JPH0293126A - Viscous fluid joint device - Google Patents

Viscous fluid joint device

Info

Publication number
JPH0293126A
JPH0293126A JP24665588A JP24665588A JPH0293126A JP H0293126 A JPH0293126 A JP H0293126A JP 24665588 A JP24665588 A JP 24665588A JP 24665588 A JP24665588 A JP 24665588A JP H0293126 A JPH0293126 A JP H0293126A
Authority
JP
Japan
Prior art keywords
viscous fluid
engine
temperature
fan
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24665588A
Other languages
Japanese (ja)
Inventor
Takatsugu Nakamura
中村 隆次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP24665588A priority Critical patent/JPH0293126A/en
Publication of JPH0293126A publication Critical patent/JPH0293126A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/02Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part
    • F16D35/021Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves
    • F16D35/023Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with rotary working chambers and rotary reservoirs, e.g. in one coupling part actuated by valves the valve being actuated by a bimetallic coil

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To control a continuous torque transmission of good responsibility in accordance with temperature change by providing a spiral bimetal in a swirling room for a water pump to control in sequence a valve opening in association with its action. CONSTITUTION:A spiral bimetal 21 detects directly water temperature in a water pump (P) to move rotationally a valve plate 20 according to change in the water temperature for adjusting the opening of a return port 6, controlling the amount of a viscous fluid which is recycled from storerooms 4, 5 to an operation room 23. That is, when the calorific value of an engine is smaller and engine-cooling water temperature is lower, a rotational move of the valve plate 20 is made smaller and the opening of a return port 6 is made smaller to reduce the recycle amount of the viscous fluid to the operation room 23 for performing low-speed rotation of a fan with smaller torque transmission. As the engine-cooling water temperature rises, the opening of the return port 6 is made larger to increase the recycle amount of the viscous fluid to the operation room 23 for performing high-speed rotation of the fan. It is thus possible to control the rotating speed of the fan continuously and accurately.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は一般に自動車エンジンの冷却ファン装置に適用
される粘性流体継手装置に関するもので、より詳しくは
エンジン水温の温度に直接感応して出力l・ルク伝達を
連続的に制御することを可能にした温度感応型粘性流体
に毬手装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention generally relates to a viscous fluid coupling device applied to a cooling fan device of an automobile engine, and more specifically, it relates to a viscous fluid coupling device that is generally applied to a cooling fan device of an automobile engine. This invention relates to a temperature-sensitive viscous fluid control device that makes it possible to continuously control output l/lux transmission.

(従来の技術) この種粘性流体継手装置は、一般にエンジンによって駆
動される回転シャフト上にヘアリングを介してケーシン
グが回転自在に支承され、該ケーシングの内部空間に収
容されてロータが前記回転シャフトに結合される。ケー
シングに固定される仕切板により前記内部空間はロータ
を収容する作動室と粘性流体を貯える貯蔵室とに分離さ
れる。ロータとケーシングとの相対する面には第1トル
ク伝達面が形成され、一方ロタと仕切板との相対する面
にも第2トルク伝達面が形成される。仕切板には貯蔵室
から作動室へ粘性流体を還流させる戻し穴が形成され、
ラジェーク通過空気温を検知して作動する渦巻状バイメ
タルがケーシングの前面に装着され、該バイメタルに連
結され前記仕切板上を回動するパルプ板により前記戻し
穴が開閉制御される。
(Prior Art) In this type of viscous fluid coupling device, a casing is generally rotatably supported on a rotating shaft driven by an engine via a hair ring, and a rotor is housed in an internal space of the casing and a rotor is mounted on the rotating shaft. is combined with A partition plate fixed to the casing separates the internal space into a working chamber that accommodates the rotor and a storage chamber that stores viscous fluid. A first torque transmission surface is formed on the opposing surfaces of the rotor and the casing, and a second torque transmission surface is also formed on the opposing surfaces of the rotor and the partition plate. A return hole is formed in the partition plate to circulate the viscous fluid from the storage chamber to the working chamber.
A spiral bimetal actuated by detecting the air temperature passing through the radiator is mounted on the front surface of the casing, and the opening and closing of the return hole is controlled by a pulp plate connected to the bimetal and rotating on the partition plate.

即ち、低温時に於いてはパルプ板は戻し穴を閉じる位置
に保持され、温度が上昇するにつれて前記パルプ板が回
動して戻し穴の開度を大きくし、貯蔵室から作動室への
粘性流体の還流を増加させ、回転シャフトからケーシン
グへのトルク伝達を増大させるように制御する。
That is, at low temperatures, the pulp plate is held in a position where the return hole is closed, and as the temperature rises, the pulp plate rotates to widen the opening of the return hole, allowing viscous fluid to flow from the storage chamber to the working chamber. control to increase the reflux of the rotor and increase the torque transmission from the rotating shaft to the casing.

しかるに、こうした−数的な粘性流体継手装置では、温
度感応部材であるバイメタルがケーシングの前面、即ち
エンジンルームの内部空間に取付けられているため、エ
ンジンの発熱量を的確に把握できず、従って、例えばエ
ンジン発熱量が低い場合にもエンジンルーム内の気温が
上昇すればファン回転数を高速回転にしてしまうという
問題があった。
However, in such numerical viscous fluid coupling devices, since the bimetal, which is a temperature sensitive member, is attached to the front of the casing, that is, the internal space of the engine room, it is not possible to accurately determine the amount of heat generated by the engine. For example, even when the engine heat generation amount is low, there is a problem in that if the temperature in the engine room rises, the fan rotation speed becomes high.

こうした点を解決すべく提案された温度感応型粘性流体
継手装置が、例えば特開昭61−79031号公報、特
開昭61−58913号公報に開示されている。
Temperature-sensitive viscous fluid coupling devices proposed to solve these problems are disclosed in, for example, Japanese Patent Laid-Open No. 61-79031 and Japanese Patent Laid-Open No. 61-58913.

第4図は前記公報に開示された粘性流体継手装置の1例
を示すもので、同図から明らかな如く、粘性流体継手C
とウォータポンプPの各回転シャフト31.32の貫通
穴内に第10ソド33と第20ソド34が連結されて挿
入され、うオータボンプPの渦室35内に臨む第10ン
ド端部にはサーモワックスによる温度感応部材36が装
着され、他方の第20ツト端部はスプリング37により
イ」勢されるガイド部材38によりポール39を介して
軸方向に押圧されている。ガイド部材38はカバー40
の前面に設置されたバイメタル41の動きに連動して回
動すると共に軸方向に移動可能なように構成され、バル
ブプレート42が前記ボール側端面に固着される。他の
構成は上記一般の粘性流体継手構造と殆んど変わらない
FIG. 4 shows an example of the viscous fluid coupling device disclosed in the above publication, and as is clear from the figure, the viscous fluid coupling C
The 10th rod 33 and the 20th rod 34 are connected and inserted into the through holes of the rotating shafts 31 and 32 of the water pump P, and the end of the 10th rod facing into the vortex chamber 35 of the water pump P is coated with thermowax. A temperature sensitive member 36 is attached thereto, and the other 20th end is pushed in the axial direction via a pawl 39 by a guide member 38 which is biased by a spring 37. The guide member 38 is a cover 40
The valve plate 42 is configured to rotate in conjunction with the movement of a bimetal 41 installed on the front surface of the valve and to be movable in the axial direction, and a valve plate 42 is fixed to the end surface on the ball side. The other configurations are almost the same as the general viscous fluid joint structure described above.

以上の構成により、温度が第1所定温度より低い低温時
に於いては、仕切板43上に配設された第1、第2戻し
穴44.45はバルブプレート42により夫々閉じられ
、ファン回転はOFF状態に保持される。温度上昇に伴
い第1所定温度に達すると、バイメタル41がラジェー
タ通過空気温を検出し、バイメタル41に連動するバル
ブプレート42が仕切板43上を回動し、外径側の第1
戻し穴44を開き、ファン回転をMIDDLE状態に保
持する。更に温度が上昇し第2所定温度に達すると、サ
ーモワックスによる温度感応部材36がウォータポンプ
Pの渦室35内の水温を検出し、温度感応部材36に連
動してバルブプレート42が軸方向に移動し内径側の第
2戻し穴45を開き、ファン回転はON状態に保持する
。従って、バイメタル41は第1戻し穴44を開閉する
ためにバルブプレート42を回動させて、ファン回転を
OFFとMIDDLE状態に切替制御するものであり、
一方の渦室内の温度感応部材36は第2戻し穴45を開
閉するためにバルブプレート42を軸方向に移動させ、
ファン回転をM I D I)L EとON状態に切替
制御しようとするものである。
With the above configuration, when the temperature is lower than the first predetermined temperature, the first and second return holes 44 and 45 provided on the partition plate 43 are respectively closed by the valve plate 42, and the fan rotation is stopped. It is kept in the OFF state. When the temperature reaches the first predetermined temperature as the temperature rises, the bimetal 41 detects the air temperature passing through the radiator, and the valve plate 42 interlocked with the bimetal 41 rotates on the partition plate 43,
Open the return hole 44 and keep the fan rotation in the MIDDLE state. When the temperature further increases and reaches a second predetermined temperature, the thermowax temperature sensitive member 36 detects the water temperature in the vortex chamber 35 of the water pump P, and in conjunction with the temperature sensitive member 36, the valve plate 42 moves in the axial direction. The fan is moved to open the second return hole 45 on the inner diameter side, and the fan rotation is maintained in the ON state. Therefore, the bimetal 41 rotates the valve plate 42 to open and close the first return hole 44, and controls the fan rotation to be switched between the OFF and MIDDLE states.
Temperature sensitive member 36 in one vortex chamber axially moves valve plate 42 to open and close second return hole 45;
This is intended to control the rotation of the fan by switching it between the MID I)LE and ON states.

この様に、ファン回転のMrDDLEとON状態の切替
制御が、エンジン冷却水温を直接検出することによりな
されるので、エンジン発熱量に応じたファンの必要風量
を精度よく供給することができる。
In this way, the switching control between MrDDLE and the ON state of the fan rotation is performed by directly detecting the engine cooling water temperature, so that the required air volume of the fan can be supplied with high accuracy according to the engine heat generation amount.

(発明が解決しようとする課題) しかるに、エンジン冷却水温を直接検出してファン回転
数を制御する上記粘性流体継手装置にあっても、ウォー
タポンプの渦室内に設置される温度感応部材がサーモワ
ックスによるため、戻し穴の開閉するON、OFF動作
しかできず、連続的なトルク伝達制御が不可能であり、
広い水温レンジに亘る細かな制御ができない。また、同
装置では温度感応部材として、バイメタルをケーシング
前面に取付けて併用しているため、バルブを作動させる
ロッドが入力回転と出力回転との間で相対的に回転する
ことになり、連接部分の摩耗が激しく信頼性に欠けるき
らいがある。また、上記構成では部品点数が多くなって
構造が複雑である。
(Problem to be Solved by the Invention) However, even in the above-mentioned viscous fluid coupling device that directly detects the engine cooling water temperature to control the fan rotation speed, the temperature sensitive member installed in the vortex chamber of the water pump is made of thermowax. Therefore, only ON and OFF operations to open and close the return hole are possible, and continuous torque transmission control is impossible.
Fine control over a wide water temperature range is not possible. In addition, because this device uses a bimetal as a temperature-sensitive member attached to the front of the casing, the rod that operates the valve rotates relative to the input rotation and output rotation, and the connecting part They tend to wear out and be unreliable. Furthermore, the above configuration has a large number of parts and is complex in structure.

従って、本発明の目的は、この種温度感応型粘性流体継
手において、温度検出を直接水温により行い、かつ温度
変化に応じた連続的なトルク伝達も制御を可能にした構
造簡単な粘性流体継手装置を提供しようとするごとにあ
る。
Therefore, an object of the present invention is to provide a viscous fluid coupling device with a simple structure in which temperature is detected directly by water temperature in this kind of temperature-sensitive viscous fluid coupling, and continuous torque transmission can also be controlled in response to temperature changes. Every time I try to provide that.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明はエンジンにより駆動
され、端部にロータを有する入力部材と、該入力部材を
囲み、該入力部材に回転自在に支承される出力部材と、
前記入力部材と前記出力部材間に形成され粘性流体が循
環する貯蔵室及び作動室と、温度変化に応じて開度を変
え前記貯蔵室から作動室に流れる流体量を制御するバル
ブとからなり、温度変化に対応して前記入力部材から前
記出力部材へのトルク伝達を制御する粘性流体継手装置
において、ウォータポンプの渦室内に渦巻状バイメタル
を取付け、該バイメタルの動きに連動させて上記バルブ
の開度を連続的に制御することを構成とし、これを上記
課題の解決手段とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes an input member that is driven by an engine and has a rotor at its end, and an input member that surrounds the input member and is rotatably supported by the input member. an output member;
It consists of a storage chamber and an operating chamber formed between the input member and the output member, in which viscous fluid circulates, and a valve that changes the degree of opening according to temperature changes and controls the amount of fluid flowing from the storage chamber to the operating chamber, In a viscous fluid coupling device that controls torque transmission from the input member to the output member in response to temperature changes, a spiral bimetal is installed in the vortex chamber of the water pump, and the valve is opened in conjunction with the movement of the bimetal. The present invention is designed to continuously control the temperature, and this is a means of solving the above problem.

(作用) 上記構成により渦状バイメタルはウォータポンプ内の水
温を直接検出して、その水温変化に応じてバルブプレー
トを回動させて戻し穴の開度を調節し、貯蔵室から作動
室に還流する粘性流体量を制御する。
(Function) With the above configuration, the spiral bimetal directly detects the water temperature inside the water pump, rotates the valve plate according to the change in water temperature, adjusts the opening of the return hole, and returns the water from the storage chamber to the working chamber. Control the amount of viscous fluid.

即ち、エンジン発熱量が少なく、エンジン冷却水温が低
いときはバルブプレートの回動が小さく、戻し穴の開度
を小さくして作動室への粘性流体還流量を少なくし、小
さなトルク伝達でファンを低速回転させる。
In other words, when the engine heat generation is low and the engine cooling water temperature is low, the rotation of the valve plate is small, the opening of the return hole is small, the amount of viscous fluid returned to the working chamber is reduced, and the fan is activated with small torque transmission. Rotate at low speed.

エンジン冷却水温が上昇するにつれてバルブプレートの
回動量も増加し、戻し穴の開度を大きくし、作動室への
粘性流体還流量を増やしてトルク伝達を大きくし、ファ
ン回転を高速にする。
As the engine coolant temperature rises, the amount of rotation of the valve plate also increases, increasing the opening of the return hole, increasing the amount of viscous fluid returned to the working chamber, increasing torque transmission, and increasing the fan rotation speed.

このように本発明の粘性流体継手装置によれば、ファン
回転の制御中、温度感応部材はエンジン発熱量に最も関
係するエンジン冷却水の温度を直接検出し、しかも温度
変化に応じて作動室への粘性流体還流量を連続的に制御
するため、ファンの回転数の制御が連続してかつ的確に
行われる。
In this way, according to the viscous fluid coupling device of the present invention, during control of fan rotation, the temperature sensitive member directly detects the temperature of the engine cooling water, which is most related to the engine heat output, and also detects the temperature of the engine cooling water in response to temperature changes. In order to continuously control the amount of viscous fluid returned, the rotation speed of the fan is continuously and precisely controlled.

(実施例) 以下、本発明を図示実施例に基づき詳しく説明する。(Example) Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る粘性流体継手装置の代表的な実施
例を示し、図中1はロータであり、従来と同様にその回
転中心がプーリ2を介してエンジンより駆動される回転
シャフト3の先端に固着されている。
FIG. 1 shows a typical embodiment of a viscous fluid coupling device according to the present invention. In the figure, 1 is a rotor, the rotation center of which is a rotary shaft 3 driven by an engine via a pulley 2, as in the past. is fixed to the tip of.

該ロータ1は中央部が円板1aで構成され、該円板1a
の外周には環状の粘性流体貯蔵室4を形成すると共に、
前記円板1aの前面と前記貯蔵室4のフランジ4a及び
内周壁面4bとの間に貯蔵室5を形成している。前記円
板1aには粘性流体の戻し穴6が同−直径上に1個以上
形成され、前記環状の貯蔵室4を構成する前面壁4cの
外周部には、環状の貯蔵室4に直接通じる第1ポンプ孔
7と半径方向に通路8aをもつ第2ポンプ孔8が同一円
周上に隣り合って形成され、第1ポンプ孔7のロータ回
転方向上流側と第2ポンプ孔8のロータ回転方向下流側
の近傍には突起10が設けられ、ポンプ機構を構成する
。また、環状の貯蔵室4の外周壁面には歯切り部11が
形成され、この部分で後述するポンプ機構を構成する。
The rotor 1 has a central portion composed of a disk 1a, and the disk 1a
An annular viscous fluid storage chamber 4 is formed on the outer periphery of the
A storage chamber 5 is formed between the front surface of the disk 1a and the flange 4a and inner peripheral wall surface 4b of the storage chamber 4. One or more return holes 6 for the viscous fluid are formed in the disk 1a on the same diameter, and the outer peripheral part of the front wall 4c constituting the annular storage chamber 4 has a hole that directly communicates with the annular storage chamber 4. A first pump hole 7 and a second pump hole 8 having a passage 8a in the radial direction are formed adjacent to each other on the same circumference, and the first pump hole 7 is formed on the upstream side in the rotor rotation direction and the second pump hole 8 is formed on the upstream side in the rotor rotation direction. A protrusion 10 is provided near the downstream side in the direction and constitutes a pump mechanism. Further, a gear cut portion 11 is formed on the outer peripheral wall surface of the annular storage chamber 4, and this portion constitutes a pump mechanism to be described later.

12はハウジングであり、前記ロータ1を囲むようにし
て軸受13を介して前記回転シャフト3に回転自在に支
持される。
A housing 12 surrounds the rotor 1 and is rotatably supported by the rotating shaft 3 via a bearing 13.

14はウォータポンプPの回転シャフトで、上記粘性流
体継手Cの回転シャフト3と同一軸心上で連結され、エ
ンジンの駆動力を同様に受ける。このウォータポンプP
の回転シャフト14は軸受15を介してポンプボディ1
6に支持され、その先端にはインペラ部17が固設され
る。
Reference numeral 14 denotes a rotating shaft of the water pump P, which is connected on the same axis as the rotating shaft 3 of the viscous fluid coupling C, and similarly receives the driving force of the engine. This water pump P
The rotating shaft 14 is connected to the pump body 1 via a bearing 15.
6, and an impeller part 17 is fixedly installed at the tip thereof.

上記粘性流体継手装置の回転シャフト3とウォータポン
プの回転シャフト14の中心には貫通孔が形成され、該
貫通孔に第10ンド18と第20ソド19が連結されて
回動可能に挿入され、第10ンド18の先端にはバルブ
プレート20が固設される一方、第20ソド19の先端
には渦状バイメタル21の内端が固定され、その外端は
インペラ部17に固定される。渦状バイメタル21ばイ
ンペラ部17に固設されたカバーj9により覆わレル。
A through hole is formed in the center of the rotating shaft 3 of the viscous fluid coupling device and the rotating shaft 14 of the water pump, and a tenth rod 18 and a twentieth rod 19 are connected and rotatably inserted into the through hole, A valve plate 20 is fixed to the tip of the tenth rod 18, while an inner end of a spiral bimetal 21 is fixed to the tip of the twentieth rod 19, and an outer end thereof is fixed to the impeller section 17. The spiral bimetal 21 is covered by a cover J9 fixed to the impeller part 17.

次にその作動につき説明すると、冷間作動時にはポンプ
P内の水温が低く、バルブプレー1・20は戻し穴6を
閉塞しており、粘性流体はロタ中央の貯蔵室5内に貯蔵
された状態にある。
Next, to explain its operation, during cold operation, the water temperature inside the pump P is low, the valve plates 1 and 20 close the return hole 6, and the viscous fluid is stored in the storage chamber 5 in the center of the rotor. It is in.

いま、水温が徐々に上昇し、バイメタル21が水温を感
知し、その上昇分回転すると、第1及び第20ンド1.
8.19を介してバルブプレー1−20も回転し、バイ
メタル21の回転量に応じて戻し穴6を開く。このとき
、前記貯蔵室5内の粘性流体には遠心力が働き、戻し穴
6からロータ1の後部とハウジング】2の間に形成され
る作動室23内へと流入し、ロータ1からの回転力をハ
ウジング3へと伝え、ファンFの回転数を上界させる。
Now, when the water temperature is gradually rising and the bimetal 21 senses the water temperature and rotates by the amount of the rise, the first and 20th nodes 1.
8.19, the valve plate 1-20 also rotates, and the return hole 6 is opened according to the amount of rotation of the bimetal 21. At this time, centrifugal force acts on the viscous fluid in the storage chamber 5, which flows from the return hole 6 into the working chamber 23 formed between the rear part of the rotor 1 and the housing 2, and the rotation from the rotor 1. The force is transmitted to the housing 3 and the rotational speed of the fan F is upper bound.

この場合、例えば第3図(al〜(C1に示す如く前記
戻し穴6とバルブプレー1・20をその形状及び穴数が
適当に組合わせられる。このとき、ブリ2の回転数(シ
ャフト18及びロータ1の回転数)に対するファンFの
回転数(ハウジング12の回転数)、即ち入力回転数に
対する出力回転数は第4図ta+〜(C1に示ず如き特
性を示す。
In this case, for example, the return hole 6 and the valve plates 1 and 20 are appropriately combined in shape and number of holes as shown in FIGS. The rotational speed of the fan F (rotational speed of the housing 12) relative to the rotational speed of the rotor 1 (rotational speed of the rotor 1), that is, the output rotational speed relative to the input rotational speed exhibits characteristics as shown in FIG.

作動室23内へ流入した粘性流体はロータ1の外周に形
成された歯切り部11のポンプ作用により継手C内を前
方(図面左方)に送られ、ロータ1の環状貯蔵室4の前
面に突設された突起10によるポンプ作用を受けてポン
プ孔8より通路8aを経てロータ中央の貯蔵室5内に戻
される。
The viscous fluid that has flowed into the working chamber 23 is sent forward (to the left in the drawing) through the joint C by the pumping action of the gear cut 11 formed on the outer periphery of the rotor 1, and is sent to the front of the annular storage chamber 4 of the rotor 1. Under the pump action of the protrusion 10, it is returned from the pump hole 8 through the passage 8a into the storage chamber 5 at the center of the rotor.

こうして粘性流体は貯蔵室5−作動室23−・歯切り部
11−突起10−・ポンプ孔8−=iJl路8a−貯蔵
室5と循環し乍ら、入力側より出力側に回転力を伝達し
続ける。
In this way, the viscous fluid circulates between the storage chamber 5 - working chamber 23 - gear cutter 11 - protrusion 10 - pump hole 8 - = iJl path 8a - storage chamber 5, while transmitting rotational force from the input side to the output side. Continue to do so.

次に、ウォータポンプP内の水温が下降すると、バイメ
タル21が巻き戻り、各ロンド1.8,1.9を介して
バルブプレーj・20を回転させて戻し穴6を閉し、粘
性流体の作動室23内への流入が断たれてファンFの回
転数は下降し、粘性流体は] ] 0−タ中央の貯蔵室5内へ回収される。
Next, when the water temperature inside the water pump P decreases, the bimetal 21 rewinds, rotates the valve plate j and 20 via each iron 1.8 and 1.9, closes the return hole 6, and removes the viscous fluid. The flow into the working chamber 23 is cut off, the rotational speed of the fan F decreases, and the viscous fluid is collected into the storage chamber 5 at the center of the 0-taper.

エンジンが停止し、ウォータポンプP及び粘性流体継手
Cの回転が停止すると、粘性流体は継手C内の下方に重
力によって溜まる。このとき、粘性流体はロータ1の環
状貯蔵室4の下方部分に形成されたポンプ孔7から環状
の貯蔵室4内に侵入して貯蔵され、停止時に粘性流体が
作動室23内へ侵入する量を少なくする。従って、これ
によりエンジンの再始動によるつれ回りを低減させるこ
とができ、エンジンの暖機性の向上とファン騒音の低減
が図れる。
When the engine stops and the water pump P and viscous fluid joint C stop rotating, the viscous fluid accumulates in the lower part of the joint C due to gravity. At this time, the viscous fluid enters the annular storage chamber 4 through the pump hole 7 formed in the lower part of the annular storage chamber 4 of the rotor 1 and is stored therein. Reduce. Therefore, it is possible to reduce the running speed caused by restarting the engine, thereby improving engine warm-up performance and reducing fan noise.

また、エンジン始動後には、ポンプ孔7のロータ回転方
向下流側の突起面10aにより、環状の貯蔵室4内に溜
まった粘性流体は該ポンプ孔7から吐出され、他方の突
起面10bのポンプ作用によりポンプ孔8から通路8a
を抜けてロータ中央の貯蔵室5へ戻される。
Further, after the engine is started, the viscous fluid accumulated in the annular storage chamber 4 is discharged from the pump hole 7 by the protrusion surface 10a on the downstream side in the rotor rotational direction, and the pump action of the other protrusion surface 10b From the pump hole 8 to the passage 8a
and is returned to the storage chamber 5 at the center of the rotor.

〔発明の効果〕〔Effect of the invention〕

以−ト、詳細に説明した如く本発明によれば、温度の感
知は全てエンジンの発熱量と直接関係するウォータポン
プ内の水温によるものであり、かつ温度感応部材として
渦状バイメタルを使用するため、他の要因に影響される
ことなくエンジンの発熱温度の検出が可能となる−1−
にバルブの開度を連続して制御することが可能となり、
エンジンの発熱状態に即応させて冷却ファンの回転数を
連続的に制御できるようになった。
As explained in detail above, according to the present invention, temperature sensing is entirely based on the water temperature in the water pump, which is directly related to the amount of heat generated by the engine, and since a spiral bimetal is used as the temperature sensitive member, Enables detection of engine heat generation temperature without being affected by other factors -1-
It is now possible to continuously control the opening of the valve,
It is now possible to continuously control the rotation speed of the cooling fan in response to the heat generation state of the engine.

また本発明によれば、制御系の各部材(バイメタル、バ
ルブプレート、貯蔵室、ポンプ機構)が全て出力側に組
込むことを可能にし、かつ構造が簡単であるため、その
組付けが容易で、同時に各部作動の信顛性が増加する。
Further, according to the present invention, all the components of the control system (bimetal, valve plate, storage chamber, pump mechanism) can be assembled on the output side, and the structure is simple, so assembly is easy. At the same time, the reliability of each part's operation increases.

更に、本発明では停止時のために貯蔵室と、作動時の貯
蔵室とを分けて設けると共に、それぞれにポンプ機能を
付加させることができるため、装置の始動特性が一段と
改善される。
Further, according to the present invention, a storage chamber for stopping and a storage chamber for operating are provided separately, and a pump function can be added to each, so that the starting characteristics of the device are further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な実施例を示す粘性流体継手装
置の側断面図、第2図は同装置のロータ正面図、第3図
はロータ上の戻し穴の変形例とバルブプレートの相対位
置を示す正面図、第4図は同変形例に対応するエンジン
冷却水温に対するファン回転数の出力特性図、第5図は
従来のエンジン冷却水温検出機能を備えた粘性流体継手
装置の側断面図である。 図の主要部分の説明 1〜ローク     4,5−貯蔵室 6−戻し穴     7.8−ポンプ孔12−ハウジン
グ   16−ボンプボデイ17− インペラ部   
1.8,1.9− 口・2ド20− バルブプレー1・
 21−(渦状)バイメタル23−作動室 ρP−7)日留め ロトl)囲蓄靜
Fig. 1 is a side sectional view of a viscous fluid coupling device showing a typical embodiment of the present invention, Fig. 2 is a front view of the rotor of the same device, and Fig. 3 is a modification of the return hole on the rotor and the valve plate. A front view showing the relative positions, Fig. 4 is an output characteristic diagram of fan rotation speed versus engine cooling water temperature corresponding to the same modification, and Fig. 5 is a side cross section of a conventional viscous fluid coupling device with an engine cooling water temperature detection function. It is a diagram. Explanation of main parts of the diagram 1 - Roke 4, 5 - Storage chamber 6 - Return hole 7.8 - Pump hole 12 - Housing 16 - Bump body 17 - Impeller part
1.8, 1.9- mouth/2 de 20- valve play 1/
21-(vortex) bimetal 23-actuating chamber ρP-7) day retainer l) enclosure

Claims (1)

【特許請求の範囲】[Claims] エンジンにより駆動され、端部にロータを有する入力部
材と、該入力部材を囲み、該入力部材に回転自在に支承
される出力部材と、前記入力部材と前記出力部材間に形
成され粘性流体が循環する貯蔵室及び作動室と、温度変
化に応じて開度を変え前記貯蔵室から作動室に流れる流
体量を制御するバルブとからなり、温度変化に対応して
前記入力部材から前記出力部材へのトルク伝達を制御す
る粘性流体継手装置において、ウォータポンプの渦室内
に渦巻状バイメタルを取付け、該バイメタルの動きに連
動させて上記バルブの開度を連続的に制御することを特
徴とする粘性流体継手装置。
an input member that is driven by an engine and has a rotor at its end; an output member that surrounds the input member and is rotatably supported by the input member; and a viscous fluid that is formed between the input member and the output member and circulates therein. A valve that controls the amount of fluid flowing from the storage chamber to the working chamber by changing its opening degree in response to temperature changes, and a valve that controls the amount of fluid flowing from the input member to the output member in response to temperature changes. A viscous fluid coupling device for controlling torque transmission, characterized in that a spiral bimetal is installed in a vortex chamber of a water pump, and the opening degree of the valve is continuously controlled in conjunction with the movement of the bimetal. Device.
JP24665588A 1988-09-30 1988-09-30 Viscous fluid joint device Pending JPH0293126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24665588A JPH0293126A (en) 1988-09-30 1988-09-30 Viscous fluid joint device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24665588A JPH0293126A (en) 1988-09-30 1988-09-30 Viscous fluid joint device

Publications (1)

Publication Number Publication Date
JPH0293126A true JPH0293126A (en) 1990-04-03

Family

ID=17151648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24665588A Pending JPH0293126A (en) 1988-09-30 1988-09-30 Viscous fluid joint device

Country Status (1)

Country Link
JP (1) JPH0293126A (en)

Similar Documents

Publication Publication Date Title
KR920001660B1 (en) Thermo sensitive hydraulic fan coupling
EP0009959B1 (en) Viscous fluid clutch
JP4410530B2 (en) Electronically controlled viscous fan drive
US4727969A (en) Viscous fluid coupling
JP2775431B2 (en) Temperature-sensitive hydraulic fan coupling device
EP2049811B1 (en) Viscous fan drive systems having fill and scavenge control
US6669439B2 (en) Variable flow impeller-type water pump with movable shroud
JPH0159451B2 (en)
JPH0355698B2 (en)
JPH0356328B2 (en)
US4555004A (en) Temperature responsive fluid coupling device
US5101950A (en) Fluid coupling device with improved dump time
US5484045A (en) Fluid clutch
US5117955A (en) Temperature-controlled fluid friction coupling
JPH0293126A (en) Viscous fluid joint device
JP2003014002A (en) Temperature sensitive fluid type fan coupling device
JPH03103625A (en) Preloaded control arm for viscous fluid clutch
JP3713796B2 (en) Viscous fluid coupling
JPH0229227Y2 (en)
JPS63180726A (en) Fan coupling device for internal combustion engine
JPH0615142Y2 (en) Liquid coupling device
US5509516A (en) Viscous fluid coupling
JPS6179032A (en) Viscous fluid coupling device
JPS62224734A (en) Viscous fluid coupling
JPH0379572B2 (en)