JPH0287013A - Preparation of magnetic scale - Google Patents

Preparation of magnetic scale

Info

Publication number
JPH0287013A
JPH0287013A JP63240370A JP24037088A JPH0287013A JP H0287013 A JPH0287013 A JP H0287013A JP 63240370 A JP63240370 A JP 63240370A JP 24037088 A JP24037088 A JP 24037088A JP H0287013 A JPH0287013 A JP H0287013A
Authority
JP
Japan
Prior art keywords
magnetic
stainless steel
magnetic field
heated
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63240370A
Other languages
Japanese (ja)
Inventor
Katsuyuki Ara
荒 克之
Hideyuki Yagi
八木 秀之
Masaharu Moriyasu
雅治 森安
Masayuki Kaneko
雅之 金子
Masatake Hiramoto
平本 誠剛
Hideo Ikeda
英男 池田
Shunji Omura
大村 俊次
Yoshihiro Sugiyama
杉山 良浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Electric Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP63240370A priority Critical patent/JPH0287013A/en
Publication of JPH0287013A publication Critical patent/JPH0287013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance detection sensitivity and an S/N ratio by heating non- magnetic austenite type stainless steel at a desired interval by a high energy density heat source while a magnetic field is applied to said steel. CONSTITUTION:A current is supplied from a DC power supply 22 to form magnetic flux 30 and this magnetic field is applied to a base body composed of non-magnetic austenite type stainless steel. Laser beam 20 being a high energy density heat source is applied to said base body 1 so as to form a desired interval between heated parts 3 to heat and melt the same while the molten parts are solidified to form magnetic grids of a predetermined interval. About several % of magnetic ferrite is precipited in the austenite texture of each molten/ solidified heated part 3. Since a magnetic field is applied during the irradiation with laser beam, the axis of the precipitated ferrite magnetic body is aligned in a definite direction to generate magnetic anisotropy. Therefore, the interval between the magnetic grids is arbitrarily selected and a Hall element detecting residual magnetization quantity is used to obtain the relation between displacement quantity and residual magnetization quantity. By this method, displacement can be detected.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高温環境で使用できる磁気スケールの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a magnetic scale that can be used in a high temperature environment.

[従来の技術] 第6図は例えば特公昭4B−10655号公報「磁気ス
ケール」に示された従来の磁気スケールを示す断面図で
ある。図において、(6)は鉄またはエリンバ−(商品
名)のような鉄合金よりなる棒状の基体、(7)は基体
(6)の表面にメツキまたはクラッドで被着形成された
銅またはアルミニウムのような非磁性金属層、(8)は
非磁性金属層(7)の上に形成されたコバルト・ニッケ
ルのような磁性層である。
[Prior Art] FIG. 6 is a sectional view showing a conventional magnetic scale disclosed in, for example, Japanese Patent Publication No. 4B-10655 entitled "Magnetic Scale". In the figure, (6) is a rod-shaped base made of iron or an iron alloy such as Elinvar (trade name), and (7) is a rod-shaped base made of copper or aluminum plated or clad on the surface of the base (6). The non-magnetic metal layer (8) is a magnetic layer such as cobalt-nickel formed on the non-magnetic metal layer (7).

[発明が解決しようとする課題] 上記のような従来の磁気スケールは以上のように構成さ
れており、例えは金属データブック;日本金属学会編、
丸首(1974)に示されているように鉄およびエリン
バ−〇熱膨張係数はそれぞれ12.IX 10−6及び
8.OX 10−6テあり、銅および7 )L、 ミニ
ラムの熱膨張係数はそれぞれt7−ox to−e及び
23.5X 10−6である。また、コバルト・ニッケ
ルの熱膨張係数は 例えば耐熱鋼データ集;・特殊鋼ク
ラブ(1965)に示されティるように、S−816(
AISI 671)では11.9X 10−6である。
[Problem to be solved by the invention] The conventional magnetic scale as described above is configured as described above, for example, in the Metal Data Book; edited by the Japan Institute of Metals,
As shown in Marukubi (1974), the thermal expansion coefficients of iron and Elinvar are each 12. IX 10-6 and 8. The thermal expansion coefficients of copper and 7)L, miniram are t7-ox to-e and 23.5X 10-6, respectively. In addition, the coefficient of thermal expansion of cobalt and nickel is, for example, S-816 (as shown in the Heat-Resistant Steel Data Collection; Special Steel Club (1965)).
AISI 671) is 11.9X 10-6.

第6図に示すような構成では、100℃以上の高温にな
ると、基体(6)、非磁性金属層(7)、磁性層(8)
の熱膨張量が異なるため、基体(6)から非磁性金属層
(7)や磁性層(8)が剥離するという問題があった。
In the configuration shown in FIG. 6, when the temperature reaches 100°C or higher, the base (6), nonmagnetic metal layer (7), and magnetic layer (8)
Since the amount of thermal expansion is different, there is a problem in that the nonmagnetic metal layer (7) and the magnetic layer (8) peel off from the base (6).

また、剥離しないような場合でも、基体(6)、非磁性
金属N(7)、磁性層(8)に熱応力が加わり、磁性層
(8)の磁気特性が劣化し、磁気スケールの感度が低下
するという問題があった。
In addition, even if no peeling occurs, thermal stress is applied to the substrate (6), non-magnetic metal N (7), and magnetic layer (8), degrading the magnetic properties of the magnetic layer (8) and reducing the sensitivity of the magnetic scale. There was a problem with the decline.

この発明は、上記のような問題点を解決するためになさ
れたもので、例えば高温環境で使用しても特性劣化がな
く、安定かつ測定精度の優れた磁気スケールを製造する
方法を得ることを目的としたものである。
This invention was made to solve the above-mentioned problems, and aims to provide a method for manufacturing a magnetic scale that does not deteriorate in characteristics even when used in a high-temperature environment, is stable, and has excellent measurement accuracy. This is the purpose.

この目的を達成したものとして、同一出願人による昭和
62年8月31日出願の特願昭62−217315号明
細書「耐熱性磁気スケールの製造方法」及び特願昭62
−217316号明細書「耐熱性磁気スケールの製造方
法」がある。前者は「耐熱性基材にこれと異なる材質の
原料を載置し、上記原料と共に上記基材に所望間隔に熱
を加えて上記基材に上記原料を混入させ、加熱部分の磁
気特性を変化させた、上記基材及び上記加熱部分の少な
くともいずれか一方のキュリー点が100℃以上である
耐熱性磁気スケールの製造方法。」後者は「耐熱性基材
に所定間隔に熱を加えて加熱部分の磁気特性を変化させ
た、上記基材及び上記加熱部分の少なくともいずれか一
方のキュリー点が100℃以上である耐熱性磁気スケー
ルの製造方法。」である。しかしながら、これらでは、
例えはフェライト析出量があまり多くなく、残留磁化量
が少なく、検出時のSN比が高くないという問題がまだ
残っていた。
This objective has been achieved in Japanese Patent Application No. 1982-217315 filed on August 31, 1988 by the same applicant, entitled "Method for Manufacturing Heat-Resistant Magnetic Scale" and
-217316 ``Method for manufacturing heat-resistant magnetic scale''. The former method involves placing a raw material of a different material on a heat-resistant base material, applying heat to the base material together with the raw material at desired intervals, mixing the raw material into the base material, and changing the magnetic properties of the heated part. A method for producing a heat-resistant magnetic scale in which the Curie point of at least one of the base material and the heated part is 100°C or higher." A method for producing a heat-resistant magnetic scale in which the Curie point of at least one of the base material and the heated portion is 100° C. or higher, and the magnetic properties of the scale are changed. However, these
For example, there still remained the problem that the amount of ferrite precipitated was not very large, the amount of residual magnetization was small, and the S/N ratio at the time of detection was not high.

そこで、この発明はさらに、検出感度がよく、高いSN
比が得られる磁気スケールを製造する方法を提供するこ
とを目的としたものである。
Therefore, the present invention further provides a method with good detection sensitivity and high SN.
It is an object of the present invention to provide a method for manufacturing a magnetic scale that provides a ratio.

[課題を解決するための手段] この発明の磁気スケールの製造方法は、非磁性のオース
テナイト系ステンレス鋼に磁場をかけながら、高エネル
ギ密度熱源により上記オーステナイト系ステンレス鋼を
所望間隔て加熱し、加熱部分を溶融・凝固させて、磁性
のフェライトを析出させるとともに、磁区の方向がそろ
った磁気格子を形成するようにしたものである。
[Means for Solving the Problems] The method for manufacturing a magnetic scale of the present invention involves heating the austenitic stainless steel at desired intervals using a high energy density heat source while applying a magnetic field to the non-magnetic austenitic stainless steel. The parts are melted and solidified to precipitate magnetic ferrite and form a magnetic lattice with aligned magnetic domains.

[作用コ この発明では、非磁性のオーステナイト系ステンレス鋼
に、磁場をかけながら高エネルギ密度熱源により加熱し
て、加熱部分を溶融・凝固させて、その部分に磁性のフ
ェライトを析出させたので、非磁性層の内部に強力な磁
性層が形成され、高温域で使用しても特性劣化などの問
題のない磁気スケールを製造できるとともに、磁区の方
向がそろうようにしたので、高いSN比が得られ検出感
度がよくなる。
[Operation] In this invention, non-magnetic austenitic stainless steel is heated with a high-energy density heat source while applying a magnetic field, the heated portion is melted and solidified, and magnetic ferrite is precipitated in that portion. A strong magnetic layer is formed inside the non-magnetic layer, making it possible to manufacture a magnetic scale that does not cause problems such as characteristic deterioration even when used in high temperature ranges.Also, since the directions of the magnetic domains are aligned, a high S/N ratio can be achieved. Detection sensitivity improves.

[実施例コ 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による磁気スケールの製造方法
を説明するための構成図である。
[Example 1] An example of the present invention will be described below with reference to the drawings. 1st
The figure is a configuration diagram for explaining a method of manufacturing a magnetic scale according to an embodiment of the present invention.

図において(1)は板状の非磁性オーステナイト系ステ
ンレス鋼(例えは、JIS(7)SUS304)の基体
である。(20)は高エネルギ密度熱源、この場合はレ
ーザビーム、(21)は磁場を発生させるための磁気ソ
レノイド、(22)は磁気ソレノイド(21)に電流を
供給する直流電源、(3o)は磁気ソレノイド(21)
により形成された磁束である。また、(3)はこの基体
(1)に レーザビーム(20)を所望の間隔で照射し
て加熱した加熱部分であり、溶融・凝固させて形成した
磁性体部分(磁気格子)で 基板(1)に所定間隔て形
成される。このビーム照射により溶融・凝固した加熱部
分(3)には、オーステナイトm織の中に磁性のフェラ
イトが数%程度析出している。例えば、CO2レーザを
出力1四、ビームスキャン速度2m/rM1程度の条件
で照射すると、溶融幅1.2mm、溶融深さ1.5mm
、溶融断面積0.8mm2程度の溶融部、即ち磁性体部
分が形成される。このビーム照射時に、第1図に示すよ
うに磁場をかけておくと、析出したフェライト磁性体の
磁区が一定の方向に揃い、磁気異方性ができる。
In the figure, (1) is a plate-shaped base of non-magnetic austenitic stainless steel (for example, JIS (7) SUS304). (20) is a high energy density heat source, in this case a laser beam, (21) is a magnetic solenoid for generating a magnetic field, (22) is a DC power supply that supplies current to the magnetic solenoid (21), and (3o) is a magnetic Solenoid (21)
This is the magnetic flux formed by In addition, (3) is a heating part that heats the substrate (1) by irradiating the laser beam (20) at desired intervals, and a magnetic part (magnetic lattice) formed by melting and solidifying the substrate (1). ) are formed at predetermined intervals. In the heated portion (3) melted and solidified by this beam irradiation, magnetic ferrite is precipitated in an amount of several percent in the austenite m weave. For example, if a CO2 laser is irradiated with an output of 14 and a beam scanning speed of 2 m/rM, the melt width will be 1.2 mm and the melt depth will be 1.5 mm.
, a melted part, that is, a magnetic material part, with a melted cross-sectional area of about 0.8 mm2 is formed. If a magnetic field is applied as shown in FIG. 1 during this beam irradiation, the magnetic domains of the precipitated ferrite magnetic material are aligned in a certain direction, creating magnetic anisotropy.

第2図はこの発明の一実施例に係わる磁気スケールを着
磁している様子を示す側面構成図であり、(10)は磁
気スケール、(4)は着磁用電磁石である。
FIG. 2 is a side configuration diagram showing a state in which a magnetic scale according to an embodiment of the present invention is magnetized, in which (10) is a magnetic scale, and (4) is a magnetizing electromagnet.

第3図は第2図に示す方法で着磁した磁気スケールをも
ちいて変位量を検出している様子を示す斜視図である。
FIG. 3 is a perspective view showing how the amount of displacement is detected using the magnetic scale magnetized by the method shown in FIG.

図において、(5)は磁気スケールに残留している磁化
量を検出する、例えばホール素子のようなセンサである
。第4図は第3図の方法で検出された残留磁化量を示す
グラフであり、横軸に変位量、縦軸に残留磁化量をとっ
ている。実線がこの発明一実施例の磁気ソレノイドに電
流を流して磁場中でレーザビームを照射した場合、点線
が磁場をかけなかった場合(特願昭62−217316
号明細書)である。磁場中でレーザビームを照射して磁
気格子を形成することにより、残留磁化量か大きくなり
、検出感度やS/N比が大幅に向上し、優れた特性が得
られる。
In the figure, (5) is a sensor, such as a Hall element, which detects the amount of magnetization remaining in the magnetic scale. FIG. 4 is a graph showing the residual magnetization detected by the method shown in FIG. 3, with the horizontal axis representing the displacement and the vertical axis representing the residual magnetization. The solid line shows the case when a current is applied to the magnetic solenoid according to an embodiment of the present invention and the laser beam is irradiated in a magnetic field, and the dotted line shows the case when no magnetic field is applied (Japanese Patent Application No. 62-217316
No. Specification). By forming a magnetic lattice by irradiating a laser beam in a magnetic field, the amount of residual magnetization increases, the detection sensitivity and S/N ratio are greatly improved, and excellent characteristics can be obtained.

従って、レーザビームを照射して非磁性の基板(1)に
形成する磁気格子の閏隔を任意に選び、第3図のように
残留磁化量を検出する素子例えはホール素子などを用い
ることにより、第4図に示すような変位量と残留磁化量
の関係かえられ、変位の検出が可能となる。また、この
方法では非磁性基板の中に磁性層を形成したので、残留
磁化が第4図に示すようにパルス的に検出され、従来の
方法に比へ安定で、かつ非常に検出感度が高くなる。
Therefore, by arbitrarily selecting the spacing of the magnetic lattice formed on the non-magnetic substrate (1) by irradiating the laser beam, and using an element such as a Hall element to detect the amount of residual magnetization as shown in Fig. 3. , the relationship between the amount of displacement and the amount of residual magnetization is changed as shown in FIG. 4, and displacement can be detected. In addition, since this method forms a magnetic layer inside a non-magnetic substrate, residual magnetization can be detected in a pulsed manner as shown in Figure 4, making it more stable than conventional methods and offering extremely high detection sensitivity. Become.

また、磁性を示すフェライトのキュリー点は約700°
Cと高いので、耐熱性が優れている。
In addition, the Curie point of ferrite, which exhibits magnetism, is approximately 700°.
Since it has a high C content, it has excellent heat resistance.

なお、上記実施例では、C02レーザを用いたが、YA
Gレーザなと他のレーザでもよく、また電子ビーム、プ
ラズマなど他の高エネルギ密度熱源であってもよい。た
だ、例えば電子ビームのように、磁場をかけると曲がる
ようなものは、その曲がりを考慮して照射する必要があ
る。
In addition, in the above example, a C02 laser was used, but a YA laser was used.
A laser other than the G laser may be used, or another high energy density heat source such as an electron beam or plasma may be used. However, for objects that bend when a magnetic field is applied, such as electron beams, it is necessary to consider the bending when irradiating the beam.

また、上記実施例では、ビーム照射条件についてはその
一例を示したもので、様々な条件を選択できることは言
うまでもない。また、磁場をかける方法としては、永久
磁石を用いてもよく、これに限定するものではない。
Further, in the above embodiment, only one example of the beam irradiation conditions is shown, and it goes without saying that various conditions can be selected. Further, as a method of applying a magnetic field, a permanent magnet may be used, but the method is not limited to this.

さらに、上記実施例では、基板(1)としてステンレス
鋼5US304を用いたが、他のオーステナイト系ステ
ンレス鋼、例えば5US316.5US309などであ
ってもよい。
Further, in the above embodiment, stainless steel 5US304 was used as the substrate (1), but other austenitic stainless steels such as 5US316.5US309 may be used.

さらにまた、上記実施例では、着磁して残留磁化量を検
出するようにしたが、あらかじめ着磁せずに、検出時に
、第5図の斜視図に示すように、励磁用磁石(15)と
磁束量を検出する素子、例えばホール素子(5)などを
用いて第4図と同様の変位量と検出磁束量の関係が得ら
れ、変位の検出が可能となる。
Furthermore, in the above embodiment, the amount of residual magnetization was detected by magnetization, but the excitation magnet (15) is By using an element that detects the amount of magnetic flux, such as a Hall element (5), a relationship between the amount of displacement and the amount of detected magnetic flux similar to that shown in FIG. 4 can be obtained, and the displacement can be detected.

[発明の効果] 以上のように、この発明によれば非磁性のオーステナイ
ト系ステンレス鋼に磁場をかけながら、高エネルギ密度
熱源により上記オーステナイト系ステンレス鋼を所望閏
隔て加熱し、加熱部分を溶融・凝固させて、磁性のフェ
ライトを析出させるとともに、磁区の方向がそろった磁
気格子を形成するようにしたので、非磁性層の内部に強
力な磁性層が形成され、高温域で使用しても特性劣化な
どの問題のない、検出感度がよく高いSN比が得られる
磁気スケールを製造できる効果がある。
[Effects of the Invention] As described above, according to the present invention, while applying a magnetic field to non-magnetic austenitic stainless steel, the austenitic stainless steel is heated at desired intervals using a high energy density heat source, and the heated portions are melted and heated. By solidifying it, magnetic ferrite is precipitated and a magnetic lattice with aligned magnetic domains is formed, so a strong magnetic layer is formed inside the non-magnetic layer, and it has excellent characteristics even when used in high temperature ranges. This has the effect of producing a magnetic scale that does not have problems such as deterioration and has good detection sensitivity and a high S/N ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の磁気スケールの製造方法
を示す構成図、第2図はこの発明の一実施例に係わる磁
気スケールを着磁している様子を示す側面構成図、第3
図はこの発明の一実施例に係わる磁気スケールを用いて
変位量を検出する様子を示す斜視図、第4図は第3図の
方法で検出された残留磁化量と変位量の関係を示すグラ
フ、第5図はこの発明の他の実施例に係わる磁気スケー
ルを用いて変位量を検出する様子を示す斜視図、第6図
は従来の磁気スケールを示す断面図である。 図において、(1)は非磁性のオーステナイト系ステン
レス鋼、(3)は加熱部分、(io)は磁気スケール、
(20)は高エネルギ密度熱源(レーザビーム)、(2
1)は磁気ソレノイド、(22)は直流電源、(3o)
は磁束である。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing a method for manufacturing a magnetic scale according to an embodiment of the present invention, FIG. 2 is a side configuration diagram showing how the magnetic scale according to an embodiment of the invention is magnetized, and FIG.
The figure is a perspective view showing how the amount of displacement is detected using a magnetic scale according to an embodiment of the present invention, and FIG. 4 is a graph showing the relationship between the amount of residual magnetization detected by the method of FIG. 3 and the amount of displacement. 5 is a perspective view showing how displacement is detected using a magnetic scale according to another embodiment of the present invention, and FIG. 6 is a sectional view showing a conventional magnetic scale. In the figure, (1) is non-magnetic austenitic stainless steel, (3) is the heating part, (io) is the magnetic scale,
(20) is a high energy density heat source (laser beam), (2
1) is a magnetic solenoid, (22) is a DC power supply, (3o)
is the magnetic flux. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  非磁性のオーステナイト系ステンレス鋼に磁場をかけ
ながら、高エネルギ密度熱源により上記オーステナイト
系ステンレス鋼を所望間隔で加熱し、加熱部分を溶融・
凝固させて、磁性のフェライトを析出させるとともに、
磁区の方向がそろった磁気格子を形成するようにした磁
気スケールの製造方法。
While applying a magnetic field to non-magnetic austenitic stainless steel, the austenitic stainless steel is heated at desired intervals using a high energy density heat source, and the heated parts are melted and heated.
It is solidified to precipitate magnetic ferrite, and
A method for manufacturing a magnetic scale that forms a magnetic lattice with aligned magnetic domains.
JP63240370A 1988-09-26 1988-09-26 Preparation of magnetic scale Pending JPH0287013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240370A JPH0287013A (en) 1988-09-26 1988-09-26 Preparation of magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240370A JPH0287013A (en) 1988-09-26 1988-09-26 Preparation of magnetic scale

Publications (1)

Publication Number Publication Date
JPH0287013A true JPH0287013A (en) 1990-03-27

Family

ID=17058482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240370A Pending JPH0287013A (en) 1988-09-26 1988-09-26 Preparation of magnetic scale

Country Status (1)

Country Link
JP (1) JPH0287013A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250211A (en) * 1984-05-28 1985-12-10 Inoue Japax Res Inc Manufacture of magnetic scale
JPS61134604A (en) * 1984-12-06 1986-06-21 Inoue Japax Res Inc Magnetic scale
JPS62227095A (en) * 1986-03-28 1987-10-06 Sumitomo Metal Ind Ltd Production of magnetic scale

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250211A (en) * 1984-05-28 1985-12-10 Inoue Japax Res Inc Manufacture of magnetic scale
JPS61134604A (en) * 1984-12-06 1986-06-21 Inoue Japax Res Inc Magnetic scale
JPS62227095A (en) * 1986-03-28 1987-10-06 Sumitomo Metal Ind Ltd Production of magnetic scale

Similar Documents

Publication Publication Date Title
US5089060A (en) Thermomagnetically patterned magnets and method of making same
JPH04262502A (en) Magnetically coded device and manufacture thereof
JP2012225912A5 (en)
KR930011893B1 (en) Method of making permanent magnet sensor element with a soft magnetic layer
JPS62501762A (en) Workpiece holding device that uses magnetic force
JPH0287014A (en) Preparation of magnetic scale
JPH0287013A (en) Preparation of magnetic scale
JPH0674124A (en) Fuel injection device and manufacture of fixed iron core thereof
JPH0288715A (en) Production of heat resistant magnetic scale
JPH0342515A (en) Heat-resisting magnetic scale and its manufacture
JP2588916B2 (en) Manufacturing method of heat resistant and corrosion resistant magnetic scale
US4935070A (en) Method of manufacturing heat resisting magnetic scale
Mostaan et al. Electron beam assisted joining of nanograin-sized Fe–Co–V magnetic foils: Study and optimization of magnetic properties of weld joints
EP0441581A2 (en) Method for producing magnetic structure
US5076862A (en) Method of manufacturing heat resisting magnetic scale
JP2021132175A (en) Magnetization device
JP2886131B2 (en) Manufacturing method of heat resistant magnetic scale
JP2698586B2 (en) Manufacturing method of heat resistant magnetic scale
JPH0312047A (en) Steel plate for information recording and recording method using the same
JP2633229B2 (en) Manufacturing method of multi-pole permanent magnet
JPH01100710A (en) Information recording method
JPS60323A (en) Magnetic scale and its manufacture
JPH04235289A (en) High corrosion resistant and high saturation magnetic flux density material
JPS5637820A (en) Manufacture of laminated core chip for magnetic head
JPS63191902A (en) Magnetic scale