JPH0290996A - Waste water treatment process - Google Patents

Waste water treatment process

Info

Publication number
JPH0290996A
JPH0290996A JP63241765A JP24176588A JPH0290996A JP H0290996 A JPH0290996 A JP H0290996A JP 63241765 A JP63241765 A JP 63241765A JP 24176588 A JP24176588 A JP 24176588A JP H0290996 A JPH0290996 A JP H0290996A
Authority
JP
Japan
Prior art keywords
microbes
carrier
waste water
urethane
urethane prepolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63241765A
Other languages
Japanese (ja)
Other versions
JPH0832328B2 (en
Inventor
Nobuyuki Kadokura
伸行 門倉
Shizuo Sasaki
静郎 佐々木
Hirohiko Shibata
柴田 浩彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP63241765A priority Critical patent/JPH0832328B2/en
Publication of JPH0290996A publication Critical patent/JPH0290996A/en
Publication of JPH0832328B2 publication Critical patent/JPH0832328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To proliferate microbes in a carrier and increase waste water treatment efficiency by a large extent by mixing and agitating microbes in a urethane polymer, mixing the microbes into the urethane polymer and foam curing the urethane polymer. CONSTITUTION:When microbes are fixed comprehesively by means of a polymer material and waste water treatment is carried out, the microbes are mixed into a urethane prepolymer by agitating and mixing suspension including the microbes in the urethane prepolymer to foam cure the urethane prepolymer. Thus, the microbes are proliferated even inside in a carrier by using the carrier consisted of the urethane prepolymer with the microbes immobility and treated organic waste water such as sewage or the like by means of the same to increase waste water treatment efficiency by a large extent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、廃水処理方法であって、更に詳しくは微生物
を高分子材料によって包括固定して廃水処理する方法を
改善するもので、微生物濃度が高く、廃水処理−の効率
を高めることができる方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a wastewater treatment method, and more specifically, it improves a wastewater treatment method by entrapping and immobilizing microorganisms with a polymeric material, and improves the method for treating wastewater by entrapping microorganisms in a polymeric material. The present invention relates to a method that can increase the efficiency of wastewater treatment.

[従来の技術] 現在、下水などの有機系廃水の処理には標準活性汚泥法
が主に用いられているが、活性汚泥は廃水中の有機物を
酸化する菌体が混合系てフ0ツク状に固まったものであ
り、その微生物相は廃水組成の変動に対して順応的に変
化すると考えられている。
[Conventional technology] Currently, the standard activated sludge method is mainly used to treat organic wastewater such as sewage. It is thought that the microbiota changes adaptively to changes in wastewater composition.

しかし、フロック形成能の弱いあるいはフロックになじ
まない菌体は廃水の浄化に(量れた能力を有していても
、反応槽(曝気槽)から流出してしまう。また、活性汚
泥法は処理時間が長く、装置が大型化する、余剰汚泥が
大量に発生するため、その処理、処分に多大の費用を要
する等の問題点を有している。
However, bacteria that have a weak floc-forming ability or cannot adapt to flocs will flow out of the reaction tank (aeration tank) even if they have the ability to purify wastewater. It takes a long time, the equipment becomes large, and a large amount of surplus sludge is generated, which requires a large amount of cost to process and dispose of.

そこで、これに対処するため、活性汚泥を高濃度に固定
化して処理水質の安定化や処理時間の短縮等を図る方法
が近年活発に研究開発されている。
Therefore, in order to deal with this problem, active research and development has been conducted in recent years on methods for stabilizing the quality of treated water and shortening treatment time by immobilizing activated sludge at a high concentration.

c本発明が解決しようとする課題] 廃水処理における固定化法としては、担体結合法、包括
固定法が知られている。担体結合法の担体には、活性炭
、砂、多孔性セラミックなどが用いられているが、微生
物の固定は担体表面に自然に付着するのを待ち、付着量
(菌体量)のコントロールができない等の欠点を有して
いる。
c Problems to be Solved by the Present Invention] As immobilization methods in wastewater treatment, carrier binding methods and entrapment immobilization methods are known. Activated carbon, sand, porous ceramics, etc. are used as carriers in the carrier binding method, but the immobilization of microorganisms requires waiting for them to naturally adhere to the carrier surface, making it impossible to control the amount of attached bacteria (the amount of bacteria). It has the following disadvantages.

方、包括固定法に用いられる担体材料としては、寒天、
に−カラギーナン、アルギン酸ナトリウムなどの天然高
分子、ポリアクリルアミド、ポリビニルアルコールなど
の合成高分子が知られている。このうち、天然高分子は
発酵工業などの分野で従来から用いられているが、ゲル
強度が弱く、廃水処理という開放系においては他の微生
物によって生分解を受けることが認められている。
On the other hand, carrier materials used in the entrapment fixation method include agar,
Natural polymers such as carrageenan and sodium alginate, and synthetic polymers such as polyacrylamide and polyvinyl alcohol are known. Among these, natural polymers have traditionally been used in fields such as the fermentation industry, but they have weak gel strength and are recognized to be biodegraded by other microorganisms in open systems such as wastewater treatment.

個々についてみると、寒天は連続処理に有利な球形に成
型出来るものの、ゲル強度が弱く、生分解性であるとい
う欠点を有する。
Individually speaking, although agar can be molded into a spherical shape which is advantageous for continuous processing, it has the drawbacks of low gel strength and biodegradability.

に−カラギーナンやアルギン酸ナトリウムは、寒天と同
じく微生物毒性が少なく球形に成型できるが、ゲルの成
形維持にカリウムやカルシウムのようなイオンの存在が
必要であり、廃水中に常に一定濃度の塩類溶液を添加す
ることが不可欠である。
-Carrageenan and sodium alginate, like agar, have low microbial toxicity and can be molded into spherical shapes, but they require the presence of ions such as potassium and calcium to maintain gel formation, and a salt solution of a constant concentration must always be kept in wastewater. It is essential to add

以上天然高分子の欠点に対して、合成高分子は生分解性
に乏しく、環境中で安全であるが、その分だけ廃棄処分
の方法に問題を残している。
In contrast to the drawbacks of natural polymers, synthetic polymers have poor biodegradability and are safe in the environment, but this leaves problems in their disposal methods.

また、ポリアクリルアミドについては、使用する薬剖の
毒性や重合時の発熱による微生物の死滅等が問題となっ
ている。
Furthermore, problems with polyacrylamide include the toxicity of the pharmacological agents used and the killing of microorganisms due to the heat generated during polymerization.

さらに、これまでに用いられている包括固定化担体では
、活性のある菌体の増殖は担体表面あるいは近傍に限ら
れ、担体内では特に基質や酸素拡散が律速段階を形成し
易い等の問題点か指摘されている。
Furthermore, with the entrapping immobilization carriers used so far, the growth of active bacterial cells is limited to the surface or vicinity of the carrier, and within the carrier, substrate and oxygen diffusion in particular tend to form rate-limiting steps. It has been pointed out that

本発明は前記問題点を解決する廃水処理方法を提供する
ことにある。
An object of the present invention is to provide a wastewater treatment method that solves the above problems.

[課題を解決するための手段] 本発明は、ウレタンプレポリマーに微生物を混合攪拌し
て、ウレタンプレポリマー中に微生物を混入し、ウレタ
ンプレポリマーを発泡硬化させたものを用いて廃水処理
する方法である。
[Means for Solving the Problems] The present invention provides a method for treating wastewater by mixing and stirring microorganisms into a urethane prepolymer, mixing the microorganisms into the urethane prepolymer, and using a foamed and hardened urethane prepolymer. It is.

本発明においてウレタンプレポリマーとじてはポリオキ
シアルキレンポリオールと化学I gM的二より過剰量
のポリイソシアネートとの反応生成物が挙げられる。
In the present invention, the urethane prepolymer includes a reaction product of a polyoxyalkylene polyol and a chemical IgM excess of polyisocyanate.

このポリオキシアルキレンポリオールとしては、例えば
、エチレングリコール、プロピレングリコール、グリセ
リン、ペンタエリスリトール等の多価アルコールまたは
エチレンジアミン。
Examples of the polyoxyalkylene polyol include polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, and pentaerythritol, or ethylene diamine.

ジエチレントリアミン、ピペラジン、アルキルアミン等
のアミン類にエチレンオキシド、プロピレンオキシド等
を付加して得られる分子量的200〜20,000好ま
しくは約500〜5,000のエチレンオキシド含有割
合が約50重量%以上、好ましくは約70重二%以上の
ものか挙げられる。
Ethylene oxide with a molecular weight of 200 to 20,000, preferably about 500 to 5,000, obtained by adding ethylene oxide, propylene oxide, etc. to amines such as diethylenetriamine, piperazine, and alkylamine, has an ethylene oxide content of about 50% by weight or more, preferably It can be mentioned if it is about 70% or more.

また、ポリイソシアネートの例としては、トリレンジイ
ソシアネート、ジフェニルメタンジイソシアネート、ヘ
キサメチレンジイソシアネート、デスモジュール1、(
バイエル社製)等ノジイソシアネートが挙げられる。
Examples of polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, desmodur 1, (
(manufactured by Bayer AG) and other isocyanates.

本発明に用いるウレタンプレポリマーは、末端イソシア
ネート基の量が2〜10]i量%のものである。2重量
%未満では形成されるケルの強度が小さく、また10重
量%を超えるとケル化反応が激しいため、微生物か死滅
し易い。
The urethane prepolymer used in the present invention has terminal isocyanate groups in an amount of 2 to 10% by weight. If it is less than 2% by weight, the strength of the formed kelp will be low, and if it exceeds 10% by weight, the kelp reaction will be intense and microorganisms will be easily killed.

本発明に用いる微生物とは、微生物、微生物群または酵
素等各種のものを用いることかでき、使用目的に応して
あらゆるものか適用される。
The microorganisms used in the present invention can be various types such as microorganisms, groups of microorganisms, and enzymes, and any type of microorganism can be used depending on the purpose of use.

例えば、微生物群としては活性汚泥微生物群。For example, the microorganism group is activated sludge microorganism group.

嫌気性消火細菌群、光合成細菌群、嫌気メタン発酵微生
物群等か用いられる。
Anaerobic fire extinguishing bacteria, photosynthetic bacteria, anaerobic methane fermentation microorganisms, etc. are used.

微生物としては、硝化細菌、脱窒細菌、アルコール発酵
酵母等、または酵素としては、アミラーセ、セルラーゼ
、プロテアーゼ、β−グルコシダーゼその他の酵素等極
めて多数のものが用いられる。
As the microorganisms, nitrifying bacteria, denitrifying bacteria, alcohol-fermenting yeast, etc., and as the enzymes, a large number of enzymes such as amylase, cellulase, protease, β-glucosidase, and others are used.

ウレタンプレポリマーを用いてこれらの1枚生物を固定
化する場合、該微生物を含む懸濁液にウレタンプレポリ
マーを混合し、発泡終了後20分〜2時間放置すること
により反応してゲル化する。ウレタンプレポリマーと懸
濁液との混合割合はウレタンプレポリマー1に対して懸
濁液15程度以下極微貴まで可能であるが、好ましくは
05〜2の懸濁液を用いる。ゲル化後固定化物はその目
的、使用状態等により適当な犬ぎさ(例えは3〜5mm
立方)に細断して使用する。
When immobilizing one of these organisms using a urethane prepolymer, the urethane prepolymer is mixed into a suspension containing the microorganisms, and after foaming is completed, the mixture is left to react and gel for 20 minutes to 2 hours. . The mixing ratio of the urethane prepolymer and the suspension can be as small as 15 parts of the suspension to 1 part of the urethane prepolymer, but preferably a suspension of 0.5 to 2 is used. After gelation, the immobilized product should be placed in an appropriate size (for example, 3 to 5 mm) depending on its purpose, usage conditions, etc.
Use by shredding into cubes.

[実施例コ 次に実施例をもって本発明を説明する。[Example code] Next, the present invention will be explained with reference to examples.

ウレタンプレポリマーによる固定化の有効性を調べるた
め、活性イ5泥を用いて包括固定したものを連続処理実
験に供し、廃水処理特性を調へた。活性汚泥は、連続処
理実験に用いる人工下水と同等の下水で約1か月間馴養
し、遠心分離により90〜100g/Iに濃縮して用い
た。固定化の手順は第1図に示す方法で行った。なお、
ウレタンプレポリマーは、ジオールの分子量。
In order to investigate the effectiveness of immobilization using urethane prepolymer, we conducted a continuous treatment experiment using activated I5 mud to investigate wastewater treatment characteristics. The activated sludge was acclimatized for about one month in sewage equivalent to the artificial sewage used in the continuous treatment experiment, and concentrated to 90 to 100 g/I by centrifugation before use. The immobilization procedure was performed as shown in FIG. In addition,
Urethane prepolymer has a diol molecular weight.

NC○含、B、Eo含量によって表−1のような種類に
分かれる。
It is divided into types as shown in Table 1 depending on the NC○ content, B content, and Eo content.

表−1 本発明の連続処理実験には、表−1中のPU−6を用い
た。以下連続処理実験により得られた種々の特性を示す
Table 1 PU-6 in Table 1 was used in the continuous processing experiment of the present invention. Various properties obtained through continuous processing experiments are shown below.

(1)有効係数 ウレタン固定化担体と同濃度の活性汚泥との呼吸速度の
比較により有効係数を測定した。
(1) Effectiveness coefficient The effectiveness coefficient was measured by comparing the respiration rates of the urethane-immobilized carrier and activated sludge at the same concentration.

測定方法は、まずウレタン固定化担体を用いて loO
mlのふ卵びん中で溶存酸素の経時変化(呼吸速度)を
測定する。
The measurement method first uses a urethane immobilized carrier to measure loO
The time course of dissolved oxygen (respiration rate) is measured in ml incubation bottles.

次に、このとぎの汚泥濃度と同じ濃度になるように活性
汚泥を調整し、再度呼吸速度を測定する。有効係数はこ
の両者の比較から算出して求めた。結果を表−2に示す
Next, the activated sludge is adjusted to have the same concentration as this sludge concentration, and the respiration rate is measured again. The effectiveness coefficient was calculated from a comparison between the two. The results are shown in Table-2.

表−2 汚?L混合比を 1.4と 20の両方について求めた
が、共に 069前後と非常に高い値を示した。従来の
研究では、他の包括固定化担体の有効係数は最大0.7
5程度であり、ウレタンによる固定化の有効性が明らか
である。
Table-2 Dirty? The L mixing ratio was determined for both 1.4 and 20, and both showed very high values of around 069. In previous studies, the effectiveness coefficient of other entrapping immobilization carriers was up to 0.7.
5, which clearly shows the effectiveness of fixation with urethane.

これは固定化時の発泡により適当な大きさの空隙が担体
内部に発生するため、従来の固定化担体に比へて基質や
酸素の透過性が向上し、担体内部でも表面と同様に微生
物の増殖が行われていることによると考えられる。
This is because air bubbles of appropriate size are generated inside the carrier due to foaming during immobilization, which improves the permeability of substrates and oxygen compared to conventional immobilization carriers, and allows microorganisms to penetrate inside the carrier as well as on the surface. This is thought to be due to proliferation.

(2)担体内部の微生物分布状態 ウレタン固定化担体と他の担体について、担体内部での
微生物の分布状態を比較するため、連続処理実験後、走
査電子顕微鏡による観察を行った。結果を第2図〜第4
図に示す。ウレタンについては第2図に示すように担体
の表面は勿論、内部にも微生物が密生していることが肥
められた。
(2) Distribution state of microorganisms inside the carrier In order to compare the distribution state of microorganisms inside the carrier between the urethane-immobilized carrier and other carriers, observation using a scanning electron microscope was performed after the continuous treatment experiment. The results are shown in Figures 2 to 4.
As shown in the figure. Regarding urethane, it was found that microorganisms were densely growing not only on the surface of the carrier but also inside the carrier, as shown in FIG.

方、比較のために観察したポリビニル アルコール(PVA)については、第3図および第4図
から明らかなように、担体表面はウレタン同様に微生物
が密生しているが、内部は表面に比べて微生物の数が著
しく少なく、部分的に点在しているに過ぎなかった。
On the other hand, regarding polyvinyl alcohol (PVA), which was observed for comparison, as is clear from Figures 3 and 4, the surface of the carrier is densely populated with microorganisms, similar to urethane, but the inside has more microorganisms than the surface. There were very few in number, and they were only scattered in some places.

以上から基質や酸素の透過性の悪いpvAては、微生物
の失活あるいは増殖抑制が起こっており、これに比べて
ウレタンでは拡散抵抗が小さく非常に有効な担体である
ことが確認された。
From the above, it was confirmed that pvA, which has poor permeability to substrates and oxygen, causes inactivation or inhibits the growth of microorganisms, whereas urethane has low diffusion resistance and is a very effective carrier.

(3)初期活性 ウレタンによる固定化を行った直後の処理性能を把握す
るため、負荷を変えて連続処理実験を行った。連続処理
には、エアリフト管を有する流動床型の反応槽を用い、
槽内に固定化担体を投入し、定ヱポンプにより一定ユ供
給される人工廃水とともに循環流動させて連続運転を行
った。全有機炭素(TOC)負荷は、1.54.3.0
7.6.14Kg/m3/dayの3段階で行った。第
5図に結果を示す。
(3) In order to understand the processing performance immediately after immobilization with initial activation urethane, continuous processing experiments were conducted with varying loads. For continuous processing, a fluidized bed type reaction tank with an air lift tube is used.
The immobilized carrier was placed in the tank, and continuous operation was performed by circulating and flowing it together with artificial wastewater supplied at a constant rate by a constant pump. Total organic carbon (TOC) load is 1.54.3.0
It was carried out in three stages: 7.6.14Kg/m3/day. The results are shown in Figure 5.

第5図から614にg/m3/dayの高負荷を除けば
、固定化直後でも処理開始1日あるいは2日目以降安定
した処理性能が得られた。
From FIG. 5, except for the high load of 614 g/m3/day, stable processing performance was obtained from the first or second day after the start of the treatment even immediately after immobilization.

TOC負荷をBOD負荷に換算すると、低負荷側でも約
3〜6にg/m3/dayに相当する。
When TOC load is converted into BOD load, it corresponds to about 3 to 6 g/m3/day even on the low load side.

これらの結果からウレタンによる固定化はTOC負荷か
3 Kg/m3/dayの高負荷でも処理開始直後から
高処理性能(初期活性)を有しているのが理解出来る。
From these results, it can be seen that immobilization with urethane has high processing performance (initial activity) immediately after the start of processing even at a high TOC load of 3 Kg/m3/day.

(4)BOD除去速度 連続処理実験において、TOC負荷を4段階に変化させ
、処理性能を比較した。処理日数はそれぞれ3〜4週間
行った。処理性能については最大負荷1.92に8/m
3/dayまですへての期間で安定した処理が得られた
(4) BOD removal rate In a continuous processing experiment, TOC load was varied in four stages and processing performance was compared. Each treatment was carried out for 3 to 4 weeks. Regarding processing performance, the maximum load is 1.92 and 8/m.
Stable treatment was obtained for a period of up to 3 days.

これらの連続処理実験において、各負荷ごとに反応槽単
位容積光たりのBOD除去速度Kを求めた結果を表−3
に示す。
Table 3 shows the results of determining the BOD removal rate K per unit volume of the reaction tank for each load in these continuous treatment experiments.
Shown below.

表に は比較のために他の処理法によるBOD除去速度も示す
The table also shows BOD removal rates by other treatment methods for comparison.

表−3 本実験の結果負荷の増大に比例してBOD除去速度も増
大していた。また、他の処理法との比較では、約1にg
/m3/day以上の負荷ではいずれの処理法よりも除
去速度は大きく、標準活性汚泥法と比較すると最大で4
倍程度の速さになっている。つまり、同じBODを除去
しようとする場合に、本処理法ではその反応槽容積が標
準活性汚泥法の約1/4ですむことになり、高負荷運転
による処理施設のコンパクト化が望めるものである。
Table 3 Results of this experiment The BOD removal rate increased in proportion to the increase in load. In addition, in comparison with other processing methods, approximately 1 g
/m3/day or more, the removal rate is higher than any treatment method, and compared to the standard activated sludge method, the removal rate is up to 4.
It's about twice as fast. In other words, when attempting to remove the same amount of BOD, this treatment method requires approximately 1/4 the volume of the reaction tank compared to the standard activated sludge method, making it possible to downsize treatment facilities through high-load operation. .

(5)汚泥発生量 前記の連続処理実験において、除去TOC量当たりの汚
泥発生量を求めた結果を第6図に示す。第6図のプロッ
トから収率係数(汚泥転換率)を求めると、1.10K
g−5S/にg−TOCである。BOD基準に換算する
と0.51.Kg−5S/Kg−BODとなり、従来の
活性汚泥法(0,6〜1.0にg−5S/にg−BOD
)と比べ、最大半分程度にまで低減出来ることが認めら
れる。
(5) Sludge generation amount Figure 6 shows the results of determining the sludge generation amount per removed TOC amount in the above continuous treatment experiment. The yield coefficient (sludge conversion rate) is calculated from the plot in Figure 6 and is 1.10K.
g-5S/ is g-TOC. When converted to BOD standard, it is 0.51. Kg-5S/Kg-BOD.
), it is recognized that it can be reduced by up to about half.

[発明の効果] 以上のごとく、本発明は包括固定法によって廃水を処理
するに当たり、ウレタンプレポリマーを固定化担体に使
用することによって固定化担体表面のみならす担体内部
の微生物の増殖が図られ、従って廃水処理効率を大幅に
向上することか出来る。
[Effects of the Invention] As described above, the present invention uses a urethane prepolymer as an immobilization carrier when treating wastewater by the comprehensive immobilization method, thereby promoting the growth of microorganisms not only on the surface of the immobilization carrier but also inside the carrier. Therefore, wastewater treatment efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は本発明の
一例の電子顕微鏡写真、第3図は比較例の表面電子顕微
鏡写真、第4図は比較例の内部電子顕微鏡写真、第5図
は固定化微生物の初期活性のグラフ、第6図は汚泥発生
量のグラフである。
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is an electron micrograph of an example of the present invention, Fig. 3 is a surface electron micrograph of a comparative example, and Fig. 4 is an internal electron micrograph of a comparative example. , FIG. 5 is a graph of the initial activity of immobilized microorganisms, and FIG. 6 is a graph of the amount of sludge generated.

Claims (1)

【特許請求の範囲】[Claims] ウレタンプレポリマーに微生物を混合攪拌し、ウレタン
プレポリマーを発泡硬化させたものを廃水に添加するこ
とを特徴とする廃水処理方法。
A wastewater treatment method characterized by mixing and stirring microorganisms in a urethane prepolymer, and adding the foamed and hardened urethane prepolymer to wastewater.
JP63241765A 1988-09-27 1988-09-27 Wastewater treatment method Expired - Fee Related JPH0832328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63241765A JPH0832328B2 (en) 1988-09-27 1988-09-27 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63241765A JPH0832328B2 (en) 1988-09-27 1988-09-27 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH0290996A true JPH0290996A (en) 1990-03-30
JPH0832328B2 JPH0832328B2 (en) 1996-03-29

Family

ID=17079195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241765A Expired - Fee Related JPH0832328B2 (en) 1988-09-27 1988-09-27 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0832328B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287494A (en) * 1985-06-13 1986-12-17 Ebara Res Co Ltd Method for continuously filtering water
JPS621498A (en) * 1985-06-28 1987-01-07 Ebara Res Co Ltd Utilization of anaerobic bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287494A (en) * 1985-06-13 1986-12-17 Ebara Res Co Ltd Method for continuously filtering water
JPS621498A (en) * 1985-06-28 1987-01-07 Ebara Res Co Ltd Utilization of anaerobic bacteria

Also Published As

Publication number Publication date
JPH0832328B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
FI82070B (en) BIOLOGISKT AKTIV KOMPOSITION, FOERFARANDE FOER FRAMSTAELLNING AV DENNA, ANVAENDNING AV DENSAMMA OCH FOERFARANDE FOER BIOLOGISKT RENING AV AVLOPPSVATTEN.
Pai et al. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate
US4791061A (en) Immobilization of microorganisms by entrapment
CN101812440B (en) Nitrifying bacteria vector for degrading ammonia nitrogen and preparation method thereof
US6423229B1 (en) Bioreactor systems for biological nutrient removal
JP5046183B2 (en) Method for culturing and acclimatizing 1,4-dioxane-degrading bacteria, method for producing 1,4-dioxane-degrading bacteria-immobilized carrier, wastewater treatment method and apparatus
KR101935093B1 (en) Selective Microorganism Immobilization Support
US6214619B1 (en) Water swellable thermoplastic polyurethane gel bioreactor carrier containing a nutrient substance
CN102161527A (en) Sponge iron-AT (Attapulgite)-PVF (Polyvinyl Fluoride) composite filler and application thereof on water treatment
CN100489032C (en) Method for preparing composite magnetic polyurethane foam carrier and use thereof
KR20060043555A (en) Method for producing immobilized microorganism, immobilized microorganism produced therefrom and a reaction apparatus using the same
CN111961659A (en) Immobilization material, biological denitrification material, preparation method and application
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
JP3965006B2 (en) Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
Lee et al. Removal of nitrogen in wastewater by polyvinyl alcohol (PVA)-immobilization of effective microorganisms
EP1042236B1 (en) A method of preparing a microbial culture for wastewater treatment
KR100961667B1 (en) A method for treating dyeing wastewater by using porous polyurethane foam media comprising carbonaceous materials obtained from carbonization of sludges and white?rot fungi
Hirasa et al. Preparation of new support for immobilization of activated sludges
JP3203026B2 (en) Biocatalyst immobilized gel
JPH0290996A (en) Waste water treatment process
CN103011417A (en) Method for efficiently treating ammonia nitrogen sewage at low temperature
Abdalla et al. Upgrading of Activated Sludge Systems Using Immobilized Nitrifiers in Polymer Pellets
KR100759917B1 (en) Heated carriers, method for producing heated carriers and environmental protection method with use of heated carriers
CN108640296B (en) Composite biological material containing iron carbon nano-tube and preparation method thereof
CN115448550B (en) Treatment method for strengthening biological denitrification of sewage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees