JPH0292842A - Production of granulated substance for inorganic glass form - Google Patents

Production of granulated substance for inorganic glass form

Info

Publication number
JPH0292842A
JPH0292842A JP24269288A JP24269288A JPH0292842A JP H0292842 A JPH0292842 A JP H0292842A JP 24269288 A JP24269288 A JP 24269288A JP 24269288 A JP24269288 A JP 24269288A JP H0292842 A JPH0292842 A JP H0292842A
Authority
JP
Japan
Prior art keywords
weight
particle size
parts
granules
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24269288A
Other languages
Japanese (ja)
Inventor
Tsuneo Murata
村田 恒男
Kunio Osada
邦男 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24269288A priority Critical patent/JPH0292842A/en
Publication of JPH0292842A publication Critical patent/JPH0292842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable use of a granulated substance as a raw material for glass foams without pulverizing the above-mentioned substance and reduce dispersion of bulk density and vacuum water absorption coefficient by adding a foaming agent and aqueous solution of an alkali to a natural glassy mineral having a specific particle diameter and granulating the resultant mixture while reacting the mixture. CONSTITUTION:A powder containing (A) 10 pts.wt. natural glassy mineral (e.g., obsidian, perlite or silas, having 5-12mu average particle diameter and containing <5% particles having >20mu particle diameter) and (B) 0.1-5.0 pts.wt. foaming agent (e.g., carbonate nitrate or carbon) is mixed with a solution consisting of 15-20 pts.wt. alkaline metal hydroxide, such as NaOH or KOH, and 7-15 pts.wt. water and the resultant mixture is granulated (to provide preferably about 2mm grain diameter) while being reacted to afford a granulated substance suitable for producing an inorganic glass foam suitable as building materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築材料として好適な無機ガラス発泡体の製造
に適した造粒物の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing granules suitable for producing inorganic glass foams suitable as building materials.

〔従  来  の  技  術〕[Traditional techniques]

従来無機ガラス発泡体はよく知られているところであり
、低密度の発泡体についても各種製造されている。
Conventionally, inorganic glass foams are well known, and various low-density foams are also manufactured.

天然ガラス質鉱物から成る無機ガラス発泡体は一般にそ
の化学成分のため(Aj!zOs含有量大)軟化温度が
高く発泡体を得るには1000°C以上の高温でなけれ
ば熔融せず、低密度で微細気泡径を有する発泡体を得る
ことは困難であった。
Inorganic glass foams made from natural glassy minerals generally have a high softening temperature due to their chemical composition (high Aj!zOs content), and cannot be melted unless the foam is obtained at a high temperature of 1000°C or higher, resulting in a low density. It was difficult to obtain a foam with a fine cell size.

そのため、天然ガラスにアルカリ成分を添加し変成した
後、加熱発泡させる方法(特開昭60−36352号公
報、特開昭60−77145号公報)が知られている。
Therefore, a method is known in which natural glass is denatured by adding an alkali component and then heated and foamed (Japanese Unexamined Patent Publications Nos. 60-36352 and 60-77145).

従来の発泡体の製造においては、天然ガラスにアルカリ
成分を添加し変成するに際し、溶媒である水を多量に用
い、混合混練しスラリーあるいはペースト状としたのち
100℃以上の温度下乾燥を行い、固化した後、粉砕し
たものを発泡体製造原料とし、使用されていた。
In conventional foam production, when adding an alkaline component to natural glass to modify it, a large amount of water as a solvent is used, the mixture is mixed and kneaded to form a slurry or paste, and then dried at a temperature of 100°C or higher. After solidification, it was crushed and used as a raw material for producing foam.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の方法では、溶媒である水を多量に用い
天然ガラスとアルカリ成分を混合混練しスラリーあるい
はペースト状としたのち乾燥中に反応させるため、反応
を制御することが難しく、乾燥条件、雰囲気の違い、乾
燥されるペースト状あるいはスラリー状の中央部、端部
の違いにより反応に違いがみられた。具体的には、中央
部が長時間水分が残留するため反応が進みすぎ、ゼオラ
イト質の結晶が生成し易く(参考 United 5t
ates Patent 3+114+603) 、結
晶を生成したときは加熱発泡後の物性を低下させるため
(高比重化が生じるため)、結晶の生成部、未生成部に
より、得られた原料の加熱発泡後の無機ガラス発泡体物
性にバラツキを生じていた。
However, in the conventional method, natural glass and alkaline components are mixed and kneaded using a large amount of water as a solvent to form a slurry or paste, and then reacted during drying, making it difficult to control the reaction and depending on the drying conditions and atmosphere. Differences in the reaction were observed depending on the difference in the amount of drying, and the difference in the center and edges of the paste or slurry that was dried. Specifically, moisture remains in the center for a long time, so the reaction progresses too much and zeolite crystals are likely to form (Reference: United 5t
ates Patent 3+114+603), when crystals are generated, the physical properties after heating and foaming are reduced (because the specific gravity becomes high), so the inorganic glass after heating and foaming of the obtained raw material is There were variations in the physical properties of the foam.

また従来の製造法では、スラリーあるいはペースト状物
が、乾燥後、固化一体止し、その固化一体止したものを
そのまま加熱発泡させると中央部などに粗大な気泡が生
じ、外観上好ましくなく、乾燥して固化一体止したもの
を細かく粉砕する必要があった。
In addition, in conventional manufacturing methods, slurry or paste-like materials do not completely solidify after drying, and when the solidified product is heated and foamed as it is, coarse air bubbles are formed in the center, which is unfavorable in appearance, and dry It was necessary to finely crush the solidified material.

しかし、このように粉砕するという手間をかけても、得
られた原料を加熱発泡させた後の無機ガラス発泡体の嵩
密度や減圧吸水率などの物性にバラツキが残っており、
気泡も不均一なものであった。
However, even with the effort of pulverizing in this way, there are still variations in physical properties such as bulk density and vacuum water absorption of the inorganic glass foam after heating and foaming the obtained raw material.
The bubbles were also non-uniform.

本発明は、上記問題点について鋭意研究の結果、かかる
問題点を解決する方法を見出し本発明に至った。
As a result of intensive research into the above-mentioned problems, the present invention has found a method for solving the problems and has led to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は平均粒径が5μないし12μであり、
なおかつ粒径20μを越えるものが5%以下である天然
ガラス質鉱物100重量部に対して少なくとも発泡剤0
.1〜5.0重量部含有してなる粉体と、アルカリ金属
水酸化物15〜25重量部、水7〜15重量部からなる
溶液とを混合、反応させながら造粒することを特徴とす
る無機ガラス発泡体用造粒物の製法である。
That is, the present invention has an average particle size of 5 μ to 12 μ,
Furthermore, at least 0 blowing agent is added to 100 parts by weight of natural glassy minerals in which 5% or less of particles with a particle size exceeding 20μ are present.
.. A powder containing 1 to 5.0 parts by weight is mixed with a solution containing 15 to 25 parts by weight of an alkali metal hydroxide and 7 to 15 parts by weight of water and granulated while reacting. This is a method for producing granules for inorganic glass foam.

本発明でいう天然ガラス質鉱物とは、。黒曜石、抗火石
、真珠岩、松脂岩、シラス等であるが、一般に広く使用
されている板ガラスや瓶ガラスおよび、その粉末が主体
の廃ガラスを用いることも出来る。
What is the natural glassy mineral referred to in the present invention? Obsidian, anti-firestone, pearlite, pine rock, shirasu, etc. can also be used, but plate glass and bottle glass, which are generally widely used, and waste glass mainly composed of powder thereof can also be used.

発泡剤としては、炭酸塩、、硝酸塩、カーボンや炭化珪
素等で高温で気体を発生する粉末状の物質を用いる。そ
の他の添加剤、例えば硼素化合物等を適宜加えても本発
明は実施できる。発泡剤の量は天然ガラス質鉱物100
重量部に対して0.1〜5.0重量部とする。この発泡
剤の量から外れた場合、得られた造粒物の加熱発泡によ
り得られた無機ガラス発泡体の物性は低下する(高比重
化が生じるため)。
As the blowing agent, a powdery substance such as carbonate, nitrate, carbon, or silicon carbide that generates gas at high temperature is used. The present invention can also be carried out by appropriately adding other additives such as boron compounds. The amount of foaming agent is natural glassy mineral 100%
The amount is 0.1 to 5.0 parts by weight. If the amount of the blowing agent deviates from this range, the physical properties of the inorganic glass foam obtained by heating and foaming the obtained granules will deteriorate (because the specific gravity will increase).

アルカリ金属水酸化物としては、NaOHまたはKOH
が好適である。
As the alkali metal hydroxide, NaOH or KOH
is suitable.

本発明の方法で重要なことは、天然ガラス買鉱物を主と
する粉体とアルカリ金属水酸化物溶液とを混合、反応さ
せながら造粒することにある。混合中にガラス中のSi
Oオとアルカリ金属水酸化物とが反応し、−aによく知
られている水ガラス(Sing・2 Name)状物質
を生成し、その粘着性により粉体同志が付着しあい造粒
が可能となる。本発明者は、この造粒条件と得られる無
機ガラス発泡体の物性とに相関があることを見出した。
What is important in the method of the present invention is that the powder mainly containing natural glass minerals is mixed with an alkali metal hydroxide solution and granulated while being reacted. Si in the glass during mixing
The reaction between O and the alkali metal hydroxide produces a water glass (Sing・2 Name)-like substance, which is well known in -a, and its stickiness allows the powders to adhere to each other, making granulation possible. Become. The present inventor found that there is a correlation between the granulation conditions and the physical properties of the resulting inorganic glass foam.

即ち、粉体とアルカリ金属水酸化物溶液との混合開始時
から造粒物の粒径が所定のサイズになり造粒を停止する
までの時間(以下、造粒時間という。)は天然ガラス賞
鉱物の粒度分布により変化し、天然ガラス譬鉱物の粒度
分布がシャープであれば造粒時間はある程度に長くなり
、粒度分布がブロードであれば造粒時間が短くなること
を見出した。そして、造粒時間がある程度長いときは、
多くの場合5分をこえるときは、造粒される前に天然ガ
ラス質鉱物とアルカリ金属水酸化物溶液との間に均一分
散化が進み、ゼオライト質結晶の生成を制御されて、そ
の状態で所望の大きさ(多くの場合2a11程度)の造
粒物となることを本発明者は見出した。即ち、本発明に
用いる天然ガラス質鉱物は平均粒径が5μないし12μ
であり、なおかつ粒径20μを越えるものが5%以下で
ある。この粒度から外れた場合、例えば平均粒径が5μ
未満の時には粉体とアルカリ金属水酸化物溶液の反応性
が非常に高くなるため、粉体とアルカリ金属水酸化物が
接触した瞬間から急激な反応が起こり、数秒から数十秒
の間に粒径IO〜20閣の粒となってしまうので、造粒
物の粒径制御は困難になる。また、平均粒径が12μよ
りも大きい場合には、粒径の大きいガラス質鉱物の割合
が多くなってくるので、粉体とアルカリ金属水酸化物の
反応が進まず、得られた造粒物を加熱発泡して得たガラ
ス発泡体の嵩密度が非常に高くなる場合がある。
In other words, the time from the start of mixing the powder and the alkali metal hydroxide solution until the particle size of the granulated product reaches a predetermined size and granulation is stopped (hereinafter referred to as granulation time) is the time required for the Natural Glass Award. It has been found that the granulation time varies depending on the particle size distribution of the mineral, and if the particle size distribution of the natural glass mineral is sharp, the granulation time will be long to some extent, and if the particle size distribution is broad, the granulation time will be shortened. When the granulation time is long to a certain extent,
In most cases, when the time exceeds 5 minutes, homogeneous dispersion between the natural glassy mineral and the alkali metal hydroxide solution progresses before granulation, and the formation of zeolite crystals is controlled, and the process continues in that state. The present inventors have discovered that granules of a desired size (about 2a11 in most cases) can be obtained. That is, the natural glassy mineral used in the present invention has an average particle size of 5μ to 12μ.
Moreover, less than 5% of the particles have a particle size exceeding 20μ. If the particle size deviates from this, for example, the average particle size is 5μ.
When it is less than Since the particles have a diameter of IO to 20 mm, it becomes difficult to control the particle size of the granulated product. In addition, when the average particle size is larger than 12μ, the proportion of glassy minerals with large particle sizes increases, so the reaction between the powder and alkali metal hydroxide does not proceed, and the resulting granules are The bulk density of the glass foam obtained by heating and foaming may be extremely high.

一方、平均粒径が5μ〜12μであっても、粒径20μ
を越えるものが5%よりも多い場合、粉体とアルカリ金
属水酸化物の均一分散に充分な造粒時間が得られないの
で、造粒物を加熱発泡して得られるガラス発泡体の嵩密
度及び減圧吸水率のバラツキは大きくなり、かつ減圧吸
水率の値も大となる。また、粗大気泡の発生により外観
は粗悪なものになる。
On the other hand, even if the average particle size is 5μ to 12μ, the particle size is 20μ
If the amount exceeds 5%, sufficient granulation time will not be obtained for uniform dispersion of the powder and alkali metal hydroxide, so the bulk density of the glass foam obtained by heating and foaming the granules will decrease. The variation in the vacuum water absorption rate becomes large, and the value of the vacuum water absorption rate also becomes large. In addition, the appearance becomes poor due to the generation of coarse bubbles.

アルカリ金属水酸化物の水溶液の組成は、天然ガラス質
鉱物100重量部に対し、アルカリ金属水酸化物15〜
25重量部、水7〜15重量部が好ましい。
The composition of the aqueous solution of alkali metal hydroxide is 15 to 15 parts by weight of alkali metal hydroxide per 100 parts by weight of natural glassy mineral.
25 parts by weight and 7 to 15 parts by weight of water are preferred.

アルカリ金属水酸化物15重量部未満では、加熱発泡中
の発泡倍率が低く、低比重のガラス発泡体を得にくい、
また25重量部をこえると、低比重化するものの未反応
のアルカリ金属水酸化物が残りやすく、得られたガラス
発泡体の耐水性、耐久性が減じ、好ましくない。
If the alkali metal hydroxide is less than 15 parts by weight, the expansion ratio during heat foaming will be low and it will be difficult to obtain a glass foam with a low specific gravity.
Moreover, if it exceeds 25 parts by weight, although the specific gravity is lowered, unreacted alkali metal hydroxide tends to remain, which reduces the water resistance and durability of the obtained glass foam, which is not preferable.

また、水7重量部未満では、アルカリ金属水酸化物を溶
解させる際に高温を要し、特別の装置等が必要であり好
ましくない、水15重量部をこえると造粒物を得にくく
、スラリー状となり好ましくない。
In addition, if the water content is less than 7 parts by weight, high temperatures are required to dissolve the alkali metal hydroxide and special equipment is required, which is undesirable. This is not desirable.

該天然ガラス質鉱物を主体とする粉体とアルカリ金属水
酸化物の水溶液を混合、反応させながら造粒させる機械
装置としては、種々の混合機、造粒機、例えば、転勤回
転型造粒機、高速回転羽根形混合造粒機等が使用できる
Mechanical devices for mixing and reacting the powder mainly composed of the natural glassy mineral and the aqueous solution of alkali metal hydroxide to form granules include various mixers and granulators, such as transfer rotary granulators. , a high-speed rotating vane type mixing granulator, etc. can be used.

得られる造粒物粒径は、造粒時間、方法により任意制御
が可能であるが、加熱発泡後のガラス発泡体の気泡を均
一にするために5rm以下、特に好ましくは2IIII
l程度とするのが好ましい。
The particle size of the obtained granules can be arbitrarily controlled by the granulation time and method, but in order to make the bubbles of the glass foam uniform after heating and foaming, it is preferably 5rm or less, particularly preferably 2III
It is preferable to set it to about 1.

また得られた造粒物は、そのまま加熱発泡に用いてもよ
いが、反応をさらにすすめるために60〜200°Cの
温度域で乾燥してもよい。
Further, the obtained granules may be used as they are for heating and foaming, but may be dried in a temperature range of 60 to 200°C to further promote the reaction.

加熱発泡させる温度は含有アルカリ金属水酸化物量によ
り設定できるが、650〜850°Cが好ましい。
The temperature for heating and foaming can be set depending on the amount of alkali metal hydroxide contained, but is preferably 650 to 850°C.

造粒終了後、ガラス発泡成形体を得るには、ステンレス
製等の耐熱性型枠中に成形体の密度にあわせて底部に均
一に造粒物を配置し、加熱する方法、あるいは得られた
造粒物同志の粘着性を利用し、相互に付着させ、任意の
形状に予め成形し、加熱発泡させる方法により、任意形
状のガラス発泡成形体を得ることができる。
After granulation, to obtain a glass foam molded product, the granules can be placed uniformly at the bottom of a heat-resistant mold made of stainless steel or the like according to the density of the molded product, and heated. A glass foam molded article having an arbitrary shape can be obtained by making use of the adhesive properties of the granules to make them adhere to each other, pre-forming them into an arbitrary shape, and heating and foaming them.

〔実 施 例〕〔Example〕

以下、本発明の製造方法を実施例により、詳細に説明す
る。
Hereinafter, the manufacturing method of the present invention will be explained in detail with reference to Examples.

本発明でいう平均粒径、嵩密度、減圧吸水率は下記の方
法によるものである。
The average particle diameter, bulk density, and vacuum water absorption rate as used in the present invention are determined by the following method.

a) 平均粒径 水を分散媒体として使用した自然および遠心沈降法で光
透過測定方式で求めたメデイアン径のことである。
a) Average particle size This refers to the median diameter determined by a light transmission measurement method using natural and centrifugal sedimentation methods using water as a dispersion medium.

b) 嵩密度 発泡体を一辺約5C1!1の立方体形状に切り出し、そ
の重量((至)と寸法(縦、横、高さ)を測定し、次式
により算出する。
b) Cut the bulk density foam into a cube shape of about 5C1!1 on a side, measure its weight (to) and dimensions (length, width, height), and calculate it using the following formula.

C) 減圧吸水率 嵩密度測定と同様に一辺約5CI11の立方体の試料の
重量と寸法を測定後、760mmHgの減圧下で、60
分間脱気した後、同減圧下で60分間浸水し吸水させる
。その後試料を取り出し表面付着水を拭き取った後、重
量を測定し、次式により算出する。
C) Reduced pressure water absorption After measuring the weight and dimensions of a cubic sample of about 5 CI11 on each side in the same way as bulk density measurement, under reduced pressure of 760 mmHg,
After degassing for a minute, it is immersed in water for 60 minutes under the same reduced pressure to absorb water. Thereafter, the sample is taken out, the water adhering to the surface is wiped off, the weight is measured, and the weight is calculated using the following formula.

試料中の空間容積(cl) =〔縦(cn+) X横(am) X高さ(cm))試
料の吸水部重量(g) 試料の真密度(g/cm”) 減圧吸水率(Vo1%) 実施例1 平均粒径8.8μの黒曜石(和田峠産)を分級し第1図
中、■に示すシャープな粒度分布を持つ黒曜石粉末を得
た。この黒曜石粉末の平均粒径は6.1μであり、粒径
20μを越えるものは0%であった。こめ黒曜石100
重量部、CaCO31,5重量部、天水硼砂3.5重量
部からなる混合物と水10重量部にNaOH20重量部
を溶かした溶液とを転勤回転型造粒機(日本アイリッヒ
製)により混合、反応させなから造粒物粒径が約2鑓に
なるまで造粒した。この造粒を10回行なったところ造
粒時間は7〜9分の範囲にあった。
Space volume in the sample (cl) = [Length (cn+) ) Example 1 Obsidian (from Wada Pass) with an average particle size of 8.8μ was classified to obtain obsidian powder with a sharp particle size distribution shown in ■ in Figure 1.The average particle size of this obsidian powder was 6.8μ. 1μ, and 0% of grains exceeding 20μ.Kome obsidian 100
A mixture consisting of 1.5 parts by weight, 31.5 parts by weight of CaCO, and 3.5 parts by weight of rainwater borax and a solution of 20 parts by weight of NaOH dissolved in 10 parts by weight of water were mixed and reacted using a transfer rotary granulator (manufactured by Nippon Eirich). The granules were granulated until the particle size of the granulated product became approximately 2 mm. When this granulation was performed 10 times, the granulation time was in the range of 7 to 9 minutes.

造粒物は200°Cで2時間乾燥した。The granules were dried at 200°C for 2 hours.

得られた10回分の造粒物をそれぞれアルミ箔製容器に
300g入れ、ガス炉にて735°Cまで2時間で昇温
し、保持10分間加熱したのち、充分に徐冷して取り出
し、10個の無機ガラス発泡体を得た。
300 g of the obtained 10 batches of granulated material was placed in an aluminum foil container, heated to 735°C in a gas furnace for 2 hours, held for 10 minutes, cooled sufficiently, taken out, and heated to 735°C in a gas furnace for 2 hours. An inorganic glass foam was obtained.

この10個の発泡体の嵩密度は0.18〜0.20、減
圧吸水率は3.5〜4.4Vo1%であり、バラツキは
非常に小さかった。気泡サイズは最大で2圓であり外観
上きわめて良好であった。
The bulk density of these 10 foams was 0.18 to 0.20, and the vacuum water absorption rate was 3.5 to 4.4 Vo1%, and the variation was very small. The maximum bubble size was 2 circles, and the appearance was very good.

実施例2 実施例1に用いた黒曜石100重量部、CaC0゜1.
0重量部からなる混合物と水12重量部にNaOH23
重量部を溶かした溶液とを、実施例1と同一の造粒機に
より造粒物粒径が約2鵬になるまで造粒した。造粒時間
は6分であった。造粒物は200℃で2時間乾燥した。
Example 2 100 parts by weight of obsidian used in Example 1, CaC0°1.
0 parts by weight of NaOH23 to 12 parts by weight of water.
A solution in which part by weight was dissolved was granulated using the same granulator as in Example 1 until the particle size of the granulated product became about 2 mm. Granulation time was 6 minutes. The granules were dried at 200°C for 2 hours.

得られた造粒物を実施例1と同一条件で加熱発泡させ、
無機ガラス発泡体を得た。
The obtained granules were heated and foamed under the same conditions as in Example 1,
An inorganic glass foam was obtained.

この発泡体の嵩密度は0.17 、減圧吸水率は6、 
I Vo1%であり、気泡サイズは最大で4mmであっ
た。
The bulk density of this foam is 0.17, the vacuum water absorption rate is 6,
The I Vo was 1%, and the maximum bubble size was 4 mm.

実施例3 実施例1に用いた黒曜石100重量部、CaCO536
0重量部、天水硼砂3.5重量部からなる混合物と水1
0重量部にNaOH18重量部を溶かした溶液とを、実
施例1と同一の造粒機により造粒物粒径が約2闘になる
まで造粒した。造粒時間は8分であった。造粒物は20
0°Cで2時間乾燥した。
Example 3 100 parts by weight of obsidian used in Example 1, CaCO536
A mixture consisting of 0 parts by weight, 3.5 parts by weight of rainwater borax, and 1 part by weight of water.
A solution prepared by dissolving 18 parts by weight of NaOH in 0 parts by weight was granulated using the same granulator as in Example 1 until the particle size of the granules became about 2 mm. Granulation time was 8 minutes. Granules are 20
It was dried at 0°C for 2 hours.

得られた造粒物を実施例1と同一条件で加熱発泡させ、
無機ガラス発泡体を得た。
The obtained granules were heated and foamed under the same conditions as in Example 1,
An inorganic glass foam was obtained.

この発泡体の嵩密度は0.20、減圧吸水率は5.3 
Vo1%であり、気泡サイズは最大で3mmであり良好
であった。
The bulk density of this foam is 0.20, and the vacuum water absorption rate is 5.3.
The Vo was 1%, and the bubble size was 3 mm at maximum, which was good.

実施例4 第1図中、■に示す粒度分布を持つ黒曜石粉末(和田峠
産、平均粒径7.2μ、粒径20μを越えるものは4%
)を用い、実施例1と同一の組成、同一の造粒機により
造粒物粒径が約2mmになるまで造粒した。この造粒を
10回行なったところ造粒時間は6〜8分の範囲であっ
た。
Example 4 Obsidian powder with particle size distribution shown in ■ in Figure 1 (produced from Wada Pass, average particle size 7.2μ, 4% with particle size exceeding 20μ)
), the composition was the same as in Example 1, and the same granulator was used to granulate the granules until the particle size of the granules was about 2 mm. When this granulation was performed 10 times, the granulation time was in the range of 6 to 8 minutes.

造粒物は200°Cで2時間乾燥した。The granules were dried at 200°C for 2 hours.

得られた10回分の造粒物を実施例1と同一条件で加熱
発泡させ、10個の無機ガラス発泡体を得た。
The obtained granules for 10 times were heated and foamed under the same conditions as in Example 1 to obtain 10 inorganic glass foams.

この10個の発泡体の嵩密度は0.18〜0.21、減
圧吸水率は4.1〜5.2Vo1%であり、気泡サイズ
は最大で3胴であり良好であった。
The bulk density of these 10 foams was 0.18 to 0.21, the vacuum water absorption rate was 4.1 to 5.2 Vo1%, and the cell size was 3 at most, which was good.

実施例5 実施例1で得られた10回分の造粒物を乾燥す−ること
なく、造粒物自体の粘着力により、それぞれ5 C1l
 X 6 cm X 3 cmの六面体に成形したもの
を実施例1と同一条件で加熱発泡させ、10個の無機ガ
ラス発泡体を得た。
Example 5 Without drying the granules obtained in Example 1 for 10 times, the adhesive strength of the granules themselves made 5 C1l each.
The hexahedron of 6 cm x 3 cm was heated and foamed under the same conditions as in Example 1 to obtain 10 inorganic glass foams.

この10個の発泡体の嵩密度は0.17〜0.20、減
圧吸水率は4.0〜5.7 Vo1%であり、気泡サイ
ズは最大で3圓であり良好であった。
The bulk density of these 10 foams was 0.17 to 0.20, the vacuum water absorption rate was 4.0 to 5.7 Vo1%, and the cell size was 3 circles at maximum, which was good.

比較例1 平均粒径8.8μの黒曜石(和田峠産)を分級し第1図
中、■に示す粒度分布を持つ黒曜石粉末を得た。この黒
曜石粉末の平均粒径は8.4μであり、粒径20μを越
えるものは10.2%であった。この黒曜石粉末を用い
、実施例1と同一の組成、同一の造粒機により造粒物粒
径が約2閣になるまで造粒した。この造粒を10回行な
ったところ造粒時間は2〜5分の範囲であった。造粒物
は200°Cで2時間乾燥した。
Comparative Example 1 Obsidian (from Wada Pass) with an average particle size of 8.8 μm was classified to obtain obsidian powder having a particle size distribution shown in ■ in FIG. The average particle size of this obsidian powder was 8.4μ, and 10.2% had a particle size exceeding 20μ. Using this obsidian powder, it was granulated using the same composition and the same granulator as in Example 1 until the particle size of the granulated product was about 2 mm. When this granulation was performed 10 times, the granulation time was in the range of 2 to 5 minutes. The granules were dried at 200°C for 2 hours.

得られた10回分の造粒物を実施例1と同一条件で加熱
発泡させ、10個の無機ガラス発泡体を得た。
The obtained granules for 10 times were heated and foamed under the same conditions as in Example 1 to obtain 10 inorganic glass foams.

この10個の発泡体の嵩密度は0.20〜0.24、減
圧吸水率は5,0〜8.5νo1%であり、嵩密度が高
目になった。気泡サイズは最大で4胴であった。
The bulk density of these 10 foams was 0.20 to 0.24, and the vacuum water absorption rate was 5.0 to 8.5 νo1%, indicating that the bulk density was high. The maximum bubble size was 4 bubbles.

比較例2 第゛1図中、■に示す粒度分布を持つ黒曜石粉末(和田
峠産、平均粒径8.8μ、粒径20μを越えるものは2
4%)を用い、実施例1と同一の組成、同一の造粒機に
より造粒物粒径が約2鴫になるまで造粒した。この造粒
を10回行なったところ造粒時間は1〜3分の範囲であ
った。
Comparative Example 2 In Figure 1, obsidian powder with the particle size distribution shown in
4%), the composition was the same as in Example 1, and the same granulator was used to granulate the granules until the particle size of the granules was approximately 2 mm. When this granulation was performed 10 times, the granulation time was in the range of 1 to 3 minutes.

造粒物は200°Cで2時間乾燥した。The granules were dried at 200°C for 2 hours.

得られた10回分の造粒物を実施例1と同一条件で加熱
発泡させ、10個の無機ガラス発泡体を得た。
The obtained granules for 10 times were heated and foamed under the same conditions as in Example 1 to obtain 10 inorganic glass foams.

この10個の発泡体の高密度は0.15〜0.24まで
バラツキ、減圧吸水率は10.21〜18.1%と大き
かった。また、気泡サイズは最大8nm+まであり、外
観は粗悪であった。
The high densities of these 10 foams varied from 0.15 to 0.24, and the vacuum water absorption rates were as large as 10.21 to 18.1%. Moreover, the bubble size was up to 8 nm+, and the appearance was poor.

比較例3 第1図中、■に示すブロードな粒度分布を持つ平均粒径
4.8μ黒曜石粉末(和田峠産、粒径20μを越えるも
のは11%)を用い、実施例1と同一の組成、同一の造
粒機により造粒を行なったところ、造粒開始後約30秒
で粒径10〜20mmとなってしまい、造粒物の粒径の
制御は困難であった。
Comparative Example 3 Using obsidian powder with an average particle size of 4.8 μm and having a broad particle size distribution shown in ■ in Figure 1 (produced from Wada Pass, 11% of particles having a particle size exceeding 20 μm), the same composition as in Example 1 was used. When granulation was performed using the same granulator, the particle size became 10 to 20 mm approximately 30 seconds after the start of granulation, making it difficult to control the particle size of the granulated product.

比較例4 第1図中、■に示す粒度分布を持つ平均粒径16.2μ
黒曜石粉末(和田峠産、粒径20μを越えるものは46
%)を用い、実施例1と同一の組成、同一の造粒機によ
り造粒物粒径が約2閤になるまで造粒した。造粒時間は
3分であった。造粒物は200 ’Cで2時間乾燥した
Comparative Example 4 Average particle size 16.2μ with particle size distribution shown in ■ in Figure 1
Obsidian powder (from Wada Pass, 46 for those with particle size over 20μ)
%), the composition was the same as in Example 1, and the same granulator was used to granulate the granules until the particle size of the granules became about 2 koi. Granulation time was 3 minutes. The granules were dried at 200'C for 2 hours.

得られた造粒物を実施例1と同一条件で加熱発泡させ、
無機ガラス発泡体を得た。
The obtained granules were heated and foamed under the same conditions as in Example 1,
An inorganic glass foam was obtained.

この発泡体の嵩密度は0.37、減圧吸水率は10、5
%であった。
The bulk density of this foam is 0.37, and the vacuum water absorption rate is 10.5.
%Met.

比較例5 平均粒径8.8μの黒曜石粉末(和田峠産)100重量
部、CaC0,1,5重量部、天水硼砂3.5重量部か
らなる混合物と水35重量部にNaOH20重量部を溶
かした溶液とを万能撹拌機により混合した。混合物はペ
ースト状となり、バット上に移し、厚さ約2mとし20
0″Cで5時間乾燥した。
Comparative Example 5 20 parts by weight of NaOH was dissolved in 35 parts by weight of water and a mixture consisting of 100 parts by weight of obsidian powder (produced in Wada Pass) with an average particle size of 8.8 μ, 0.1.5 parts by weight of CaC, and 3.5 parts by weight of rainwater borax. The solution was mixed using a universal stirrer. The mixture becomes a paste and is transferred onto a vat to a thickness of about 2m.
Dry at 0''C for 5 hours.

得られた固化板状体を細かく粉砕して型枠に入れて実施
例1と同一条件で加熱発泡させたところ、気泡が著しく
不均一であり、気泡サイズは最大6IIII11まであ
り外観は粗悪であった。
When the obtained solidified plate-like material was finely pulverized, placed in a mold, and heated and foamed under the same conditions as in Example 1, the cells were found to be extremely uneven, with a maximum cell size of 6III11, and the appearance was poor. Ta.

〔発明の効果〕〔Effect of the invention〕

本発明方法に従えば、得られた造粒物を粉砕することな
く、そのまま所定の形状にして加熱発泡させる原料とし
て使用できるとともに、その造粒径は2龍程度と使用し
易い大きさとなり、その上に、得られた造粒物を所定の
形にして加熱発泡させて得られた無機ガラス発泡体は、
嵩密度や減圧吸水率のバラツキが少なく、かつ、嵩密度
や減圧吸水率の値が小さなものを得ることができる。
According to the method of the present invention, the obtained granules can be shaped into a predetermined shape without being crushed and used as a raw material for heating and foaming, and the granules have a diameter of about 2 dragons, which is easy to use. Moreover, the inorganic glass foam obtained by heating and foaming the obtained granules into a predetermined shape,
It is possible to obtain a material with little variation in bulk density and vacuum water absorption, and small values of bulk density and vacuum water absorption.

【図面の簡単な説明】 第1図は実施例および比較例に用いた黒曜石粉末の粒度
分布を示すグラフである。なお横軸は対数表示である。 特許出願人  旭化成工業株式会社
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the particle size distribution of obsidian powder used in Examples and Comparative Examples. Note that the horizontal axis is in logarithmic representation. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 平均粒径が5μないし12μであり、なおかつ粒径20
μを越えるものが5%以下である天然ガラス質鉱物10
0重量部に対して少なくとも発泡剤0.1〜5.0重量
部含有してなる粉体と、アルカリ金属水酸化物15〜2
5重量部、水7〜15重量部からなる溶液とを混合、反
応させながら造粒することを特徴とする無機ガラス発泡
体用造粒物の製法。
The average particle size is 5μ to 12μ, and the particle size is 20μ.
10 natural glassy minerals with less than 5% of those exceeding μ
Powder containing at least 0.1 to 5.0 parts by weight of a blowing agent per 0 parts by weight, and 15 to 2 parts by weight of an alkali metal hydroxide.
A method for producing a granulated product for an inorganic glass foam, which comprises granulating while mixing and reacting 5 parts by weight with a solution consisting of 7 to 15 parts by weight of water.
JP24269288A 1988-09-28 1988-09-28 Production of granulated substance for inorganic glass form Pending JPH0292842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24269288A JPH0292842A (en) 1988-09-28 1988-09-28 Production of granulated substance for inorganic glass form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24269288A JPH0292842A (en) 1988-09-28 1988-09-28 Production of granulated substance for inorganic glass form

Publications (1)

Publication Number Publication Date
JPH0292842A true JPH0292842A (en) 1990-04-03

Family

ID=17092822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24269288A Pending JPH0292842A (en) 1988-09-28 1988-09-28 Production of granulated substance for inorganic glass form

Country Status (1)

Country Link
JP (1) JPH0292842A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197432A (en) * 1990-11-28 1992-07-17 Nippon Jiryoku Senko Kk Production of ceramic balloon using sirasu as raw material
US8465814B2 (en) 2006-03-21 2013-06-18 Imerys Filtration Minerals, Inc. High strength foam glass
US8936850B2 (en) 2010-07-19 2015-01-20 Imerys Filtration Minerals, Inc. Foam glass having a low coefficient of thermal expansion and related methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197432A (en) * 1990-11-28 1992-07-17 Nippon Jiryoku Senko Kk Production of ceramic balloon using sirasu as raw material
US8465814B2 (en) 2006-03-21 2013-06-18 Imerys Filtration Minerals, Inc. High strength foam glass
US8936850B2 (en) 2010-07-19 2015-01-20 Imerys Filtration Minerals, Inc. Foam glass having a low coefficient of thermal expansion and related methods

Similar Documents

Publication Publication Date Title
JP2996354B2 (en) Hollow borosilicate microspheres and manufacturing method
US4059423A (en) Process for the preparation of expansible beads
US3931036A (en) Compacted alkali metal silicate
JPH03273037A (en) Producing method for dry small spherical body and its droduct
JPS58130135A (en) Swellable bead producing material and manufacture
US3579299A (en) Porous silicate
US3756839A (en) Cate foams method for improving the cellular structure of rigid low density sili
JPS5945959A (en) Freely fluidizable dry powder composition
US5246654A (en) Intermediate composition and process for manufacturing intermediates for lightweight inorganic particles
JPH0292842A (en) Production of granulated substance for inorganic glass form
CN107949610A (en) The forming method of granular pattern foam glass and foam glass coating layer and utilize its noninflammability heat-barrier material
JPH06322166A (en) Polyurethane form with low thermal conductivity and its preparation
JPH0292843A (en) Production of raw material for inorganic glass foam
RU2167112C1 (en) Method of preparing foam glass
JPS60235743A (en) Preparation of foamed inorganic glass
JPS61236621A (en) Production of foamed fine glass grain
RU2255058C1 (en) Method of preparing blend for fabricating glass foam
JP3895831B2 (en) Method for producing a foamable ceramic material
JP3634717B2 (en) Manufacturing method of lightweight foam glass tile
RU2225373C1 (en) Method of manufacturing foamed silicate blocks
SU1033465A1 (en) Method for making granulated foamed glass
JPS61132538A (en) Production of foamed glass particle
RU2255057C1 (en) Method of preparing raw mix for fabricating glass foam
JPH0764591B2 (en) Method for producing inorganic glass foam
JPS6186474A (en) Manufacture of inorganic foamed body