JPH0293001A - Manufacture of low carbon iron powder - Google Patents

Manufacture of low carbon iron powder

Info

Publication number
JPH0293001A
JPH0293001A JP63245576A JP24557688A JPH0293001A JP H0293001 A JPH0293001 A JP H0293001A JP 63245576 A JP63245576 A JP 63245576A JP 24557688 A JP24557688 A JP 24557688A JP H0293001 A JPH0293001 A JP H0293001A
Authority
JP
Japan
Prior art keywords
carbon
iron powder
powder
iron
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245576A
Other languages
Japanese (ja)
Inventor
Hiroshi Horiguchi
浩 堀口
Toshiro Terakawa
寺川 敏郎
Hideaki Baba
馬場 秀晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Original Assignee
Yoshikawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP63245576A priority Critical patent/JPH0293001A/en
Publication of JPH0293001A publication Critical patent/JPH0293001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture high purity low carbon iron powder without causing to sinter by pulverizing high carbon iron made of white pig iron with rapid cooling having the specific carbon content into the specific average particle diameter, reacting the carbon with hydrogen at the specific temp. range and removing the carbon. CONSTITUTION:The high carbon iron made of the white pig iron with rapid cooling having >=2% carbon content is pulverized so as to become <=15mu average particle diameter and treated under hydrogen containing atmosphere in the temp. range of 600-300 deg.C. By this treatment, at first the hydrogen is combined with oxygen and H2O as reaction product is removed and also combination with the carbon is made to good and in spite of the low temp., the decarburization in the powder is progressed. By this method, the sintering is not caused at the time of treating, and the high purity low carbon iron powder is manufactured at a low cost and in a large quantity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微細鉄粉とくに射出焼結成形等焼結収縮体用
として好適な鉄粉の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing fine iron powder, particularly iron powder suitable for use in sintered contract bodies such as injection sinter molding.

〔従来の技術〕[Conventional technology]

従来から、粉末冶金法によって鉄系の焼結体を得る方法
として、自動車等の部品を対象としたプレス成形法が広
く採用されてきた。
Conventionally, as a method for obtaining iron-based sintered bodies by powder metallurgy, press molding for parts of automobiles and the like has been widely adopted.

これは、粒径100μm程度の極低炭素鉄粉を黒鉛粉と
共に強力なプレスによって圧縮し、鉄の理論密度の80
〜90%の密度を持つ成形体を得て、高温で焼結を行い
最終成品を得る方法である。
This is made by compressing ultra-low carbon iron powder with a particle size of about 100 μm together with graphite powder using a powerful press, which has a theoretical density of 80 μm.
This is a method of obtaining a molded body with a density of ~90% and sintering it at a high temperature to obtain the final product.

以下、この方法によって得た成形体を本願明細書におい
てはプレス収縮体と称する。
Hereinafter, the molded product obtained by this method will be referred to as a press-shrinkable product in the present specification.

また、近年、粉末冶金における成形法の一つとして、射
出成形法が登場した。
Furthermore, in recent years, an injection molding method has appeared as one of the molding methods in powder metallurgy.

これは30μm以下の粒径の微粉を熱可塑性プラスチッ
クに混ぜ、射出成形機によって成形し、鉄の50%前後
の密度を持つ成形体を作り、これをプレス成形法と同様
に焼結するが、その際、微細鉄粉は凝集して成形体は大
きく収縮し、プレス成形によるものよりも密度が上がり
、理論密度の95%前後の成品を得るものである。
In this method, fine powder with a particle size of 30 μm or less is mixed with thermoplastic plastic and molded using an injection molding machine to create a molded body with a density of around 50% that of iron, which is then sintered in the same way as the press molding method. At this time, the fine iron powder aggregates and the molded product shrinks significantly, resulting in a product with a higher density than that obtained by press molding, and approximately 95% of the theoretical density.

以下、この方法によって得た焼結体を焼結収縮体と称し
、それに適した鉄粉を焼結収縮体用鉄粉と称する。
Hereinafter, the sintered body obtained by this method will be referred to as a sintered contracted body, and the iron powder suitable for this will be referred to as iron powder for sintered contracted bodies.

この高温下の収縮による密度向上を図る焼結収縮体を得
るためには、表面エネルギーの大きな微細粉が必要とな
り、その平均粒径は30μm以下、とくに10μm以下
のものが好ましいといわれている。このようなWja鉄
粉の製造法として、50C1kg/ctd以上の高圧水
に少量の溶鉄を落とし込む水アトマイズ法と冷媒にガス
を用いるガスアトマイズ法等のアトマイズ法と、また鉄
粉を高温、高圧でCOガスと反応させ、液状のFe(C
odsを作り、これを蒸発させて鉄粉を得るカーボニル
法等が知られている。
In order to obtain a sintered contracted body whose density is improved by shrinkage at high temperatures, fine powder with a high surface energy is required, and it is said that the average particle size is preferably 30 μm or less, particularly 10 μm or less. There are two methods for producing Wja iron powder: a water atomization method in which a small amount of molten iron is dropped into high-pressure water of 50C1kg/ctd or more, a gas atomization method that uses gas as a refrigerant, and atomization methods such as a gas atomization method that uses a gas as a refrigerant. By reacting with gas, liquid Fe(C
The carbonyl method, etc., in which iron powder is obtained by making ods and evaporating it, is known.

ところが、従来のこれらの微細鉄粉の製造方法において
は、水アトマイズ法は粒度分布のバラツキが大きいため
歩留りが低い、ガスアトマイズ法は冷媒ガスを用いるの
で球状になるがガスの熱容量が小さいので生産性は極め
て低い、更にカーボニル法は極めて高コストである等の
欠点がある。
However, in the conventional manufacturing methods of these fine iron powders, the water atomization method has a low yield due to large variations in particle size distribution, and the gas atomization method uses refrigerant gas, which makes it spherical, but the heat capacity of the gas is small, so productivity is low. However, the carbonyl method has drawbacks such as extremely low cost and extremely high cost.

さらに、この微細鉄粉を高生産性と低コストによって得
る方法として、本発明者等は、急冷した高炭素鉄粉を水
を媒体として粉砕することにより平均粒度20μm以下
に粉砕し、その鉄粉を成形後焼結すると、粉砕中に表面
に形成された酸化被膜と鉄中の炭素が反応して、低炭素
鋼の焼結製品ができることを特願昭63−101043
号出願明細書において開示した。
Furthermore, as a method for obtaining this fine iron powder with high productivity and low cost, the present inventors have developed a method for pulverizing quenched high-carbon iron powder using water as a medium to reduce the average particle size to 20 μm or less. Patent application No. 63-101043 states that when sintered after forming, the oxide film formed on the surface during crushing reacts with the carbon in the iron, producing a sintered product of low carbon steel.
It was disclosed in the specification of the application No.

しかし、この製造法においても、その焼結中に多量のガ
ス放出のため、ある種の形状では焼結体に割れが発生し
たり、また、真空焼結の場合には反応が進まず成品に炭
素が残ることがある。
However, even with this manufacturing method, a large amount of gas is released during sintering, which can cause cracks in the sintered body in certain shapes, and in the case of vacuum sintering, the reaction does not proceed and the finished product cannot be produced. Carbon may remain.

このため、用途によっては焼結のための出発原料粉末そ
のものの低炭素化が望まれる。
For this reason, depending on the application, it is desired that the starting material powder itself for sintering has a low carbon content.

その低炭素化した微細鉄粉の製造方法として、さらに、
本願発明の発明者は特願昭63−58684号出願の明
細書において、粉砕した鉄粉を600℃以上に加熱する
ことで、自己脱炭反応を生じせしめ、これにより、炭素
と酸素を同時に除去する方法を開示した。
In addition, as a method for producing the low-carbon fine iron powder,
In the specification of Japanese Patent Application No. 63-58684, the inventor of the present invention states that by heating pulverized iron powder to a temperature of 600°C or higher, a self-decarburization reaction occurs, thereby simultaneously removing carbon and oxygen. disclosed a method to do so.

しかしながら、この方法において、自己脱炭反応を起こ
す際、処理温度が高いと、脱炭と共に粉末の焼結が起こ
り、このため粒度を元に戻す解砕工程が必要となる。ま
た、焼結を起こさないために処理温度を下げると反応は
進まず、炭素及び酸素の残留量が多くなり、その温度調
整はきわめて難しいという問題がある。
However, in this method, when the self-decarburization reaction occurs, if the processing temperature is high, decarburization and sintering of the powder occur, and therefore a crushing step to restore the particle size to the original size is required. Furthermore, if the processing temperature is lowered to prevent sintering, the reaction will not proceed, resulting in a large amount of residual carbon and oxygen, which poses a problem in that temperature control is extremely difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明において解決すべき課題は、上記急冷白銑化した
高炭素含有粉末から、高純度微細鉄粉を得るに当たって
、粉体の焼結が起こることなく脱炭と脱酸反応を効率良
く行うための手段を見出すことにある。
The problem to be solved in the present invention is to efficiently perform decarburization and deoxidation reactions without sintering the powder when obtaining high-purity fine iron powder from the high carbon-containing powder that has been quenched into white pig iron. The goal is to find a way to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、急冷白銑化した高炭素含有粉末から高純度微
細鉄粉を得るに当たっては、水素を含有する雰囲気で処
理することによって、粉体の焼結が生じ難い600℃以
下の温度にふける脱炭が可能であるという解明事項に基
づいて完成したもので、粒径を3〜16μm径(特に1
0μm以下)とした急冷白銑化処理して得た高炭素含有
鉄微粉末を600〜300 ℃の温度域において、水素
ガスを反応させて脱炭を行うことによって、低炭素含有
鉄微粉末を得るものである。
In the present invention, when obtaining high-purity fine iron powder from high carbon-containing powder that has been quenched into white pig iron, the process is carried out in an atmosphere containing hydrogen at a temperature of 600°C or lower, at which sintering of the powder is difficult to occur. It was completed based on the findings that decarburization is possible, and the particle size is 3 to 16 μm (especially 1
By decarburizing high-carbon fine iron powder obtained by rapid whitening treatment to reduce the particle diameter (to 0 μm or less) with hydrogen gas in a temperature range of 600 to 300 °C, low carbon-containing fine iron powder is produced. It's something you get.

〔作用〕[Effect]

本発明の処理対象粉末である急冷白銑化した高炭素含有
粉末は、表面に相当】の酸素被膜を有するものであるが
、処理雰囲気中に水素を含有すると、まず、水素が酸素
と結合し、反応生成物であるH2Oが除去されると共に
、炭素との結合性も良くなり低温にも拘わらず粉末の脱
炭を進行せしめるという作用を行うためである。
The powder to be treated in the present invention, which is a high carbon content powder that has been quenched into white pig iron, has an oxygen film on the surface of the powder, but if hydrogen is contained in the treatment atmosphere, the hydrogen will first combine with oxygen. This is because H2O, which is a reaction product, is removed, and the bonding property with carbon is also improved, so that decarburization of the powder proceeds despite the low temperature.

第1図は、平均粒径8μm、3%の炭素と7%の酸素を
もつ微細鉄粉を入れた燃焼ボートを所定の温度に設定さ
れた炉に挿入し、水素を1時間流したときの水素雰囲気
下における鉄粉の炭素及び酸素の挙動を示す。
Figure 1 shows the results when a combustion boat containing fine iron powder with an average particle size of 8 μm, 3% carbon and 7% oxygen was inserted into a furnace set at a predetermined temperature, and hydrogen was flowed for 1 hour. This figure shows the behavior of carbon and oxygen in iron powder under a hydrogen atmosphere.

同図を参照して、500℃以上の温度を維持した場合、
鉄粉中の炭素も酸素も何れも大幅に低減していることが
判る。
Referring to the same figure, if the temperature is maintained at 500°C or higher,
It can be seen that both carbon and oxygen in the iron powder are significantly reduced.

しかし、400℃では酸素は低減しているが、炭素は処
理前と変わらない。
However, at 400°C, although oxygen is reduced, carbon remains the same as before treatment.

このことは、水素雰囲気中では、粉末の酸素が成る程度
除去された後、炭素が除去される過程を経ることが判る
This shows that in a hydrogen atmosphere, after the oxygen in the powder is removed to a certain extent, carbon is removed.

第2図は、500 ℃処理時における上記処理粉末中の
炭素及び酸素のそれぞれの含有歪の時間的経緯を示す。
FIG. 2 shows the time history of the strain contained in each of carbon and oxygen in the treated powder during treatment at 500°C.

同図を参照して、平均粒径8μmの微細鉄粉については
処理時間60分を越えると炭素は急激に低減することが
判る。炭素が急激に減少する処理時間60分の時点で反
応ガスを分析したところ、CO、CO2は全く検出され
ず、CH,が検出された。
Referring to the figure, it can be seen that for fine iron powder with an average particle size of 8 μm, carbon content decreases rapidly when the treatment time exceeds 60 minutes. When the reaction gas was analyzed after 60 minutes of treatment time when carbon rapidly decreased, CO and CO2 were not detected at all, but CH was detected.

以上の事実から、 前半は、 H2+ [0] −820 後半は、  2F(、+[C]→CH。From the above facts, In the first half, H2+ [0] -820 The second half is 2F (, + [C] → CH.

の反応が進行するものと思われる。すなわち、鉄粉の持
つ炭素と酸素だけで起こる自己反応は、平均10μm程
度の微細粉では600℃以下ではほとんど起こらないが
、自己反応の起こらない温度でも水素ガスを流すことに
より脱炭反応が進行する。
It is thought that the reaction proceeds. In other words, the self-reaction that occurs only with the carbon and oxygen contained in iron powder hardly occurs at temperatures below 600°C with fine powder with an average size of about 10 μm, but even at temperatures where self-reaction does not occur, the decarburization reaction can proceed by flowing hydrogen gas. do.

この事実は、微細な鉄粉を焼結することなく、低酸素、
低炭素の高純度鉄粉にすることが可能であることを示し
ている。
This fact makes it possible to reduce oxygen and
This shows that it is possible to produce low-carbon, high-purity iron powder.

ところが、これらの反応の様子は粒径によって大きく変
わり、炭素及び酸素の挙動も変わってくる。すなわち、
3μm径以下(3〜5μm)程度であれば、比表面積が
大きいため酸素量が高く、脱酸に多量の水素を必要とし
、脱炭反応はなかなか起こらない。
However, the behavior of these reactions varies greatly depending on the particle size, and the behavior of carbon and oxygen also changes. That is,
If the diameter is about 3 μm or less (3 to 5 μm), the specific surface area is large, so the amount of oxygen is high, a large amount of hydrogen is required for deoxidation, and the decarburization reaction does not easily occur.

また、粒が大きくなると比表面積は小さくなり酸素量が
低く、脱酸はすぐに終わり、脱炭が始まるはずである。
Furthermore, as the grains become larger, the specific surface area becomes smaller and the amount of oxygen becomes lower, so deoxidation should end quickly and decarburization should begin.

しかし、反応面積が減少しているので、粒内の炭素が表
面に到る移動距離が大きく、炭素原子の拡散速度が反応
の律速となる。
However, since the reaction area is reduced, the distance that carbon within the grains travels to the surface is large, and the diffusion rate of carbon atoms becomes rate-determining for the reaction.

従って、第2図に示す例の通り、平均粒径15μm以上
の粒度のものでは実用範囲では脱酸の後の脱炭は早急に
進まない。
Therefore, as shown in the example shown in FIG. 2, if the average particle size is 15 μm or more, decarburization after deoxidation does not proceed quickly in a practical range.

本発明は、これらの知見に基づき完成したもので、粒径
を3〜16μm径(特に10μm以下)とした急冷白銑
化処理して得た高炭素含有量の微粉末を600〜300
℃の温度域において、水素ガスを反応させて脱炭を行い
、低炭素含有鉄微粉末を得るものである。
The present invention was completed based on these findings, and the fine powder with a high carbon content obtained by rapid whitening treatment with a particle size of 3 to 16 μm (particularly 10 μm or less) is
Decarburization is performed by reacting hydrogen gas in the temperature range of ℃ to obtain a low carbon-containing fine iron powder.

〔実施例〕〔Example〕

炭素含有量2.8%、酸素含有量7.2%、平均粒度7
,8μmの粉砕鉄粉3 kgを200 X270羅の容
器(深さ約30ml11)に入れ、その容器を雰囲気調
整可能の炉内で550℃で6時間加熱保持した。その間
水素ガスを20β/分流し続けた。熱処理後、バットか
ら出した鉄粉に焼結は起こらず、粒度は7.8μmで変
わらず、炭素含有ff10.11%、酸素0.4%であ
った。
Carbon content 2.8%, oxygen content 7.2%, average particle size 7
, 3 kg of pulverized iron powder of 8 μm was placed in a 200×270 container (depth: approximately 30 ml), and the container was heated and held at 550° C. for 6 hours in a furnace with an adjustable atmosphere. During that time, hydrogen gas was continued to flow at 20β/min. After the heat treatment, no sintering occurred in the iron powder taken out from the vat, the particle size remained unchanged at 7.8 μm, the carbon content ff was 10.11%, and the oxygen content was 0.4%.

〔発明の効果〕〔Effect of the invention〕

本発明によって、以下の効果を奏することができる。 The present invention can provide the following effects.

(1)  コストの安い粉砕法によって得られる微細鉄
粉の炭素及び酸素量を下げることができ、安価に且つ多
量に高純度の鉄微粉末を供給できる。
(1) The amount of carbon and oxygen in fine iron powder obtained by a low-cost pulverization method can be reduced, and high-purity fine iron powder can be supplied at low cost and in large quantities.

(2)従来、微細鉄粉の熱処理時に発生する焼結が起こ
らないため、解砕工程は不要となり、製造行程が簡単に
なり、粉塵発生、爆発等の配慮も不要となる。
(2) Since sintering, which conventionally occurs during heat treatment of fine iron powder, does not occur, a crushing process is not necessary, the manufacturing process is simplified, and there is no need to consider dust generation, explosion, etc.

(3)  破砕工程によって冷間加工を受けて生じた結
晶歪を残したまま脱炭できるので、活性に富んだ粉体と
なる。
(3) The crushing process allows decarburization while retaining the crystal distortion caused by cold working, resulting in a highly active powder.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明の基礎となる事象の説明図である。 処理した時の炭素及び酸素の量を示す。 第2図には水素富囲気中にある高炭素、高酸素微細鉄粉
の炭素量の時間変化を示す。 特許出願人 吉川工業 株式会社 第1図は高炭素1 高酸素微細鉄粉を1時間水素代  
理  人  小  堀 益 (ほか2名) 第 曹 処11温度(0C) 手続補正書 1゜ 2゜ 3゜ 事件の表示 昭和63年 特  許  願 発明の名称 低炭素鉄粉の製造方法 補正をする者 事件との関係   特許出願人 第245576号 ヨシ  カワ  コラ  ギョウ 氏名 吉川工業株式会社 4゜
The attached figures are explanatory diagrams of the events underlying the present invention. Indicates the amount of carbon and oxygen during treatment. Figure 2 shows the time change in the carbon content of high-carbon, high-oxygen fine iron powder in a hydrogen-rich atmosphere. Patent applicant Yoshikawa Kogyo Co., Ltd. Figure 1 shows high carbon 1 high oxygen fine iron powder for 1 hour with hydrogen
Masaru Kohori (and 2 others) No. 11 Temperature (0C) Procedural amendment 1゜2゜3゜Indication of the case 1986 Patent Name of the claimed invention Process for producing low carbon iron powder Person who makes amendments Relationship to the incident Patent applicant No. 245576 Yoshi Kawa Kora Gyo Name Yoshikawa Kogyo Co., Ltd. 4゜

Claims (1)

【特許請求の範囲】[Claims] 1、急冷白銑化した炭素含有量2%以上の高炭素鉄を平
均粒径15μm以下に粉砕し、600〜300℃の温度
域で炭素を水素ガスと反応させ、除去することを特徴と
する低炭素鉄粉の製造方法。
1. It is characterized by pulverizing high carbon iron with a carbon content of 2% or more that has been quenched into white pig iron to an average particle size of 15 μm or less, and removing carbon by reacting with hydrogen gas in a temperature range of 600 to 300°C. A method for producing low carbon iron powder.
JP63245576A 1988-09-28 1988-09-28 Manufacture of low carbon iron powder Pending JPH0293001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245576A JPH0293001A (en) 1988-09-28 1988-09-28 Manufacture of low carbon iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245576A JPH0293001A (en) 1988-09-28 1988-09-28 Manufacture of low carbon iron powder

Publications (1)

Publication Number Publication Date
JPH0293001A true JPH0293001A (en) 1990-04-03

Family

ID=17135779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245576A Pending JPH0293001A (en) 1988-09-28 1988-09-28 Manufacture of low carbon iron powder

Country Status (1)

Country Link
JP (1) JPH0293001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533996B2 (en) 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533996B2 (en) 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing
US7018584B2 (en) 2001-02-02 2006-03-28 The Boc Group, Inc. Method and apparatus for metal processing

Similar Documents

Publication Publication Date Title
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
US2342799A (en) Process of manufacturing shaped bodies from iron powders
CN109609864B (en) High-nitrogen nickel-free stainless steel powder and preparation method thereof
JPH03122205A (en) Manufacture of ti powder
JPH0293001A (en) Manufacture of low carbon iron powder
JPH0254733A (en) Manufacture of ti sintered material
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
CN108500276A (en) The method that metal oxide manufactures part
US2315302A (en) Process of manufacturing shaped bodies from iron powders
JPH05271852A (en) Production of rare earth magnet alloy
US3752712A (en) Iron copper prealloys
JPS6248747B2 (en)
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPS6389636A (en) Manufacture of ti-alloy product
US3066022A (en) Process for the manufacture of pulverized iron
JPH0257613A (en) Production of sintered metallic material and its raw powder
US2295334A (en) Metallurgy of ferrous metals
KR970002092B1 (en) Method of manufacturing iron powder
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
US4415527A (en) Desulfurization process for ferrous powder
JPH0257607A (en) Injection-molding powder and production of metallic sintered body
JPH03173702A (en) Production of sintered body
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH01275702A (en) Production of sintered powder material
JPH06248306A (en) Production of hydrogen storage alloy powder