JPH0283712A - Traveling track controller for traveling object - Google Patents

Traveling track controller for traveling object

Info

Publication number
JPH0283712A
JPH0283712A JP63236874A JP23687488A JPH0283712A JP H0283712 A JPH0283712 A JP H0283712A JP 63236874 A JP63236874 A JP 63236874A JP 23687488 A JP23687488 A JP 23687488A JP H0283712 A JPH0283712 A JP H0283712A
Authority
JP
Japan
Prior art keywords
traveling
control device
azimuth
trajectory
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63236874A
Other languages
Japanese (ja)
Inventor
Michimochi Kagami
鏡 路以
Yoshiki Kato
義樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63236874A priority Critical patent/JPH0283712A/en
Publication of JPH0283712A publication Critical patent/JPH0283712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To surely travel a traveling object on a track by performing the switch between a position controller and a direction controller and furthermore setting a blind sector into the direction controller to set the steering angle at zero in the axial area of the blind sector. CONSTITUTION:A control switch command part 6 sets a changeover switch 7 at an azimuth controller to perform the azimuth control only in case the difference (xt-x) between the target position value (xt) and a detected position (x) is smaller than the value set previously. While a point is secured within a position control area is the difference (xt-x) is larger than the prescribed value. Thus a position controller is selected by the part 6 via the switch 7. Furthermore dt-d=0 is satisfied by a blind sector 10 in case the difference (dt-d) between the target azimuth value (dt) and a detected azimuth (d) is smaller than the prescribed value. As a result, a traveling object can be traveled on a track with no meandering.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は無人搬送車等の走行体の走行軌道制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a traveling trajectory control device for a traveling body such as an automatic guided vehicle.

[従来の技術] 走行体の自動走行もしくは無人走行では、走行軌道を反
射テープ等で物理的に与える方式が多く用いられている
が、この方式では本発明の制御装置を必要としないが、
物理的な走行軌道を設置する必要があったり、又は決め
られた軌道しか走れないという欠点があった。
[Prior Art] In automatic or unmanned running of a traveling object, a method of physically providing a traveling trajectory using reflective tape or the like is often used, but this method does not require the control device of the present invention.
It has the disadvantage that it requires the installation of a physical running track, or that it can only run on a predetermined track.

[発明が解決しようとする課題] 反射テープ等の物理的な走行軌道を走行せずに、教示等
による走行軌道を走行させる走行体では、外部から走行
体の位置座標方位を与えて走行体が走行軌道からずれる
のを防ぐ必要がある。ところが、位置すれと方位ずれの
両方を同時に制御すると、両者を相反する方向に制御せ
ざるを得ない場合が発生し、教示等の走行軌道上を走行
できなくなることが考えられる。
[Problems to be Solved by the Invention] In a traveling body that does not travel on a physical traveling track such as a reflective tape, but travels on a teaching track, etc., it is difficult to move the traveling body by giving the position coordinate direction of the traveling body from the outside. It is necessary to prevent it from deviating from the running track. However, if both positional deviation and azimuth deviation are controlled at the same time, there may be a case where the two have to be controlled in contradictory directions, and it is conceivable that the robot will not be able to travel on the teaching trajectory.

以上のような課題を解決するため、本出願人は次に述べ
るような発明を先に出願した(%願昭63−11394
号明細書〕。この先願のものは、走行体の自動走行もし
くは無人走行で教示等によシ与えられた走行軌道と外部
から与えられる走行体の現在の位置及び方位との偏差を
、その偏差量の大きさに基づき位置制御装置と方位1t
It制御装置を切換えて走行体の制御を行うものである
。ところが、このような先願の内容のものでは、走行軌
道を中心にして蛇行するという欠点があった。
In order to solve the above-mentioned problems, the present applicant previously filed an application for the following invention (%Application No. 11394/1983).
No. Specification]. This earlier application calculates the deviation between the traveling trajectory given by teaching etc. during automatic or unmanned running of the traveling body and the current position and orientation of the traveling body given from the outside, and calculates the deviation by the magnitude of the deviation. Based on position control device and orientation 1t
The vehicle is controlled by switching the It control device. However, the prior application had the disadvantage that it meandered around the running track.

そこで、本発明は従来の反射テープ等の物理的な走行軌
道を準備する必要がなく、走行体を教示等の走行軌道上
を無人走行もしくは自動走行させることができるととも
に、走行体を走行軌道に沿って蛇行させることなく走行
させることができる走行体の走行軌道制御装置を提供す
ることを目的とする。
Therefore, the present invention eliminates the need to prepare a physical running track using conventional reflective tape, etc., allows the running body to run unmanned or automatically on the running track for teaching purposes, and allows the running body to move along the running track. It is an object of the present invention to provide a traveling trajectory control device for a traveling body that can travel along a traveling body without meandering.

[昧題を解決するための手段」 本発明による走行体の走行軌道制御装置は、予め設定さ
れた走行体の走行軌道と現在の走行体の走行軌道とを比
較して位置偏差を検出する手段と、この手段によシ検出
された位置偏差が前記走行体の方位制御域内か又は域外
かに応じて方位制御装置か又はその内部に不感帯を設け
てあシ、この帯域では操舵角や零にする位置制御装置か
に切換えて前記走行体を制御する手段とを具備してなる
ものである。
[Means for Solving the Problem] The traveling trajectory control device for a traveling object according to the present invention includes a means for detecting a positional deviation by comparing a preset traveling trajectory of the traveling object with a current traveling trajectory of the traveling object. Then, depending on whether the positional deviation detected by this means is within or outside the azimuth control range of the traveling body, a dead zone is provided in the azimuth control device or inside the azimuth control device, and in this band, the steering angle and zero and a means for controlling the traveling body by switching between the position control device and the position control device.

[作用] 本発明によれば、制御対象となる走行体の走行軌道から
のずれ量に応じて位置制御装置と方位制御装置のいずれ
かに切換えることによシ、走行体の実位置が教示等の走
行軌道よシ大きくずれた場合は、まず位1M IglJ
御により走行体を教示等の走行軌道に近つけ、次に方位
制御によp、走行体を更に走行軌道に近づけた後、方位
制御装置内部の不感帯に走行体の操舵角を零に戻す制御
をするので、走行体を走行軌道に沿って確実に走行させ
ることが可能となシ、まだ走行体を走行軌道に沿って蛇
行させることなく走行きせることかり能となる。
[Function] According to the present invention, by switching between the position control device and the direction control device depending on the amount of deviation of the traveling object to be controlled from the traveling trajectory, the actual position of the traveling object can be taught, etc. If there is a large deviation from the running trajectory, the first thing to do is 1M IglJ.
The controller moves the vehicle closer to the teaching trajectory, and then uses azimuth control to bring the vehicle closer to the trajectory, and then returns the steering angle of the vehicle to zero in the dead zone inside the azimuth control device. Therefore, it is possible to reliably run the running body along the running track, and it is also possible to run the running body along the running track without meandering.

「実施例」 以下本発明を図面に示す一実施例に基づいて、具体的に
説明する。第1図は本発明の一実施例のシステムを示す
図で、走行体1に取9付けられた検出器2によって走行
体1の位置座標Xと方位座標dが検出される。この位置
座標Xと方位座標dおよび目標1直算出部3で算出され
た位置の目標値xtが制御装置4に入シ4の出力が駆動
部5を経て走行体1への入力となる。
"Example" The present invention will be specifically described below based on an example shown in the drawings. FIG. 1 is a diagram showing a system according to an embodiment of the present invention, in which the position coordinate X and azimuth coordinate d of the traveling body 1 are detected by a detector 2 attached to the traveling body 1. The position coordinate X, the azimuth coordinate d, and the target value xt of the position calculated by the target 1 direct calculation section 3 are input to the control device 4. The output of the input signal 4 is input to the traveling body 1 via the drive section 5.

本発明の一実施例における制御装置j!1.4の構成を
以下で説明する。位置x1位置の目標値xt、方位d及
び方位の目標値dtが制御装置4に入力される。
Control device j! in one embodiment of the present invention! The configuration of 1.4 will be explained below. The target value xt for the position x1, the orientation d, and the target value dt for the orientation are input to the control device 4.

制御切換指令部6は、位置の目標値xtと検出された位
置Xとの差xt−xがあらかじめ設定された値よシも小
さいとき、すなわち方位制御域内である場合は、切換ス
イッチ7を方位制御装置に接続させて、方位制御のみを
行なう。又、あらかじめ設定された値よシもxt−xが
大きい場合は位置制御域内となシ、制御切換指令部6に
よシ、切換スイッチ7を経て位置制御装置が選択される
。さらに、方位の目標値dtと検出された方位dとの差
dt−dがあらかじめ設定された値よシも小さい時は、
不感帯lOによシdt−d=oとされる。
When the difference xt−x between the target position value xt and the detected position It is connected to a control device to perform only azimuth control. Further, if xt-x is larger than the preset value, the position control device is selected by the control switching command section 6 via the changeover switch 7 if it is within the position control range. Furthermore, when the difference dt-d between the target direction value dt and the detected direction d is smaller than the preset value,
Due to the dead zone lO, dt-d=o.

尚、8のKp及び9のKdは各々位置の誤差xt−xと
方位の誤差d t−dの比例係数であシ、それぞれの値
は不感帯の関数と同様に希望する応答特性によシ設定す
る。
Note that Kp in 8 and Kd in 9 are proportional coefficients of the position error xt-x and the orientation error dt-d, respectively, and their respective values are set according to the desired response characteristics as well as the function of the dead zone. do.

第2図は位置の修正方向11と方位の修正方向12が逆
方向となる場合すなわち修正方向の矛盾を生じる場合で
も、従来の方式すなわち走行軌道13からのずれ世の大
きさによって位置制御装置と方位制御装置を切換える制
御方式でも目標走行軌道範囲内で走行体を走行させるこ
とは可能ではあるものの、走行体は目標走行軌道範囲内
で蛇行することを示すものである。
FIG. 2 shows that even when the position correction direction 11 and the azimuth correction direction 12 are opposite, that is, when there is a contradiction in the correction directions, the position control device can Although it is possible to make the traveling object travel within the target travel trajectory range even with a control method that switches the azimuth control device, this indicates that the travel object meander within the target travel trajectory range.

第3図は、走行平面上の制御切換域を示したもので走行
軌道13からの位置のずれ量が大きい場合は、位置制御
装置によシ走行体1が制御される位置制御域14となシ
位置のずれ量がある範囲よシも小さい場合は方位制御装
置によ逆制御される方位制御域15となる。父、方位制
御域内で走行軌道13からの方位のずれ量がある範囲よ
シも小さい場合は操舵角を零とする不感帯域16となる
FIG. 3 shows the control switching area on the running plane. If the amount of positional deviation from the running track 13 is large, the position control area 14 where the running body 1 is controlled by the position control device is changed. If the amount of deviation of the position is smaller than a certain range, the direction control area 15 is reversely controlled by the direction control device. If the amount of deviation of the direction from the travel trajectory 13 is smaller than a certain range within the direction control region, a dead zone 16 occurs in which the steering angle is zero.

このように制御装置を走行軌道13からのずれ量に基づ
いた制御装置を採用することに加え不感帯16を設ける
ことで、位置の修正方向と方位の修正方向が相反する場
合でも第4図に示すように走行軌道13上で走行体1を
走行させることができるのみならず走行体1の蛇行走行
を防止することが可能となる。
In this way, by adopting a control device based on the amount of deviation from the running track 13 and providing a dead zone 16, even when the direction of position correction and the direction of direction correction are contradictory, it is possible to correct the problem as shown in Fig. 4. Thus, not only can the traveling body 1 be run on the traveling track 13, but also it is possible to prevent the traveling body 1 from meandering.

第5図は本発明の一実施例の70−チャートを示す図で
位置データ及び方位データを入力した後、位置及び方位
の偏差を求め、位置偏差が方位制御装置以内に留まって
いる場合は、方位制御を行い、位置偏差が方位制御装置
内から外れた場合は位置制御を行う。又、方位偏差が不
感帯域16の範囲内にある場合は操舵角を零に戻す。こ
のようにして採用した制御によシ算出された制御量を駆
動部5に出力する。この動作をくシ返して制御を行う。
FIG. 5 is a diagram showing a 70-chart of an embodiment of the present invention. After inputting position data and orientation data, the deviation of the position and orientation is calculated, and if the position deviation remains within the orientation control device, Direction control is performed, and if the positional deviation is outside the direction control device, position control is performed. Furthermore, if the azimuth deviation is within the dead zone 16, the steering angle is returned to zero. The control amount calculated by the control adopted in this manner is output to the drive section 5. Control is performed by repeating this operation.

第6図はjI1図における走行体1の操舵制御を説明す
るための図であり、第6図(&)は従来すなわち走行軌
ノ弘らのずれ量の大きさに基づいて位置制御装置と方位
制御装置を切シ換える制御装置を用いた場合であシ、第
6図(b)は本発明による制御装置である。
FIG. 6 is a diagram for explaining the steering control of the traveling body 1 in FIG. In the case where a control device for switching the control device is used, FIG. 6(b) shows the control device according to the present invention.

[発明の効果コ 以上述べた本発kJAKよnば、制御対象となる走行体
の走行軌道からのずれ量に応じて位置制御装置と方位制
御装置の2つの制御装置を切換えることに加え、方位制
御装置内部に不感帯を設けその帯域では操舵角を零にす
るようにしている。従って、走行体の実位置が教示等の
走行軌道よシ大きくずれた場合はまず位置制御によシ走
行体を教示等の走行軌道に近付は次に方位制御によシ走
行体を更に走行軌道に近付けた後は、方位制御装置内部
の不感帯によシ走行体の操舵角を零に戻す制御を行うの
で、走行体を走行軌道に沿って蛇行させることなく走行
させることが可能となる走行体の軌道制御装置を提供で
きる。
[Effects of the Invention] According to the kJAK of the present invention described above, in addition to switching between the two control devices, the position control device and the direction control device, according to the amount of deviation of the traveling object to be controlled from the running trajectory, the direction control device A dead zone is provided inside the control device, and the steering angle is set to zero in that zone. Therefore, if the actual position of the moving object deviates significantly from the teaching trajectory, first position control is applied, and when the moving object approaches the teaching trajectory, the direction control is used to move the moving object further. After approaching the track, the steering angle of the vehicle is controlled to return to zero using the dead zone inside the azimuth control device, allowing the vehicle to travel along the trajectory without meandering. It can provide a body trajectory control device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による走行体の走行軌道制御装置の一実
施例の構成を示すブロック図、第2図は従来の制御方式
を用いたときの走行体の走行軌跡を示す図、第3図は第
1図に示す制御装置の切換設定域を示す図、第4図は第
1図に示す制御装置を採用した時の走行体の走行軌跡を
示す図、第5図は第1図における制御装置のフローチャ
ート図、第6図は第1図における走行体の操舵制御を説
明する為の図である。 1・・・走行体、2・・・位置・方位検出器、3・・・
目標値算出部、4・・・制御装置、5・・・駆動部、6
・・・制御切換指令部、7・・・切換スイッチ、10・
・・不感帯。
FIG. 1 is a block diagram showing the configuration of an embodiment of a traveling trajectory control device for a traveling object according to the present invention, FIG. 2 is a diagram showing a traveling trajectory of a traveling object when using a conventional control method, and FIG. 3 1 is a diagram showing the switching setting range of the control device shown in FIG. 1, FIG. 4 is a diagram showing the running trajectory of the traveling body when the control device shown in FIG. 1 is adopted, and FIG. 5 is a diagram showing the control device in FIG. 1. FIG. 6, a flowchart of the apparatus, is a diagram for explaining the steering control of the traveling body in FIG. 1. 1... Running object, 2... Position/direction detector, 3...
Target value calculation unit, 4... Control device, 5... Drive unit, 6
... Control switching command unit, 7... Changeover switch, 10.
...Dead zone.

Claims (1)

【特許請求の範囲】[Claims] 予め設定された走行体の走行軌道と現在の走行体の走行
軌道とを比較して位置偏差を検出する手段と、この手段
により検出された位置偏差が前記走行体の方位制御域内
か又は域外かに応じて方位制御装置か又はその内部に不
感帯を設けてあり、この帯域では操舵角を零にする位置
制御装置かに切換えて前記走行体を制御する手段とを具
備してなることを特徴とする走行体の走行軌道制御装置
A means for detecting a positional deviation by comparing a preset traveling trajectory of the traveling body with a current traveling trajectory of the traveling body, and whether the positional deviation detected by this means is within or outside the azimuth control range of the traveling body. A dead band is provided in the azimuth control device or inside the azimuth control device depending on the speed, and means for controlling the traveling body by switching to the position control device that makes the steering angle zero in this band. A traveling trajectory control device for a traveling body.
JP63236874A 1988-09-21 1988-09-21 Traveling track controller for traveling object Pending JPH0283712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236874A JPH0283712A (en) 1988-09-21 1988-09-21 Traveling track controller for traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236874A JPH0283712A (en) 1988-09-21 1988-09-21 Traveling track controller for traveling object

Publications (1)

Publication Number Publication Date
JPH0283712A true JPH0283712A (en) 1990-03-23

Family

ID=17007071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236874A Pending JPH0283712A (en) 1988-09-21 1988-09-21 Traveling track controller for traveling object

Country Status (1)

Country Link
JP (1) JPH0283712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108801A (en) * 2016-12-29 2018-07-12 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Method and system for improving stability of autonomous driving vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108801A (en) * 2016-12-29 2018-07-12 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Method and system for improving stability of autonomous driving vehicles

Similar Documents

Publication Publication Date Title
CN108473132B (en) Parking assistance system, parking assistance method, and program
US4904152A (en) Industrial robot
EP0055915A2 (en) Arm locus control method and apparatus
JPH06300581A (en) Control device for tracking vehicle course
EP0367527A3 (en) A method for controlling movements of a mobile robot in a multiple node factory
CN109204315A (en) Method, apparatus, storage medium and the electronic equipment of changing Lane
JPH08171416A (en) Apparatus and method for movement of robot through hall passage
Singh et al. Position Based Path Tracking for Wheeled Mobile Robots.
JPH0283712A (en) Traveling track controller for traveling object
EP0525951A2 (en) Automatic repositioning of mirrors mounted within concave-shaped boundaries
JP2781940B2 (en) Non-route guidance method for moving objects
JP2622579B2 (en) How to guide moving objects
EP0148425A3 (en) Method and apparatus for controlling robot
JPH064132A (en) Obstacle evading method for moving body
JP2837985B2 (en) Course guidance system for running objects
US20200159235A1 (en) Trajectory generation apparatus
Kozlowski et al. Local and global artificial potential functions in the control of mobile robots
JP2781559B2 (en) Traveling track control device
JPS62282303A (en) Controller for industrial robot
Pears et al. The steering control of an experimental autonomous vehicle
JPH0210408A (en) Guide method for intelligent robot
Tarin et al. Combining trajectory control and position control for autonomous mobile robot navigation
JPH02278311A (en) Changing method for guiding line of unmanned vehicle
JPH01223513A (en) Guide running device for moving body
JPS61193211A (en) Course guiding method for self-traveling object