (en) Ultrasonic probe manufacturing method, ultrasonic probe and ultrasonic imaging device
JPH09154844A (en) Ultrasonic diagnostic device
JP2004033666A (en) Ultrasonic probe and ultrasonographic apparatus
JP3495534B2 (en) Ultrasound imaging device
JP3032439B2 (en) Ultrasonic transducer
JP2004089357A (en) Ultrasonic search unit, and ultrasonic diagnostic apparatus using the same
JPH02134142A (en) Electronic radial type ultrasonic beam device