JPH02847A - Organic laminated body and its production - Google Patents

Organic laminated body and its production

Info

Publication number
JPH02847A
JPH02847A JP8281288A JP8281288A JPH02847A JP H02847 A JPH02847 A JP H02847A JP 8281288 A JP8281288 A JP 8281288A JP 8281288 A JP8281288 A JP 8281288A JP H02847 A JPH02847 A JP H02847A
Authority
JP
Japan
Prior art keywords
film
films
phthalocyanine compound
visible absorption
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8281288A
Other languages
Japanese (ja)
Inventor
Tomoo Iwata
岩田 友夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8281288A priority Critical patent/JPH02847A/en
Publication of JPH02847A publication Critical patent/JPH02847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Abstract

PURPOSE:To facilitate lamination and to allow the lamination with good reproducibility forming the Langmuir-Brodgett films contg. a phthalocyanine compd. in such a manner that the visible absorption spectra thereof are longer in wavelength than the visible absorption spectra of the vapor deposited films thereof. CONSTITUTION:The Langmuir-Brodgett films contg. the phthalocyanine compd. are formed in such a manner that the visible absorption spectra thereof are longer in wavelength than the visible absorption spectra of the vapor deposited films thereof. The formation of the monomolecular films in which the phthalocyanine compd. and the matrix material thereof are oriented nearly perpendicularly to a water surface is, therefore, possible and further, the monomolecular built-up films in the state of maintaining the molecular orientation of the monomolecular films are formed by the conventional accumulation method. The org. laminated body constituted of the phthalocyanine compd.-contg. built-up films the electron spectra of which are longer in wavelength than the vapor deposited films is easily formed in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層が容易で、かつ再現性よく積層が可能な有
機積層体に関する。詳しくはラングミュア・ブロジェッ
ト法による積層が容易で、かつ再現性よく積層が可能な
有機積層体に関する。さらに詳しくは感光体、光反応増
感剤、光記録材料。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an organic laminate that is easy to laminate and can be laminated with good reproducibility. Specifically, the present invention relates to an organic laminate that can be easily laminated by the Langmuir-Blodgett method and can be laminated with good reproducibility. More details include photoreceptors, photoreaction sensitizers, and optical recording materials.

太陽電池、燃料電池、脱硫触媒などの材料として有用な
フタロシアニン化合物を含有した有機積層体およびその
製造方法に関する。
The present invention relates to an organic laminate containing a phthalocyanine compound useful as a material for solar cells, fuel cells, desulfurization catalysts, etc., and a method for producing the same.

〔従来の技術〕[Conventional technology]

フタロシアニン化合物は、堅牢な色素であり、着色剤と
して塗料やインキなどに広く用いられているほか、半導
体的性質や触媒的性質を利用して、感光体、光反応増感
剤、光記録材料1太陽電池。
Phthalocyanine compounds are robust pigments and are widely used as coloring agents in paints and inks.They also utilize their semiconducting and catalytic properties to be used in photoreceptors, photoreaction sensitizers, and optical recording materials. solar cells.

燃料電池、脱硫触媒などの材料としても用いられる。It is also used as a material for fuel cells, desulfurization catalysts, etc.

ところで、このフタロンアニン化合物の上述の゛様々な
特徴ある性質を利用するには、これらをフタロンアニン
場面が規則的に配列した構造にすることが望ましいこと
が知られている。このような構造を形成させる手段の一
つとしてラングミニア・プロジェット法による累積膜の
形成法があり、この累積膜は通常ラングミュア・ブロジ
ェット膜と呼ばれている。
By the way, it is known that in order to take advantage of the above-mentioned various characteristic properties of these phthalonanine compounds, it is desirable to form them into a structure in which phthalonanine scenes are regularly arranged. One of the means for forming such a structure is to form a cumulative film by the Langmiir-Blodgett method, and this cumulative film is usually called a Langmuir-Blodgett film.

ラングミュア・ブロジェット法は、親水性基と疎水性基
をもつ両親媒性化合物をクロロホルムやベンゼンなどの
高揮発性溶媒に溶解させ、これを水面上に展開させて溶
媒を揮発させ、一定の圧力で当該両親媒性化合物分子を
圧縮して単分子膜を形成し、これを固体基板上に順次移
し取って累積膜を形成することからなり、その詳細は例
えば日本化学会禰、新実験化学講座、第18巻、「界面
とコロイド」で述べられている。
In the Langmuir-Blodgett method, an amphiphilic compound with a hydrophilic group and a hydrophobic group is dissolved in a highly volatile solvent such as chloroform or benzene, and the solution is spread on the water surface to volatilize the solvent. The amphiphilic compound molecules are compressed to form a monomolecular film, and this is sequentially transferred onto a solid substrate to form a cumulative film.The details can be found in, for example, the Chemical Society of Japan, New Experimental Chemistry Course. , Volume 18, "Interfaces and Colloids".

ところで、フタロシアニン化合物は高揮発性溶媒のクロ
ロホルムやベンゼンなどの溶媒には溶解しないため、従
来、上述した方法でフタロシアニン化合物の単分子膜や
累積膜を形成することはできなかった。そこで例えばT
h1n 5olid Films、 9953  (1
983)  やI、E、巳、Proc、、  130 
 Pt、I、260  (1983)あるいはTh1n
 5olid Films、 134 109 (19
85)  に開示されているように、フタロシアニン環
にtert−ブチル基やプロピルアミノメチル基あるい
はアルコキシ基を導入してクロロホルムなどの高揮発性
の展開溶媒に可溶な下記に示されるフタロシアニン化合
物誘導体を合成して、単分子膜や累積膜を形成するとい
う方法が開発されていた。
By the way, since phthalocyanine compounds are not soluble in highly volatile solvents such as chloroform and benzene, conventionally it has not been possible to form a monomolecular film or a cumulative film of phthalocyanine compounds by the above-described method. So, for example, T
h1n 5olid Films, 9953 (1
983) Ya I, E, Snake, Proc,, 130
Pt, I, 260 (1983) or Th1n
5olid Films, 134 109 (19
85), a tert-butyl group, a propylaminomethyl group, or an alkoxy group is introduced into the phthalocyanine ring to produce the following phthalocyanine compound derivatives that are soluble in highly volatile developing solvents such as chloroform. A method of synthesizing them to form a monomolecular film or a cumulative film has been developed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこれらの方法によるフタロシアニン化合物
の単分子膜や累積膜の形成は、すでに述べたようにte
rt−ブチル基やプロピルアミノメチル基あるいはアル
コキシ基をフタロシアニン環に導入しなければならない
という欠点を有していた。
However, the formation of a monomolecular film or a cumulative film of phthalocyanine compounds by these methods is difficult as described above.
This method has the disadvantage that an rt-butyl group, propylaminomethyl group, or alkoxy group must be introduced into the phthalocyanine ring.

また、これらの方法によって形成された累積膜について
は、その膜の構造、すなわち累積膜であるゆえに累積膜
のさいたる特徴である膜中の分子配向くあるいは分子配
列)についてや、さらにはその分子配向を起因とする累
積膜の物性変化などの膜質に関して十分満足できるもの
ではなかった。
In addition, regarding the cumulative film formed by these methods, the structure of the film (i.e., because it is a cumulative film, the molecular orientation or molecular arrangement in the film, which is a characteristic of the cumulative film), and furthermore, the The film quality, such as changes in the physical properties of the cumulative film due to orientation, was not fully satisfactory.

本発明は、上述の点に鑑みてなされたものであって、フ
タロシアニン環にtert−ブチル基やプロピルアミノ
メチル基あるいはアルコキシ基などの置換基を導入する
ことなくフタロシアニン化合物を含有した展開溶液の作
製法ならびにそのフタロシアニン化合物を含有した単分
子膜および同累積膜の作製法を提供すると同時に、その
作製法によって得られるフタロシアニン化合物を含有し
た累積膜の可視吸収スペクトルがフタロンアニン化合物
を含有した蒸着膜の可視吸収スペクトルよりも長波長化
している当該累積膜を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and is capable of producing a developing solution containing a phthalocyanine compound without introducing a substituent such as a tert-butyl group, a propylaminomethyl group, or an alkoxy group into the phthalocyanine ring. At the same time, the visible absorption spectrum of the cumulative film containing the phthalocyanine compound obtained by the method is similar to that of the deposited film containing the phthalonanine compound. The object of the present invention is to provide a cumulative film having a wavelength longer than the absorption spectrum.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明によれば、フタロ
シアニン化合物を含有したラングミュア・ブロジェット
膜の可視吸収スペクトルがその蒸着膜の可視吸収スペク
トルよりも長波長化していることを特徴とするフタロシ
アニン化合物を含有したラングミュア・ブロジェット膜
からなる有機積層体、ならびにフタロシアニン化合物を
溶解する電子供与性の有機溶媒と揮発性の高い有機溶媒
との混合溶媒にフタロシアニン化合物と所定の種類のマ
トリックス材とを含有させた溶液をラングミニア・プロ
ジェット膜展開溶液とし、この展開溶液を水面上に展開
した後、所定の圧力で圧縮して単分子膜を形成し、この
単分子膜を固体基板上に順次累積させてラングミニア・
プロジェット膜からなる有機積層体の製造方法とする。
In order to achieve the above object, the present invention provides a phthalocyanine compound characterized in that the visible absorption spectrum of the Langmuir-Blodgett film containing the phthalocyanine compound has a longer wavelength than the visible absorption spectrum of the vapor-deposited film. A phthalocyanine compound and a predetermined type of matrix material are added to an organic laminate consisting of a Langmuir-Blodgett film containing the compound, and a mixed solvent of an electron-donating organic solvent and a highly volatile organic solvent that dissolve the phthalocyanine compound. The solution containing Langminia-Prodgett is used as a developing solution for Langminia-Prodgett membrane, and after this developing solution is developed on the water surface, it is compressed at a predetermined pressure to form a monomolecular film, and this monomolecular film is sequentially accumulated on a solid substrate. Let me, Langminia.
A method for manufacturing an organic laminate comprising a Project film.

〔作用〕[Effect]

本発明者らは、フタロシアニン化合物が溶解可能な溶媒
と揮発性が高い溶媒を混合することによりフタロシアニ
ン化合物を含有したラングミュア・ブロジェット膜展開
溶液を形成してそれを水面上に展開するならフタロシア
ニン化合物を含有した単分子膜を形成することができる
だろうという観点に立脚して種々の研究を重ねた結果、
フタロシアニン化合物を溶解することが可能な電子供与
性の有機溶媒と揮発性の高い有機溶媒を混合してラング
ミュア・ブロジェット膜展開溶液の溶媒とすることによ
りその目的を達成することができることを見いだし、こ
の知見にもとづいて本発明をなすに至った。
The present inventors believe that if a Langmuir-Blodgett membrane developing solution containing a phthalocyanine compound is formed by mixing a solvent in which the phthalocyanine compound can be dissolved and a highly volatile solvent, and the solution is developed on a water surface, the phthalocyanine compound As a result of various studies based on the viewpoint that it would be possible to form a monomolecular film containing
We have discovered that this objective can be achieved by mixing an electron-donating organic solvent capable of dissolving a phthalocyanine compound with a highly volatile organic solvent and using it as a solvent for a Langmuir-Blodgett membrane developing solution. The present invention was made based on this knowledge.

すなわち、本発明は一般式 %式% であられされる3例えばLi2Pc 、 MgPc、 
FePc。
That is, the present invention provides three compounds having the general formula %, such as Li2Pc, MgPc,
FePc.

CoPc、 ZnPc、 VOPcなどのフタロシアニ
ン化合物と、ステアリン酸やアラキン酸などの飽和直鎖
脂肪酸またはステアリン酸メチルエステルやアラキン酸
メチルエステルなどの飽和直鎮脂肪酸エステルあるいは
ω−トリコセン酸などの不飽和直鎖脂肪酸のすくなくと
も一種類以上からなるマトリックス材との所定量を、モ
ルホリンやニトロベンゼンあるいはピリジンなどの電子
供与性の有機溶媒とクロロホルムやベンゼンなどの揮発
性の高い有機溶媒との混合溶媒に溶解させてフタロシア
ニン化合物を含有したラングミュア・ブロジェット膜展
開溶液を形成し、当該展開溶液の所定量を清浄な水面上
に展開することにより単分子膜を形成しようとするもの
である。そしてまた、このようにして形成される水面上
の単分子膜を従来からよく知られているラングミニア・
プロジェット法(垂直浸漬法とも呼ばれる)および水平
付着法によりそれぞれY型累積膜とX型累積膜として例
えばガラス板や石英板やぶつ化カルシウム板あるいはI
TO(Indium Tin 0xide)ガラス板や
ネサガラス板さらにはまたSi WaferやGaAs
 Waferなどの固体基板上に累積して、フタロシア
ニン化合物が規則的に分子配列した有機積層体を形成し
、かつフタロシアニン化合物を含有した蒸着膜の電子ス
ペクトル(可視吸収スペクトル)よりも長波長化してい
る当該有機積層体およびその製造方法を提供しようとす
るものである。
Phthalocyanine compounds such as CoPc, ZnPc, and VOPc, and saturated straight chain fatty acids such as stearic acid and arachidic acid, saturated straight chain fatty acid esters such as stearic acid methyl ester and arachic acid methyl ester, or unsaturated straight chain fatty acids such as ω-tricosenic acid. Phthalocyanine is prepared by dissolving a predetermined amount of a matrix material consisting of at least one type of fatty acid in a mixed solvent of an electron-donating organic solvent such as morpholine, nitrobenzene, or pyridine, and a highly volatile organic solvent such as chloroform or benzene. This method attempts to form a monomolecular film by forming a Langmuir-Blodgett film developing solution containing a compound and spreading a predetermined amount of the developing solution on a clean water surface. Furthermore, the monomolecular film formed in this way on the water surface was
For example, glass plate, quartz plate, calcium oxide plate or I
TO (Indium Tin Oxide) glass plate, Nesa glass plate, and also Si Wafer and GaAs
When accumulated on a solid substrate such as a wafer, a phthalocyanine compound forms an organic laminate in which the molecules are regularly arranged, and the wavelength is longer than the electronic spectrum (visible absorption spectrum) of the vapor-deposited film containing the phthalocyanine compound. The present invention aims to provide the organic laminate and its manufacturing method.

〔実施例〕〔Example〕

以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

フタロシアニン化合物Li、Pc 、 MgPc、 F
ePc。
Phthalocyanine compounds Li, Pc, MgPc, F
ePc.

CoPc、 ZnPc、 VOPcの所定量を所定のモ
ルホリンとクロロホルムの混合溶媒に添加して、超音波
分散処理を施した。これらフタロシアニン化合物溶液の
可視吸収スペクトルを第1図(a)〜(f)に示す。同
スペクトルからいずれのフタロシアニン化合物もモルホ
リンとクロロホルムの混合溶媒に溶解していることがわ
かり、ラングミュア・ブロジェット膜展開溶液が形成で
きた。モルホリンのかわりにニトロベンゼンやピリジン
を用いたり、クロロホルムあるいはベンゼンを用いたい
ずれの組み合わせの混合溶媒に対してもい、Pc 、 
MgPc、 FePc。
Predetermined amounts of CoPc, ZnPc, and VOPc were added to a predetermined mixed solvent of morpholine and chloroform, and ultrasonic dispersion treatment was performed. The visible absorption spectra of these phthalocyanine compound solutions are shown in FIGS. 1(a) to (f). From the same spectrum, it was found that both phthalocyanine compounds were dissolved in a mixed solvent of morpholine and chloroform, and a Langmuir-Blodgett membrane developing solution was formed. Pc,
MgPc, FePc.

CoPc、 2nPc、 VOPcのフタロシアニン化
合物は上述と同様の可視吸収スペクトルを示し、ラング
ミュア・ブロジェット膜展開溶液が形成できた。
The phthalocyanine compounds of CoPc, 2nPc, and VOPc exhibited visible absorption spectra similar to those described above, and a Langmuir-Blodgett membrane developing solution could be formed.

そこでフタロシアニン化合物としてFePcを用い、マ
トリックス材としてアラキン酸を用い、モルホリンとク
ロロホルムの混合溶媒にそれらの所定量を添加して展開
溶液を形成し、当該展開溶液の所定量を清浄水面上に展
開して、表面圧−面積曲線(π−八へ線)を測定した。
Therefore, using FePc as the phthalocyanine compound and arachidic acid as the matrix material, a developing solution was formed by adding a predetermined amount of them to a mixed solvent of morpholine and chloroform, and a predetermined amount of the developing solution was developed on the surface of clean water. Then, a surface pressure-area curve (π-8 line) was measured.

第2図にそのπ−A直線を示す。FePc単独膜のもの
では曲線l、FePcとアラキン酸との混合割合がモル
比で1:1のものでは曲線2.同1:2のものでは曲線
3.同l:5のものでは曲線4.同1:10のものでは
曲線5となる。マトリックス材を混合しないFePc単
独膜では安定な凝縮膜を形成しないが、マトリックス材
を混合した混合膜では、マトリックス材の混合割合がF
ePcの1に対して1の混合膜では表面圧が39mN/
m付近まで安定な凝縮膜を形成し、さらにマトリックス
材の混合割合がFePcの1に対して2以上の混合膜で
は表面圧が50mN/m付近まで安定な凝縮膜を形成す
る。第3図は第2図のπ−八へ線での表面圧が10およ
び3(1m〜/lTlにおける分子占有面積をFePc
の含有量に対してプロットしたもので、表面圧10mN
/mの場合直線1となり、表面圧30mN/mの場合直
線2となる。表面圧が10mN/mにおけるプロットは
FePc単独の分子占有面積とマトリックス材であるア
ラキン酸単独の分子占有面積を結んだ直線上にのり、F
ePcとアラキン酸が分子レベルで均一に混合している
(理想混合状態)ことがうかがいしれる。また表面圧が
30mN/mのプロットから外挿法でFePc単独膜の
30mN/mにおける分子占有面積を求めると約38人
/分子と求まりフタロシアニン環の断面積とほぼ一致し
、当該混合単分子膜は表面圧がlQmN/m以上の凝縮
膜相領域でFePcおよびアラキン酸は水面に対してほ
ぼ垂直に配向していることがわかった。このようにフタ
ロシアニン化合物とマ) IJックス材の所定量を電子
供与性の有機溶媒と揮発性の高い有機溶媒との混合溶媒
に溶解させて展開溶液とすることにより、従来のter
t−ブチル基やプロピルアミノメチル基あるいはアルコ
キシ基などの置換基をフタロシアニン環に導入する方法
によらなくても、水面上に容易にかつ分子配向が制御さ
れたフタロシアニン化合物を含有した単分子膜が形成で
きる。なおLizPc 、 MgPc。
FIG. 2 shows the π-A straight line. Curve 1 for FePc single film, curve 2 for FePc and arachidic acid mixed at a molar ratio of 1:1. Curve 3 for the same 1:2 model. Curve 4 for the same l:5. Curve 5 is obtained when the ratio is 1:10. A single FePc film without a matrix material mixed in does not form a stable condensed film, but a mixed film with a matrix material mixed has a matrix material mixing ratio of F.
In a mixed film of 1 to 1 ePc, the surface pressure is 39 mN/
A stable condensed film is formed up to a surface pressure of around 50 mN/m, and a mixed film with a matrix material mixing ratio of 1 to 2 or more of FePc forms a stable condensed film up to a surface pressure of around 50 mN/m. Figure 3 shows the molecular occupied area of FePc at surface pressures of 10 and 3 (1 m~/lTl) on the π-8 line in Figure 2.
Plotted against the content of
/m, the straight line is 1, and when the surface pressure is 30 mN/m, the straight line is 2. The plot at a surface pressure of 10 mN/m is on a straight line connecting the molecular occupied area of FePc alone and the molecular occupied area of arachidic acid, which is a matrix material, and F
This suggests that ePc and arachidic acid are uniformly mixed at the molecular level (ideal mixed state). In addition, when the molecular occupied area at 30 mN/m of the FePc single film was determined by extrapolation from the plot at a surface pressure of 30 mN/m, it was found to be about 38 molecules/molecule, which is almost the same as the cross-sectional area of the phthalocyanine ring. It was found that FePc and arachidic acid were oriented almost perpendicularly to the water surface in the condensed film phase region where the surface pressure was 1QmN/m or more. In this way, by dissolving a predetermined amount of a phthalocyanine compound and IJx material in a mixed solvent of an electron-donating organic solvent and a highly volatile organic solvent to form a developing solution,
A monomolecular film containing a phthalocyanine compound with controlled molecular orientation can be easily formed on the water surface without using a method of introducing substituents such as t-butyl group, propylaminomethyl group, or alkoxy group into the phthalocyanine ring. Can be formed. Note that LizPc and MgPc.

FePc、 CoPc、 ZnPc、 VOPcのフタ
ロシアニン化合物と、モルホリンまたはニトロベンゼン
あるいはピリジンとクロロホルムまたはベンゼンからな
る混合溶媒とのいずれの組み合わせに対しても第2図と
同様なπ−八へ線が得られ、いずれのフタロシアニン化
合物も安定で分子配向が制御された凝縮単分子膜を形成
することができた。また、マトリックス材にアラキン酸
のかわりにアラキン酸メチルエステルあるいはω−トリ
コセン酸を用いた場合も同様の安定で分子配向が制御さ
れた凝縮単分子膜を形成することができた。
For any combination of a phthalocyanine compound such as FePc, CoPc, ZnPc, or VOPc and a mixed solvent consisting of morpholine, nitrobenzene, or pyridine and chloroform or benzene, a π-8 line similar to that shown in Fig. 2 is obtained. The phthalocyanine compound was also able to form a stable condensed monolayer with controlled molecular orientation. Furthermore, when arachidic acid methyl ester or ω-tricosenic acid was used as the matrix material instead of arachidic acid, a similarly stable condensed monomolecular film with controlled molecular orientation could be formed.

次に上述の方法にしたがって水面上にPePcとアラキ
ン酸のl:5の混合単分子膜を形成し、30mN/mの
表面圧に保持しながら、あらかじめアラキン酸カドミウ
ム単分子膜を3層累積して疎水化処理したガラス板を基
板に用い、ラングミュア・ブロジェット法と水平付着法
(いずれの累積法も前述の日本化学全編、新実験化学講
座、第18巻。
Next, a mixed monomolecular film of PePc and arachidic acid (1:5) was formed on the water surface according to the method described above, and three layers of cadmium arachidic acid monomolecular film were accumulated in advance while maintaining the surface pressure at 30 mN/m. The Langmuir-Blodgett method and the horizontal adhesion method (both accumulation methods are based on the aforementioned Nippon Chemistry Complete Edition, New Experimental Chemistry Course, Vol. 18) using a glass plate that has been hydrophobically treated as a substrate.

「界面とコロイド」に詳述されている)にしたがって当
該基板上にFePcとアラキン酸を1:5に混合したY
型累積膜およびX型累積膜を形成し、その可視吸収スペ
クトルを測定した。Y型累積膜の累積比(これも日本化
学全編、新実験化学講座。
Y containing a 1:5 mixture of FePc and arachidic acid on the substrate according to
A type cumulative film and an X type cumulative film were formed, and their visible absorption spectra were measured. Cumulative ratio of Y-type cumulative film (this is also from the entire Japanese Chemistry course, New Experimental Chemistry Course).

第18巻、「界面とコロイド」に詳述されている)はほ
ぼ1であった。第4図にY型累積膜ならびにX型累積膜
の波長?25nmにおける吸収強度と累積層数の関係を
示す。直線IはY型累積膜、直線2はX型累積膜のもの
である。いずれの累積膜の吸収強度も累積層数に対して
比例し、されにY型累積膜の吸収強度はX型累積膜のそ
れのほぼ2倍の値を示して、いずれの累積方法において
もFePcとアラキン酸のl:5の単分子膜が1層づつ
累積されていることがわかった。次に、第5図に30層
のY型同累積膜の電子スペクトルを曲線1で示す。
Volume 18, "Interfaces and Colloids") was approximately 1. Figure 4 shows the wavelengths of the Y-type cumulative film and the X-type cumulative film. The relationship between the absorption intensity at 25 nm and the cumulative number of layers is shown. Straight line I is for a Y-type cumulative film, and straight line 2 is for an X-type cumulative film. The absorption intensity of any cumulative film is proportional to the number of cumulative layers, and the absorption intensity of the Y-type cumulative film is approximately twice that of the X-type cumulative film. It was found that monomolecular films of l:5 and arachidic acid were accumulated one layer at a time. Next, in FIG. 5, curve 1 shows the electron spectrum of the same 30-layer Y-type cumulative film.

同図には比較のために曲線2でFePc蒸着膜のスペク
トルもあわせて示す。第5図で30層のY型同累積膜は
、FePcが水面に対してほぼ垂直に配向した単分子膜
の分子配向状態をそのままガラス基板上に維持している
、すなわちFePcがガラス基板上に分子オーダーでガ
ラス基板面に対しほぼ垂直かつ規則的に配列しているた
め、その電子スペクトルは比較用のFePc蒸着膜のス
ペクトルよりも極めて長波長化しているスペクトルを与
えることになることがわかった。このように7タロシア
ニン化合物とマトリックス材の所定量を溶解した電子供
与性の有機溶媒と揮発性の高い有機溶媒との混合溶液を
展開溶液に用いて形成したフタロシアニン化合物含有単
分子膜を、従来からよく知られている累積方法によって
容易に固体基板上に累積することにより、単分子膜の分
子配向を維持した状態の単分子膜が得られ、フタロシア
ニン化合物が固体基板面に対してほぼ垂直に分子配向す
るので、その結果、電子スペクトルが蒸着膜のそれより
も長波長化しているフタロシアニン化合物含有有機積層
体を形成できる。なお、FePcとアラキン酸の混合比
が1=5以外の1:2あるいは1:10の組成に対して
も1:5と同様の累積性に優れかつ電子スペクトルが長
波長化した良好な累積膜が形成でき、さらに前述のFe
Pc以外のフタロシアニン化合物に対してもFePcと
同様の良好な累積膜が形成できた。また、マトリックス
材にアラキン酸のかわりにアラキン酸メチルエステルあ
るいはω−トリコセン酸などの飽和直鎖脂肪酸または飽
和直鎖脂肪酸エステルあるいは不飽和直鎮脂肪酸を用い
た場合も同様の良好な累積膜を形成することができた。
The figure also shows the spectrum of the FePc deposited film as curve 2 for comparison. In Fig. 5, the 30-layer Y-type cumulative film maintains the molecular orientation state of a monomolecular film in which FePc is oriented almost perpendicular to the water surface on the glass substrate, that is, FePc is oriented on the glass substrate. It was found that because the molecules are arranged almost perpendicularly and regularly to the glass substrate surface, the electronic spectrum gives a spectrum with a much longer wavelength than the spectrum of the FePc vapor-deposited film for comparison. . In this way, a phthalocyanine compound-containing monomolecular film formed using a mixed solution of an electron-donating organic solvent and a highly volatile organic solvent in which a predetermined amount of a 7-thalocyanine compound and a matrix material are dissolved is used as a developing solution. By easily accumulating on a solid substrate using a well-known accumulation method, a monomolecular film can be obtained in which the molecular orientation of the monolayer is maintained, and the phthalocyanine compound is oriented almost perpendicularly to the solid substrate surface. As a result, a phthalocyanine compound-containing organic laminate whose electronic spectrum has a longer wavelength than that of the deposited film can be formed. In addition, even for compositions in which the mixing ratio of FePc and arachidic acid is 1:2 or 1:10 other than 1=5, a good cumulative film with excellent cumulative properties similar to 1:5 and whose electronic spectrum becomes longer wavelength can be obtained. can be formed, and furthermore, the above-mentioned Fe
A good cumulative film similar to that of FePc could be formed with phthalocyanine compounds other than Pc. A similar good cumulative film is also formed when saturated linear fatty acids, saturated linear fatty acid esters, or unsaturated linear fatty acids such as methyl arachidic acid or ω-tricosenic acid are used as the matrix material instead of arachidic acid. We were able to.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明はフタロシアニン化合
物を飽和直鎖脂肪酸または飽和直鎖脂肪酸エステルある
いは不飽和直鎖脂肪酸のすくなくとも一種類以上のマト
リックス材とともにモルホリンやニトロベンゼンあるい
はピリジンなどの電子供与性の有機溶媒とクロロホルム
やベンゼンなどの揮発性の高い有機溶媒との混合溶液に
溶解させて展開溶液を形成することにより、当該展開溶
液を水面上に展開すればフタロシアニン化合物とそのマ
トリックス材が水面にほぼ垂直に配向した単分子膜を形
成できるようになり、さらに従来の累積方法によって単
分子膜の分子配向を維持した状態の単分子累積膜が形成
されるため、電子スペクトルが蒸着膜よりも長波長化し
ている当該フタロシアニン化合物含有累積膜から構成さ
れる有機積層体が容易に形成できるようになる。
As explained above, the present invention combines a phthalocyanine compound with at least one matrix material of saturated linear fatty acids, saturated linear fatty acid esters, or unsaturated linear fatty acids, and an electron-donating organic compound such as morpholine, nitrobenzene, or pyridine. By dissolving the solvent in a mixed solution of a highly volatile organic solvent such as chloroform or benzene to form a developing solution, when the developing solution is spread on the water surface, the phthalocyanine compound and its matrix material are almost perpendicular to the water surface. It is now possible to form a monomolecular film oriented to An organic laminate composed of the phthalocyanine compound-containing cumulative film can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で述べたフタロシアニン化合物
の可視吸収スペクトルを示す線図で(a)はLi、Pc
  、  (b)は!JgPc、  (C)はFePc
、  (d)はCoPc、  (e)は2nPc、 (
f)はVOPcのフタロシアニン化合物の可視吸収スペ
クトルを表している。第2図は本発明の実施例で述べた
FePcとアラキン酸との混合単分子膜のπ−八へ線を
表す線図である。第3図は本発明の実施例で述べたFe
Pcとアラキン酸との混合単分子膜のπ−A#J線の表
面圧が10ωN/mと30m〜/mの分子占有面積とF
ePcの含を量との関係を表す線図、第4図は本発明の
実施例で述べたFePcとアラキン酸との混合累積膜の
波長725nmにおける吸収強度と累積層数との関係を
表す線図、第5図は本発明の実施例で述べたFePcと
アラキン酸との混合累積膜の電子スペクトルおよびFe
Pc蒸着膜の電子スペ(C) (d+ 累 図 O 分子占有面稽(入y分子) 第  2  図 FePc @有量(%) 第  3 図 第 図 波 長(nm) 第 図
FIG. 1 is a diagram showing the visible absorption spectrum of the phthalocyanine compound described in the examples of the present invention, and (a) shows Li, Pc
, (b) is! JgPc, (C) is FePc
, (d) is CoPc, (e) is 2nPc, (
f) represents the visible absorption spectrum of the phthalocyanine compound of VOPc. FIG. 2 is a diagram showing the π-8 line of the mixed monomolecular film of FePc and arachidic acid described in the example of the present invention. Figure 3 shows the Fe described in the embodiment of the present invention.
The surface pressure of the π-A#J line of the mixed monomolecular film of Pc and arachidic acid is 10ωN/m, the molecular occupied area of 30m~/m, and F
Figure 4 is a diagram showing the relationship between the content of ePc and the amount; Figure 4 is a line showing the relationship between the absorption intensity at a wavelength of 725 nm and the cumulative number of layers of the mixed cumulative film of FePc and arachidic acid described in the example of the present invention. Figure 5 shows the electronic spectrum of the mixed cumulative film of FePc and arachidic acid described in the example of the present invention and the
Electron spectrum of Pc deposited film (C) (d+ Cumulative diagram O Molecular occupancy surface (in y molecule) Figure 2 FePc @abundance (%) Figure 3 Figure Wavelength (nm) Figure

Claims (1)

【特許請求の範囲】 1)フタロシアニン化合物を含有したラングミュア・ブ
ロジェット膜の可視吸収スペクトルがその蒸着膜の可視
吸収スペクトルよりも長波長化していることを特徴とす
るフタロシアニン化合物を含有したラングミュア・ブロ
ジェット膜からなる有機積層体。 2)フタロシアニン化合物を溶解する電子供与性の有機
溶媒と揮発性の高い有機溶媒との混合溶媒にフタロシア
ニン化合物と、飽和直鎖脂肪酸、飽和直鎖脂肪酸エステ
ルおよび不飽和直鎖脂肪酸のうちいずれか一種類以上か
らなるマトリックス材とを含有させた展開溶液を形成し
、この展開溶液を水面上に展開した後、所定の圧力で圧
縮して固体基板上に移し取ってこの基板上に単分子膜を
形成し、続いて順次累積させて積層体とすることを特徴
とする有機積層体の製造方法。
[Scope of Claims] 1) A Langmuir-Blodgett film containing a phthalocyanine compound, characterized in that the visible absorption spectrum of the Langmuir-Blodgett film containing the phthalocyanine compound has a longer wavelength than the visible absorption spectrum of its vapor-deposited film. An organic laminate consisting of a jet film. 2) A phthalocyanine compound and one of saturated straight chain fatty acids, saturated straight chain fatty acid esters, and unsaturated straight chain fatty acids are added to a mixed solvent of an electron-donating organic solvent and a highly volatile organic solvent to dissolve the phthalocyanine compound. A developing solution containing a matrix material consisting of at least one type of matrix material is formed, and after this developing solution is developed on the water surface, it is compressed with a predetermined pressure and transferred onto a solid substrate, and a monomolecular film is formed on this substrate. 1. A method for producing an organic laminate, which comprises forming a laminate and then sequentially accumulating it to form a laminate.
JP8281288A 1988-01-21 1988-04-04 Organic laminated body and its production Pending JPH02847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8281288A JPH02847A (en) 1988-01-21 1988-04-04 Organic laminated body and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1118188 1988-01-21
JP63-11181 1988-01-21
JP8281288A JPH02847A (en) 1988-01-21 1988-04-04 Organic laminated body and its production

Publications (1)

Publication Number Publication Date
JPH02847A true JPH02847A (en) 1990-01-05

Family

ID=26346583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8281288A Pending JPH02847A (en) 1988-01-21 1988-04-04 Organic laminated body and its production

Country Status (1)

Country Link
JP (1) JPH02847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341117B1 (en) * 1999-09-10 2002-06-20 이성권 Power Supply for Electronic Door Lock and Method
US8531818B2 (en) 2008-12-08 2013-09-10 Panasonic Corporation Electric double layer capacitor and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341117B1 (en) * 1999-09-10 2002-06-20 이성권 Power Supply for Electronic Door Lock and Method
US8531818B2 (en) 2008-12-08 2013-09-10 Panasonic Corporation Electric double layer capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Guldi et al. Fullerene architectures made to order; biomimetic motifs—design and features
Etter et al. 1, 3-Bis (m-nitrophenyl) urea: An exceptionally good complexing agent for proton acceptors
Gryko et al. Synthesis of thiol-derivatized ferrocene− porphyrins for studies of multibit information storage
Imahori et al. Light-harvesting and photocurrent generation by gold electrodes modified with mixed self-assembled monolayers of boron− dipyrrin and ferrocene− porphyrin− fullerene triad
Raehm et al. Disulfide‐and Thiol‐Incorporating Copper Catenanes: Synthesis, Deposition onto Gold, and Surface Studies
Vincent Recent advances of fluorous chemistry in material sciences
Aoki et al. Effective photoinduced electron transfer in hetero-deposited redox polymer LB films
Taniguchi et al. Photoelectrochemical Response of Polymer Langmuir− Blodgett Films Containing Tris (2, 2 ‘-bipyridine) ruthenium (II) Complex
Palacin et al. Chemical reactivity in monolayers: study of an amphiphilic tetrapyridinoporphyrazine in Langmuir-Blodgett films
Roy et al. Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices
Ghosh-Mukerji et al. Controlled mass transport as a means for obtaining selective photocatalysis
Liu et al. Synthesis and film-forming properties of ethynylporphyrins
EP0481362A2 (en) Composite organic-inorganic superlattices
Jiang et al. Photochromic inorganic–organic multilayer films based on polyoxometalates and poly (ethylenimine)
DE3710569C2 (en)
Sakakibara et al. First Cellulose Langmuir‐Blodgett Films towards Photocurrent Generation Systems
Zinger et al. Spectroscopic studies of cationic dyes in Nafion®. Preliminary investigation of a new sensor for hydrophilic contamination in organic solvents
JPH02847A (en) Organic laminated body and its production
Wang et al. Effect of Subphase pH and Metal Ion on the Molecular Aggregates of Amphiphilic Ru Complexes Containing 2, 2 ‘: 6 ‘, 2 ‘‘-Terpyridine-4 ‘-phosphonic Acid at the Air− Water Interface
Godoy et al. Synthesis of a fluorescent BODIPY-tagged ROMP catalyst and initial polymerization-propelled diffusion studies
Ma et al. Rare earth doped β-diketone complexes as promising high-density optical recording materials for blue optoelectronics
Li et al. Self-assembly of single-walled carbon nanotube based on diazoresin
John et al. Self-assembled hybrid bilayers of palladium alkanethiolates
Watakabe et al. Wholly. pi.-Conjugated Z-Type Langmuir-Blodgett Films of Oligo (phenylenevinylene) sulfonamides
Liu et al. Supramolecular assemblies of Eu (TPyP) Pc at the air/water and air/Cd2+ aqueous solution interfaces