JPH0280301A - Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell - Google Patents

Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell

Info

Publication number
JPH0280301A
JPH0280301A JP1159198A JP15919889A JPH0280301A JP H0280301 A JPH0280301 A JP H0280301A JP 1159198 A JP1159198 A JP 1159198A JP 15919889 A JP15919889 A JP 15919889A JP H0280301 A JPH0280301 A JP H0280301A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
reforming
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159198A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshioka
浩 吉岡
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH0280301A publication Critical patent/JPH0280301A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve compactness and heat transmitting characteristic of a fuel cell efficiently and inexpensively by connecting directly a fuel reforming apparatus constructed by laminating plural layers of specified composite reforming plates to the fuel cell through a common manifold. CONSTITUTION:A composite reforming plate 11 is constructed by arranging a gas impermeable plate 12, a conducting groove 13 for raw material gas 3 for reforming which is formed orthogonally on both surfaces of the gas impermeable plate 12, a conducting groove 15 for reformed fuel gas, reforming catalyst 14 in the groove 13, and combustion catalyst 16 in the groove 15. Then, a laminated body 10 is formed by building the reforming plate 11 in layers interposing a separating plate 21. A fuel reforming apparatus 20 is then constructed by attaching each manifold such as an inlet 17A of a raw material gas 3, inlet 18A of reformed fuel, outlet 18B, etc., to side surfaces of the laminated body 10. Thereafter, a power generating apparatus using the fuel cell is obtd. by connecting a fuel cell 2 to the apparatus 20 through the manifold 17B housing a heat exchanger therein, directly. Finally, raw material gas 3 for reforming contg. hydrocarbons is fed to the apparatus 20 and passed through the conducting groove 13, and power generating reaction is caused by introducing generated H2-rich reformed gas into the fuel gas groove of the fuel cell 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガスやメタノールなどの炭化水素を水素
に富む改質ガスに改質して燃料電池に供給する燃料改質
装置および燃料電池発電装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel reformer and a fuel cell that reform hydrocarbons such as natural gas and methanol into hydrogen-rich reformed gas and supply the reformed gas to a fuel cell. Regarding power generation equipment.

〔従来の技術〕[Conventional technology]

燃料電池発電装置は効率の高さ環境性の良さなどのs−
iを有し、コジェネレーション装置の本命として実用化
がはかられている。第5図に従来装置のガスフロー図を
示すように、燃料電池発電装置のうちの主構成部分であ
る燃料改質装置1は、天然ガスやメタノールなどの改質
原料3中の炭化水素を触媒のもとて水蒸気と反応させ、
燃料電池2に使用できるまでの水素濃度の改質ガス4に
変換して配管6を介して燃料電池2に送る装置である。
Fuel cell power generation equipment has many advantages such as high efficiency and environmental friendliness.
i, and efforts are being made to put it into practical use as a cogeneration device. As shown in FIG. 5, which shows a gas flow diagram of the conventional device, the fuel reformer 1, which is the main component of the fuel cell power generation device, catalyzes hydrocarbons in the reforming raw material 3 such as natural gas and methanol. Let it react with water vapor,
This is a device that converts the reformed gas 4 into hydrogen concentration enough to be used in the fuel cell 2 and sends it to the fuel cell 2 via a pipe 6.

炭化水素の水蒸気改質反応はメタンの場合は次式で表わ
される。
The steam reforming reaction of hydrocarbons is expressed by the following equation in the case of methane.

CH+2HO→CO2+4H2・・・・・・・・・ (
1)メタノールの場合は次式で表わされる。
CH+2HO→CO2+4H2・・・・・・・・・ (
1) In the case of methanol, it is expressed by the following formula.

CH30H+H20→CO2+3H2・・・・・・・・
・(2)上記反応はともに大きな吸熱反応であるため、
燃料電池2で発電に利用されなかった水素をオフガス4
Bとして配管7を介して改質装置に送りノクーナIBで
燃焼させ、その熱源としている。また反応空気5のオフ
空気5Bもバーナに送られて燃焼に利用される。
CH30H+H20→CO2+3H2・・・・・・・・・
・(2) Since both of the above reactions are large endothermic reactions,
Hydrogen that was not used for power generation in fuel cell 2 is converted into off-gas 4
B is sent to the reformer through the pipe 7 and burned in the nocuna IB to serve as its heat source. Further, off-air 5B of the reaction air 5 is also sent to the burner and used for combustion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来燃料改質装置としては、化学プラントなどで層積の
あるタイプ、つまりノ々−すを有した燃焼炉内に改質触
媒を充填した1重又は2重の改質反応管を設置し、燃焼
ガスからの対流伝熱あるいは燃焼時の放射伝熱で改質反
応に必要な熱を供給していた。しかし、この種の改質装
置では燃焼に必要な炉体積が必要なこと、改質触媒を充
填・した反応管の内側の伝熱律速で触媒量がある程度以
下には減らせないことなどにより燃料電池用改質装置と
して必要なコンパクト化が阻害される。
Conventional fuel reformers are of the stratified type, such as in chemical plants, in which a single or double reforming reaction tube filled with a reforming catalyst is installed in a combustion furnace with a nose. The heat required for the reforming reaction was supplied by convective heat transfer from the combustion gas or radiant heat transfer during combustion. However, this type of reformer requires a large furnace volume for combustion, and the amount of catalyst cannot be reduced below a certain level due to the rate-limiting heat transfer inside the reaction tube filled with the reforming catalyst. This impedes the compactness required for a reformer for industrial use.

これらの改良案として、燃焼バーナにかわって燃焼触媒
を用いたものが提案されているが(特開昭58−231
68号公報参照)、これも従来の反応管の中に触媒を充
填しているというfで改質触媒側の伝熱律速からは逃げ
られないものである。
As an improvement plan for these, a method using a combustion catalyst instead of a combustion burner has been proposed (Japanese Patent Laid-Open No. 58-231).
(Refer to Japanese Patent Application No. 68), this also cannot escape from the heat transfer rate limitation on the reforming catalyst side because the conventional reaction tube is filled with a catalyst.

一方メタノールの改質装置゛として、改質触媒をプレー
ト状に配してコンパクト(こしたもの(特開昭61−2
86204号公報参照)や、燃焼触媒と交互に積層した
もの(特開昭58−74504号公報参照)が提案され
ているが、これもケースの中に従来からの触媒を充填し
ているという点で上記と同じ欠点を有している。
On the other hand, as a methanol reformer, the reforming catalyst is arranged in the form of a plate to make it compact.
86204 (see Japanese Patent Publication No. 86204) and one in which combustion catalysts are alternately stacked (see Japanese Unexamined Patent Application Publication No. 1986-74504), the point is that this also uses a conventional catalyst filled in the case. has the same drawbacks as above.

また、燃料電池にはその電気負荷の要求tこ迅速に対応
できる応答性が求められるが、改質装置1と燃料電池2
が長い配管6を介して連結されているために、改質ガス
が配管6内を移動する時間遅れがあり、ことに起動、停
止の頻度が高い移動電源として燃料電池を使用する場合
には、この移動時間遅れによって燃料電池の負荷追従性
が阻害されるという問題がある。
In addition, fuel cells are required to have responsiveness that can quickly respond to electrical load demands, but the reformer 1 and fuel cell 2
Because the fuel cells are connected via long pipes 6, there is a time delay for the reformed gas to move through the pipes 6, especially when using a fuel cell as a mobile power source that starts and stops frequently. There is a problem in that the load followability of the fuel cell is inhibited by this travel time delay.

本発明の目的は、燃料電池発電装置に適したコンパクト
性を有し、しかも改質反応に必要な反応熱の伝熱特性に
優れ、かつ改質ガスの移動時間遅れの少い、燃料改質装
置を備えた燃料電池発電装置を得ることにある。
An object of the present invention is to provide a fuel reformer that is compact enough to be suitable for a fuel cell power generation device, has excellent heat transfer characteristics for the reaction heat necessary for the reforming reaction, and has a small movement time delay of reformed gas. An object of the present invention is to obtain a fuel cell power generation device equipped with a device.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、改質原
料中の炭化水素を水蒸気改質して水素リッチな改質ガス
を燃料電池に供給するものにおいて、ガス不透過板の両
面に互いに直交する方向にそれぞれ形成された前記改質
原料ガスの流通溝および改質燃料ガスの流通溝と、前記
改質原料ガスの流通溝内lこガス流と接触するようガス
不透過板に担持された改質触媒と、前記改質燃料ガスの
流通溝内Iこガス流と接触するようガス不透過板に担持
された前記改質燃料ガスの燃焼反応に活性を持つ燃焼触
媒とを有する複合改質板が複数層積層されてなるものと
し、かつ燃料改質装置の改質ガス出口側が燃料電池の改
質ガス入口側に共通のマニホールドを介して直結し、さ
らに必要に応じて共通のマニホールドがその内部に改質
ガスの温度を制御する熱交換器を包蔵すること、または
共通マニホールドを介して連結された燃料改質器および
燃料電池を基本モジュールとして、この基本モジュール
が複数モジュール組み合わすものとする。
In order to solve the above problems, according to the present invention, in a device that steam-reforms hydrocarbons in a reformed raw material and supplies hydrogen-rich reformed gas to a fuel cell, both sides of a gas impermeable plate are provided with The reforming material gas distribution groove and the reformed fuel gas distribution groove are respectively formed in orthogonal directions, and the reforming material gas distribution groove is supported on a gas impermeable plate so as to be in contact with the gas flow inside the reforming material gas distribution groove. and a combustion catalyst active in the combustion reaction of the reformed fuel gas supported on a gas impermeable plate so as to be in contact with the gas flow in the reformed fuel gas flow groove. The reformed gas outlet side of the fuel reformer is directly connected to the reformed gas inlet side of the fuel cell via a common manifold, and a common manifold is installed as necessary. A heat exchanger that controls the temperature of the reformed gas may be included inside the unit, or a fuel reformer and a fuel cell connected via a common manifold may be used as a basic module, and this basic module may be combined with multiple modules. do.

〔作用〕[Effect]

上記手段lこおいて、複合触媒板がその両側を互いに直
交する方向に流通する改質原料ガスおよび改質燃料ガス
それぞれに接して改質触媒および燃焼触媒を担持するよ
う構成したことにより、基板を境いlこして燃焼触媒側
で発生した改質燃料の燃焼熱を基板の熱伝導性を利用し
て改質触媒側の水蒸気改質反応に必要な反応熱として供
給することができるので、反応管を用いた従来装置にお
ける伝熱律速に縛られることなく効率よく反応熱を供給
できるとともに、バーナおよびその熱交換スペースが不
要となることにより、水蒸気改質装置がコンパクト化さ
れる。
In the above means, the composite catalyst plate is configured to support the reforming catalyst and the combustion catalyst in contact with the reforming raw material gas and the reformed fuel gas flowing in directions orthogonal to each other on both sides of the composite catalyst plate. The combustion heat of the reformed fuel generated on the combustion catalyst side can be supplied as the reaction heat necessary for the steam reforming reaction on the reforming catalyst side by using the thermal conductivity of the substrate. In addition to being able to efficiently supply reaction heat without being restricted by the heat transfer rate limitations of conventional devices using reaction tubes, the steam reforming device can be made more compact by eliminating the need for a burner and its heat exchange space.

また、燃料改質装置の改質ガスの出口側を共通の燃料ガ
スマニホールドによって燃料電池に連結すれば、改質ガ
スの移動時間遅れを短縮して燃料電池の負荷追従性を改
善できる。さらに、共通のマニホールド内に熱交換器を
設ければ、改質ガス温度を燃料電池の運転温度tこ合わ
せることが可能になる。また直結された装置を基本モジ
ュールとして必要に応じて複数モジュール組み合わせる
ことにより、種々の容量のコンパクト化された燃料電池
発電装置が得られる。
Furthermore, if the exit side of the reformed gas of the fuel reformer is connected to the fuel cell through a common fuel gas manifold, the time delay in movement of the reformed gas can be shortened and the load followability of the fuel cell can be improved. Furthermore, if a heat exchanger is provided in a common manifold, it becomes possible to match the temperature of the reformed gas by the operating temperature of the fuel cell. Further, by combining directly connected devices as a basic module and combining a plurality of modules as necessary, compact fuel cell power generation devices with various capacities can be obtained.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例である燃料改質装置を示す斜
視図であり1.積層体の要部を簡略化して示したもので
ある。図において、11は複合改質板であり、ガス不透
過板12と、その両面に互いtこ直交する方向に形成さ
れた改質原料ガス(水蒸気を含む)3の流通溝13およ
び改質燃料ガス(オフガス4Bと反応空気5の混合ガス
)の流通misと、流通溝13内にガス不透過板12に
より担持された改質触媒14と、流通溝15内にガス不
透過板12により担持された燃焼触媒16とで構成され
、複数層の複合改質板11が相互にセパレート板21を
介して積層されることにより、複合改質板の積層体10
が形成される。このように構成された積層体10は燃料
電池の積層体と類似した構造となってξす、したがって
積層体10の互いに対向する二対の側面それぞれ1こ図
示しないマニホールドを設け、流通溝13には水蒸気が
混合された天然ガスやアルコール類の蒸気等の改質原料
ガス3を、流通溝15側には改質燃料として燃料電池の
オフガス4Bおよびオフ空気5Bの混合ガスを送ること
により、燃焼触媒16側でのオフガス4Bの燃焼反応、
改質触媒14側での改質原料ガス3の水蒸気改質反応と
が燃焼反応lこよる燃焼熱を利用して同時に行われる。
FIG. 1 is a perspective view showing a fuel reformer according to an embodiment of the present invention. This is a simplified illustration of the main parts of the laminate. In the figure, 11 is a composite reforming plate, which includes a gas impermeable plate 12, a flow groove 13 for reforming raw material gas (including water vapor) 3 formed on both sides of the plate in directions orthogonal to each other, and reformed fuel. The gas (mixed gas of off-gas 4B and reaction air 5) mis, the reforming catalyst 14 supported by the gas-impermeable plate 12 in the flow groove 13, and the reforming catalyst 14 supported by the gas-impermeable plate 12 in the flow groove 15. A laminate 10 of composite reforming plates is constructed by stacking a plurality of layers of composite reforming plates 11 with separate plates 21 in between.
is formed. The stacked body 10 configured in this manner has a structure similar to that of a fuel cell. Therefore, one manifold (not shown) is provided on each of the two pairs of opposing sides of the stacked body 10, and the flow grooves 13 are provided with a manifold (not shown). The reformed raw material gas 3, such as natural gas or alcohol vapor mixed with water vapor, is sent to the flow groove 15 side as a reformed fuel, and a mixed gas of off-gas 4B and off-air 5B from the fuel cell is combusted. Combustion reaction of off-gas 4B on the catalyst 16 side,
A steam reforming reaction of the reforming raw material gas 3 on the reforming catalyst 14 side is performed simultaneously using the combustion heat generated by the combustion reaction.

複合改質板11は、改質原料によってガス不透過板12
の材質、触媒14を変える必要があるが、例えば天然ガ
スの場合にはコージライトやアルミナなどのセラミック
系プレートの両面にガス通路を設ける。
The composite reforming plate 11 has a gas impermeable plate 12 depending on the reforming raw material.
For example, in the case of natural gas, gas passages are provided on both sides of a ceramic plate such as cordierite or alumina.

また、流通溝13側にはニッケル系の改質触媒14を担
持させ、流通溝15側にはプラチナ、パラジウムなどの
貴金属系触媒を担持させる。この複合改質板をステンレ
ス鋼板などのセパレータ21を介して燃料電池に必要な
処理ガス量に応じて積層し、図示しないケースの中ζこ
おさめて改質装置とする。改質原料である天然ガスとス
チームが混合した改質原料3は流通路13を通過する間
に燃焼触媒14での燃焼熱−を受け、水素に富んだ改質
ガス4として出力される。この図かられかるように、本
発明では従来からの反応管という概念がなくなり、ガス
通路そのものが改質触媒となっているため改質触媒層内
の伝熱律速から完全に解放されている上に、同一ガス不
透過板の逆の面で触媒燃焼させているため燃焼熱が伝導
で伝わるというメリットがある。その上オフガスの燃焼
もガス通路内の燃焼触媒で行われ、燃焼炉のスペースが
必要なくなりコンパクトな改質装置となる。
Further, a nickel-based reforming catalyst 14 is supported on the flow groove 13 side, and a noble metal catalyst such as platinum or palladium is supported on the flow groove 15 side. This composite reforming plate is laminated with separators 21 such as stainless steel plates interposed therebetween in accordance with the amount of gas to be processed required for the fuel cell, and is placed in a case (not shown) to form a reforming device. The reformed raw material 3, which is a mixture of natural gas and steam, which is a reformed raw material, receives combustion heat from a combustion catalyst 14 while passing through a flow path 13, and is output as a hydrogen-rich reformed gas 4. As can be seen from this figure, in the present invention, the conventional concept of a reaction tube is eliminated, and the gas passage itself serves as the reforming catalyst, so it is completely free from the heat transfer rate limitation in the reforming catalyst layer. Another advantage is that catalytic combustion is carried out on the opposite side of the same gas-impermeable plate, so the heat of combustion is transferred by conduction. Furthermore, combustion of off-gas is also carried out by a combustion catalyst in the gas passage, eliminating the need for space in a combustion furnace and resulting in a compact reformer.

第2図は上述の実施例になる燃料改質装置を燃料電池に
組み合わせた状態を示す斜視図、第3図は第2図を上方
から見た平面図である。図において、複合改質板の積層
体10の側面に改質原料3の入口マニホールド17A%
およびこれと直交する側面に改質燃料の入口マニホール
ド18N、出口マニホールド18Bをそれぞれ気密に取
り付けた燃料改質装置20は、改質ガス4の出口側ζこ
なる側面が共通のマニホールド17Bを介して燃料電池
1の側面に直結され、共通のマニホールド17Bが燃料
電池1の改質ガス4の入口側マニホールドを兼ねるよう
構成され、燃料電池1の発電によって水素濃度が低下し
たオフガス4Bは出口側マニホールド4Bおよび配管7
Cを介して燃料改質装置20の改質燃料マニホールド1
8Aに流入する。また、入口マニホールド8八を介して
燃料電池1に流入した反応空気5は、オフ空気5Bとし
て出口マニホールド5B[よび配W8Cを介して燃料改
質装置20の改質燃料マニホールド18A(こオフガス
4Bとともに流入し、第1図1こおける燃焼触媒16と
接触してオフガス4B中の残水素が燃焼することにより
、改質原料3の水蒸気改質に必要な熱エネルギーを発生
する。なお、必要に応じて補助燃料9が供給される。
FIG. 2 is a perspective view showing a state in which the fuel reformer according to the above-described embodiment is combined with a fuel cell, and FIG. 3 is a plan view of FIG. 2 viewed from above. In the figure, an inlet manifold 17A% for the reforming raw material 3 is located on the side of the stacked body 10 of the composite reforming plate.
The fuel reformer 20 has an inlet manifold 18N and an outlet manifold 18B for the reformed fuel airtightly attached to the sides perpendicular thereto. A common manifold 17B that is directly connected to the side surface of the fuel cell 1 is configured to also serve as an inlet side manifold for the reformed gas 4 of the fuel cell 1, and off-gas 4B whose hydrogen concentration has decreased due to the power generation of the fuel cell 1 is transferred to the outlet side manifold 4B. and piping 7
The reformed fuel manifold 1 of the fuel reformer 20 via C
Flows into 8A. In addition, the reaction air 5 that has flowed into the fuel cell 1 via the inlet manifold 88 is transferred as off-air 5B to the reformed fuel manifold 18A of the fuel reformer 20 (along with the off-gas 4B) via the outlet manifold 5B [and distribution W8C]. The residual hydrogen in the off-gas 4B is combusted by flowing into the combustion catalyst 16 in FIG. Auxiliary fuel 9 is supplied.

上述のように、燃料加賀器20の流通溝13を改質原料
ガス3が通過することによって生成した改質ガスが共通
のマニホールド17Bによって配管を経由することなく
直接燃料電池1の燃料ガス溝に流入して発電反応に寄与
することにより、配管内で従来中じた移動時間遅れを大
幅に短縮できるので、負荷変動に対する追従性に優れた
燃料電池発電装置が得られるとともに、配管の省略によ
って省スペース化されたコンパクトな燃料電池発電装置
を得ることができる。
As described above, the reformed gas generated by the reformed raw material gas 3 passing through the flow groove 13 of the fuel converter 20 is directly supplied to the fuel gas groove of the fuel cell 1 by the common manifold 17B without passing through any piping. By flowing in and contributing to the power generation reaction, it is possible to significantly shorten the travel time delay that conventionally occurs within the piping, making it possible to obtain a fuel cell power generation system with excellent followability to load fluctuations, and to save money by omitting piping. A compact fuel cell power generation device that takes up less space can be obtained.

第4図はこの発明の異なる実施例の要部を簡単化して示
す平面図であり、燃料改質装置2oと燃料電池2とを連
結する共通のマニホールド17B内に熱交換器30を収
納した点が前述の実施例と異なり、改質ガスの温度が燃
料電池1の運転温度より高い場合、例えば常温の反応空
気5を熱交換器30の冷却媒体lこ利用して改質ガスの
温度を燃料電池の運転温度に近づける制御が可能になる
と同時に、反応空気の温度を燃料電池1の運転温度に近
づけて供給できるので、熱効率の高い燃料電池発電装置
を得ることができる。
FIG. 4 is a plan view showing a simplified main part of a different embodiment of the present invention, in which the heat exchanger 30 is housed in a common manifold 17B that connects the fuel reformer 2o and the fuel cell 2. However, unlike the above embodiment, if the temperature of the reformed gas is higher than the operating temperature of the fuel cell 1, for example, room temperature reaction air 5 is used as the cooling medium of the heat exchanger 30 to adjust the temperature of the reformed gas to the fuel cell. Since it is possible to control the temperature of the reaction air so as to bring it close to the operating temperature of the fuel cell 1 and at the same time to bring the temperature of the reaction air close to the operating temperature of the fuel cell 1, it is possible to obtain a fuel cell power generation device with high thermal efficiency.

一方、第2図または第4図のように燃料改質装置が燃料
電池に直結された発電装置を基本モジュールとして複数
台組み合わせて容量の大きい発電装置とすることにより
、基本モジュールがほぼ直方体であることを利用してコ
ンパクト化された大容量の発電装置を形成できる利点が
得られる。
On the other hand, as shown in Figure 2 or Figure 4, by combining multiple power generation devices with fuel reformers directly connected to fuel cells as a basic module to create a large capacity power generation device, the basic module is almost a rectangular parallelepiped. Taking advantage of this fact, an advantage can be obtained that a compact, large-capacity power generation device can be formed.

r発明の効果〕 この発明は前述のように、ガス不透過板の両面に形成さ
れた改質原料および改質燃料の流通溝それぞれに改質触
媒2よび燃焼触媒を配した複合改質板を積層し−ご燃料
改質装置の主要部を形成した。
[Effects of the Invention] As described above, the present invention includes a composite reforming plate in which a reforming catalyst 2 and a combustion catalyst are disposed in each of the reforming material and reformed fuel flow grooves formed on both sides of the gas impermeable plate. Laminated - formed the main part of the fuel reformer.

その結果、燃焼触媒側で発生した燃焼熱が熱伝導によっ
て改質触媒に効率よく伝わり、この燃焼熱が吸熱反応で
ある水蒸気改質反応の熱源として利用されるので、従来
装置で必要としたバーナおよびその燃焼炉が不要になり
改質装置のコンパクト化が可能になるとともに、ガス通
路が改質触媒層で形成されているために、従来技術で問
題となった改質触媒層内の伝熱律速から完全に解放され
、これに基づいて改質触媒量を低減できる利点が得られ
る。
As a result, the combustion heat generated on the combustion catalyst side is efficiently transferred to the reforming catalyst by thermal conduction, and this combustion heat is used as a heat source for the steam reforming reaction, which is an endothermic reaction. This eliminates the need for a combustion furnace, making the reformer more compact, and since the gas passage is formed of the reforming catalyst layer, heat transfer within the reforming catalyst layer, which was a problem with conventional technology, is achieved. This has the advantage of being completely freed from rate-determining, and based on this, the amount of reforming catalyst can be reduced.

また、このように構成された焼料改質装置の改質ガスの
出口側を、共通のマニホールドを介して燃料電池の改質
ガスの入口側に直結した場合Iこは、改質ガスの供給配
管が省略されて省スペース化された発電装置を提供でき
るとともに、改質ガスが配管内を移動するに要する時間
が大幅に短縮されることによって、負荷が要求する電力
の変動に対する追従性の優れた発電装置を得ることがで
きる。
In addition, if the reformed gas outlet side of the pyrotechnic reformer configured in this way is directly connected to the reformed gas inlet side of the fuel cell via a common manifold, the reformed gas supply It is possible to provide a power generation device that saves space by omitting piping, and because the time required for reformed gas to move through the piping is significantly shortened, it has excellent ability to follow fluctuations in the power required by the load. A power generation device can be obtained.

さらに、共通のマニホールド内に熱交換器を設けること
により、改質ガス温度と燃料電池の運転温度との差を縮
める制御が可能になるとともに、得られた熱エネルギー
を例えば反応空気を予熱する熱源として利用することが
できる。
Furthermore, by providing a heat exchanger in a common manifold, it is possible to control the difference between the reformed gas temperature and the operating temperature of the fuel cell, and use the obtained thermal energy as a heat source to preheat reaction air, for example. It can be used as

な2、上述のように構成された発電装置を基本モジュー
ルとして複数台組み合わせることにより、発電装置がほ
ぼ直方体であることを利用してコンパクト化された大容
量の発電装置を提供できる利点が得られる。
2. By combining multiple power generating devices configured as described above as a basic module, it is possible to provide a compact high-capacity power generating device by taking advantage of the fact that the power generating device is almost a rectangular parallelepiped. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例になる燃料電池の燃料改質装
置を示す斜視図、第2図は第1図に示す燃料改質装置を
燃料電池に組み合わせた状態を示す斜視図、第3図は第
2図を上方から見た平面図、第4図はこの発明の異なる
実施例を示す要部の平面図、第5図は従来の装置を示す
ガスフロー図である、 1.20・・燃料改質装置、2・・燃料電池、3・・・
改質原料(ガス)、4・・・改質ガス、4B・・・オフ
ガス、5・・反応空気、5B・・・オフ空気、7B、8
A。 8B・・・マニホールド、10・・・複合改質板の積層
体、11・・・複合改質板、12・・・ガス不透過板、
13.、。 流通溝(改質原料側)、14・・・改質触媒、15・・
流通溝(改質燃料側)、 ・・燃焼触媒、 第 閃 第3 爾 図 冨 区 葛 区
FIG. 1 is a perspective view showing a fuel reformer for a fuel cell according to an embodiment of the present invention, FIG. 2 is a perspective view showing a state in which the fuel reformer shown in FIG. 1 is combined with a fuel cell, and FIG. The figure is a plan view of FIG. 2 viewed from above, FIG. 4 is a plan view of main parts showing a different embodiment of the present invention, and FIG. 5 is a gas flow diagram showing a conventional device. 1.20.・Fuel reformer, 2...Fuel cell, 3...
Reforming raw material (gas), 4... Reformed gas, 4B... Off gas, 5... Reaction air, 5B... Off air, 7B, 8
A. 8B... Manifold, 10... Composite modification plate laminate, 11... Composite modification plate, 12... Gas impermeable plate,
13. ,. Distribution groove (reforming raw material side), 14... reforming catalyst, 15...
Distribution groove (reformed fuel side), ... combustion catalyst, 3rd flash, Ertufu District, Ge District

Claims (1)

【特許請求の範囲】 1)改質原料中の炭化水素を水蒸気改質して水素リッチ
な改質ガスを燃料電池に供給するものにおいて、ガス不
透過板の両面に互いに直交する方向にそれぞれ形成され
た前記改質原料ガスの流通溝および改質燃料ガスの流通
溝と、前記改質原料ガスの流通溝内にガス流と接触する
ようガス不透過板に担持された改質触媒と、前記改質燃
料ガスの流通溝内にガス流と接触するようガス不透過板
に担持された前記改質燃料ガスの燃焼反応に活性を持つ
燃焼触媒とを有する複合改質板が複数層積層されてなる
ことを特徴とする燃料電池の燃料改質装置。 2)燃料改質装置の改質ガス出口側が燃料電池の改質ガ
ス入口側に共通のマニホールドを介して直結されてなる
ことを特徴とする請求項1記載の燃料電池の燃料改質装
置を備えた燃料電池発電装置。 3)共通のマニホールドがその内部に改質ガスの温度を
制御する熱交換器を包蔵したことを特徴とする請求項2
記載の燃料電池発電装置。 4)共通マニホールドを介して連結された燃料改質器お
よび燃料電池を基本モジュールとして、この基本モジュ
ールが複数モジュール組み合わされてなることを特徴と
する請求項2また3記載の燃料電池発電装置。
[Scope of Claims] 1) In a device that steam-reforms hydrocarbons in a reforming raw material to supply a hydrogen-rich reformed gas to a fuel cell, the gas-impermeable plates are formed on both sides of the gas-impermeable plate in directions perpendicular to each other. a reforming catalyst supported on a gas impermeable plate so as to be in contact with the gas flow in the reforming material gas circulation groove; A plurality of composite reforming plates having a combustion catalyst active in the combustion reaction of the reformed fuel gas supported on a gas impermeable plate so as to be in contact with the gas flow in the reformed fuel gas distribution groove are laminated. A fuel reformer for a fuel cell characterized by: 2) A fuel reformer for a fuel cell according to claim 1, wherein the reformed gas outlet side of the fuel reformer is directly connected to the reformed gas inlet side of the fuel cell via a common manifold. fuel cell power generation device. 3) Claim 2, characterized in that the common manifold houses a heat exchanger therein for controlling the temperature of the reformed gas.
The fuel cell power generation device described. 4) The fuel cell power generation device according to claim 2 or 3, wherein a fuel reformer and a fuel cell connected via a common manifold are used as a basic module, and a plurality of basic modules are combined.
JP1159198A 1988-06-30 1989-06-21 Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell Pending JPH0280301A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-163009 1988-06-30
JP16300988 1988-06-30

Publications (1)

Publication Number Publication Date
JPH0280301A true JPH0280301A (en) 1990-03-20

Family

ID=15765461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159198A Pending JPH0280301A (en) 1988-06-30 1989-06-21 Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell

Country Status (1)

Country Link
JP (1) JPH0280301A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
US5270127A (en) * 1991-08-09 1993-12-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Plate shift converter
NL1001519C2 (en) * 1994-10-28 1998-07-29 Mtu Friedrichshafen Gmbh Fuel cell assembly with reformer.
CN1330035C (en) * 2004-06-29 2007-08-01 三星Sdi株式会社 Reformer, fuel cell system having the same, and method of manufacturing
JP2007277063A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor
US7691509B2 (en) 2004-06-23 2010-04-06 Samsung Sdi Co., Ltd. Reformer and fuel cell system having the same
US7807313B2 (en) * 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
JP2015090865A (en) * 2013-11-04 2015-05-11 スカンビア ホールディングス キプロス リミテッド Apparatus comprising fuel cell unit and component, and component unit and stack component for use in such apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918102A (en) * 1982-07-19 1984-01-30 Babcock Hitachi Kk Reaction apparatus for piled layer type catalytic combustion
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator
JPS62167203A (en) * 1986-01-16 1987-07-23 Hitachi Ltd Fuel reformer
JPS6351058A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918102A (en) * 1982-07-19 1984-01-30 Babcock Hitachi Kk Reaction apparatus for piled layer type catalytic combustion
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator
JPS62167203A (en) * 1986-01-16 1987-07-23 Hitachi Ltd Fuel reformer
JPS6351058A (en) * 1986-08-20 1988-03-04 Hitachi Ltd Fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109202A (en) * 1989-09-22 1991-05-09 Ngk Insulators Ltd Fuel reformer for fuel cell system
US5270127A (en) * 1991-08-09 1993-12-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Plate shift converter
NL1001519C2 (en) * 1994-10-28 1998-07-29 Mtu Friedrichshafen Gmbh Fuel cell assembly with reformer.
US7691509B2 (en) 2004-06-23 2010-04-06 Samsung Sdi Co., Ltd. Reformer and fuel cell system having the same
CN1330035C (en) * 2004-06-29 2007-08-01 三星Sdi株式会社 Reformer, fuel cell system having the same, and method of manufacturing
US7763220B2 (en) 2004-06-29 2010-07-27 Samsung Sdi Co., Ltd. Reformer, fuel cell system having the same, and method of manufacturing the same
US7807313B2 (en) * 2004-12-21 2010-10-05 Ultracell Corporation Compact fuel cell package
JP2007277063A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor
JP2015090865A (en) * 2013-11-04 2015-05-11 スカンビア ホールディングス キプロス リミテッド Apparatus comprising fuel cell unit and component, and component unit and stack component for use in such apparatus
KR20150051910A (en) * 2013-11-04 2015-05-13 스캄비아 홀딩스 키프로스 리미티드 Apparatus comprising a fuel cell unit and a component, a component unit and a stack component for use in such an apparatus

Similar Documents

Publication Publication Date Title
US4812373A (en) Fuel feed arrangement for a fuel cell generator
US5366819A (en) Thermally integrated reformer for solid oxide fuel cells
US7659022B2 (en) Integrated solid oxide fuel cell and fuel processor
JP2965275B2 (en) Fuel cell generator
CA2473449C (en) Solid oxide fuel cell system
US20070196704A1 (en) Intergrated solid oxide fuel cell and fuel processor
NO322074B1 (en) Reforming device and method for reforming a reactant for reaction compounds
EP1976047B1 (en) Fuel cell
JP2008521184A (en) Equipment for carrying out chemical reactions
US20090130533A1 (en) Fuel cell
JP2013175448A (en) Fuel cell system
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
US20020131919A1 (en) Modular fuel processing system for plate reforming type units
JPH0280301A (en) Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell
JP4797352B2 (en) Solid oxide fuel cell
JP2000344503A (en) Fuel reforming device
JP3118890B2 (en) Fuel cell power generator
JPS63291802A (en) Fuel reforming apparatus
JP4942292B2 (en) Power generator
JPH08301601A (en) Methanol reformer
JPH01239773A (en) Fuel cell power generating system
JPH1167258A (en) Fuel cell
JPH1092457A (en) Integral type fuel cell generating device
JP2006147517A (en) Power generating device
JPH10245573A (en) Apparatus for removing carbon monoxide from reformed gas