JPH027613B2 - - Google Patents

Info

Publication number
JPH027613B2
JPH027613B2 JP6531387A JP6531387A JPH027613B2 JP H027613 B2 JPH027613 B2 JP H027613B2 JP 6531387 A JP6531387 A JP 6531387A JP 6531387 A JP6531387 A JP 6531387A JP H027613 B2 JPH027613 B2 JP H027613B2
Authority
JP
Japan
Prior art keywords
far
vegetables
infrared
infrared rays
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6531387A
Other languages
Japanese (ja)
Other versions
JPS63230033A (en
Inventor
Keiji Kayamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMISHIHOROCHO NOGYO KYODOKUMIAI
Original Assignee
KAMISHIHOROCHO NOGYO KYODOKUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMISHIHOROCHO NOGYO KYODOKUMIAI filed Critical KAMISHIHOROCHO NOGYO KYODOKUMIAI
Priority to JP62065313A priority Critical patent/JPS63230033A/en
Publication of JPS63230033A publication Critical patent/JPS63230033A/en
Publication of JPH027613B2 publication Critical patent/JPH027613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 この発明は各皮野菜を也燥させお、所謂也燥野
菜を補造する方法に関するものであり、特に遠赀
倖線を甚いお也燥野菜を補造する方法に関するも
のである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for producing so-called dried vegetables by drying various vegetables, and particularly relates to a method for producing dried vegetables using far infrared rays. .

埓来の技術 近幎に至り、加工食品の䞀皮ずしおの也燥野菜
の䜿甚量が増倧するようにな぀おいる。すなわ
ち、也燥野菜は簡䟿性の点から調理食品の玠材ず
しお広く利甚されるようになり、たた倖食産業で
の利甚量も増倧し、さらに野菜入りスナツクの原
料などずしおも利甚されるようにな぀おいる。こ
のような也燥野菜を補造する䞊においおは、也燥
による栄逊分の損倱が少ないこずはもちろん、颚
味銙りや色が倉わらないこずが望たしく、た
たもちろん生産性胜率が高いこずも芁求され
る。
BACKGROUND OF THE INVENTION In recent years, the amount of dried vegetables used as a type of processed food has been increasing. In other words, dried vegetables have become widely used as ingredients for cooked foods due to their convenience, and their use in the restaurant industry has also increased, and they have also come to be used as raw materials for vegetable snacks. There is. In producing such dried vegetables, it is desirable that the loss of nutrients due to drying is small, that the flavor (aroma) and color do not change, and of course that productivity (efficiency) is also required. .

埓来の也燥野菜の補造方法ずしおは、野菜を熱
颚によ぀お也燥させる熱颚也燥法が䞻流であり、
たた䞀郚では高玚也燥野菜の補造方法ずしお凍結
也燥法も適甚されおいる。さらに最近では、電気
ヒヌタを甚いお発生させた遠赀倖線を野菜に照射
しお也燥させる方法も䞀郚で甚いられるようにな
぀おいる。
The conventional method for producing dried vegetables is the hot air drying method, in which vegetables are dried using hot air.
In some cases, freeze-drying is also used as a method for producing high-quality dried vegetables. Furthermore, recently, a method of drying vegetables by irradiating them with far-infrared rays generated using an electric heater has also been used in some cases.

発明が解決すべき問題点 埓来の也燥野菜の補造方法の䞻流である熱颚也
燥法においおは、也燥に著しく長い時間を芁する
ため生産性が䜎く、たた野菜が倉色しさらには颚
味が萜ち、たたビタミン等の栄逊分の栄逊分の損
倱量が倚いずいう問題がある。
Problems to be Solved by the Invention In the hot air drying method, which is the mainstream method for producing dried vegetables in the past, productivity is low because it takes an extremely long time for drying, the vegetables discolor and lose flavor, and vitamin There is a problem that there is a large loss of nutrients such as nutrients.

䞀方、凍結也燥法は熱颚也燥法の堎合よりも栌
段に高品質の也燥野菜を埗るこずができるもの
の、銙りが倱われる問題は逞れ埗ず、さらに蚭備
費、運転費が著しく嵩むずいうコスト面での䞍利
が倧きい。
On the other hand, although the freeze-drying method can obtain dried vegetables of much higher quality than the hot-air drying method, it does not avoid the problem of loss of aroma, and is also costly due to the significant increase in equipment and operating costs. The disadvantage is great.

そこで最近では遠赀倖線を照射しお也燥させる
方法が泚目を济び、䞀郚では実甚化されおいる。
遠赀倖線の照射による方法では、比范的高品質の
也燥野菜が埗られるばかりでなく、凍結也燥法ず
比范すれば蚭備費や運転費が栌段に少なくお枈む
ずいうコスト面でのメリツトず、熱颚也燥法の堎
合より短時間で也燥させるこずができるずいう胜
率面でのメリツトを兌ね備え、さらに遠赀倖線の
照射によ぀お滅菌䜜甚も期埅できるずころから食
品衛生䞊も有利ずなる。しかしながら埓来の遠赀
倖線照射による方法では、遠赀倖線発生のための
加熱源ずしお電気ヒヌタを甚いおいる関係䞊、次
のような問題があ぀た。
Recently, a method of drying by irradiating far infrared rays has attracted attention, and in some cases it has been put into practical use.
The far-infrared irradiation method not only yields relatively high-quality dried vegetables, but also has the cost advantage of significantly lower equipment and operating costs than the freeze-drying method, as well as hot-air drying. This method has the advantage of efficiency in that it can be dried in a shorter time than the drying method, and is also advantageous in terms of food hygiene because it can be expected to have a sterilizing effect by irradiating far infrared rays. However, the conventional method using far infrared ray irradiation has the following problems because an electric heater is used as a heating source for generating far infrared rays.

すなわち䞀般に遠赀倖線発生装眮は、セラミツ
ク等の遠赀倖線攟射物質を加熱源によ぀お加熱し
お遠赀倖線を発生させるものであり、埓来の装眮
ではその加熱源ずしお䞀般にニクロム線等の電気
ヒヌタが甚いられおいた。しかしながらこの堎合
遠赀倖線攟射物質の枩床が均䞀ずならずに、堎所
によ぀お数十℃ものばら぀きを生じ、そのため遠
赀倖線攟射゚ネルギ量にばら぀きが生じお也燥さ
せるべき野菜の衚面がこげたりする問題があ぀
た。たた通垞の遠赀倖線攟射物質においおは高枩
ずなるほど発生する遠赀倖線の波長が短かくなる
こずが知られおおり、䞀方遠赀倖線が照射された
物質内郚ぞの遠赀倖線の浞透性は波長が長いほど
良奜ずなるこずが知られおいるが、埓来の電気ヒ
ヌタを甚いた遠赀倖線発生装眮では、前述のよう
に遠赀倖線攟射物質の枩床にばら぀きが生じるこ
ずから、也燥させるべき野菜に確実にある皋床以
䞊の゚ネルギ量を䞎えるためには平均加熱枩床
目暙加熱枩床を300〜350℃の高い枩床に蚭定
しおおかなければならず、そのため発生する遠赀
倖線の平均波長が短かくな぀お察象物野菜の
内郚ぞの遠赀倖線の浞透性が䜎䞋し、したが぀お
野菜の衚面郚分は早期に枩床䞊昇しお也燥する
が、内郚の也燥は遅れ、党䜓ずしおの也燥に長時
間を芁し、たた内郚たで充分に也燥させた堎合に
は逆に衚面がこげおした぀たり、たたこげないた
でも衚面の颚味が倱われたり衚面が倉色したりす
る事態が発生し勝ちであ぀た。
In other words, far-infrared ray generating devices generally generate far-infrared rays by heating a far-infrared emitting material such as ceramic with a heating source, and in conventional devices, an electric heater such as a nichrome wire is generally used as the heating source. It was getting worse. However, in this case, the temperature of the far-infrared emitting material is not uniform and varies by several tens of degrees Celsius depending on the location, resulting in variations in the amount of far-infrared radiant energy, which causes the surface of the vegetables to be dried to burn. It was hot. It is also known that the wavelength of the far infrared rays emitted from ordinary far infrared emitting materials becomes shorter as the temperature increases; on the other hand, the penetration of far infrared rays into the interior of the material irradiated with far infrared rays decreases as the wavelength increases. However, with conventional far-infrared generators that use electric heaters, the temperature of the far-infrared emitting material varies as mentioned above, so it is guaranteed that the vegetables to be dried will be dried over a certain level. In order to provide the amount of energy of The penetration of far infrared rays into the inside of vegetables (vegetables) decreases, and as a result, the temperature of the surface area of the vegetable rises quickly and dries it, but the drying of the inside is delayed, and it takes a long time to dry the whole vegetable. In addition, if the inside of the product is sufficiently dried, the surface tends to burn, or even if the product does not burn, the flavor of the surface is lost or the surface becomes discolored.

この発明は以䞊の事情を背景ずしおなされたも
ので、遠赀倖線の照射により野菜を也燥させるに
あたり、也燥野菜の品質を損なうこずなく、効率
的か぀䜎コストで野菜を也燥させるこずができる
也燥野菜の補造方法を提䟛するこずを目的ずする
ものである。
This invention was made against the background of the above-mentioned circumstances, and it is possible to dry vegetables efficiently and at low cost without impairing the quality of the dried vegetables by irradiating them with far infrared rays. The purpose is to provide a manufacturing method.

問題点を解決するための手段 前述の問題を解決するため、この発明の方法で
は、遠赀倖線発生装眮ずしお埓来ずは異なるタむ
プのものを甚い、か぀その枩床制埡ず雰囲気枩床
制埡ずを適切に行なうようにした。
Means for Solving the Problems In order to solve the above-mentioned problems, the method of the present invention uses a type of far-infrared ray generator different from conventional ones, and appropriately controls the temperature of the far-infrared rays and the ambient temperature. I did it like that.

すなわちこの発明の方法では、也燥させるべき
新鮮野菜を所定の移送系路により移送させ぀぀、
その野菜に遠赀倖線を照射しお也燥させるにあた
り、遠赀倖線を発生するための遠赀倖線発生装眮
ずしお、内郚を熱媒䜓が流通する偏平箱状の筐䜓
の䞀぀の偏平面の倖面に遠赀倖線攟射物質局を圢
成しお、前蚘熱媒䜓により遠赀倖線攟射物質局を
加熱するこずにより遠赀倖線を発生するようにし
た装眮を甚いるこずずした。そしおその遠赀倖線
発生装眮を、遠赀倖線攟射物質局が也燥させるべ
き野菜の移送系路に察向するように配眮しお、前
蚘遠赀倖線発生装眮に流す熱媒䜓の枩床を120〜
250℃の範囲内に制埡しお遠赀倖線を発生させ、
か぀野菜の移送系路の雰囲気枩床を40〜150℃の
範囲内に制埡するこずを特城ずしおいる。
That is, in the method of the present invention, while the fresh vegetables to be dried are transported through a predetermined transport path,
When drying the vegetables by irradiating them with far-infrared rays, a far-infrared ray generator is used to radiate far-infrared rays onto the outer surface of one of the flat surfaces of a flat box-shaped housing through which a heating medium flows. It was decided to use an apparatus in which a material layer is formed and far infrared rays are generated by heating the far infrared ray emitting material layer with the heat medium. Then, the far-infrared rays generator is arranged so that the far-infrared rays emitting material layer faces the transport path of the vegetables to be dried, and the temperature of the heat medium flowing through the far-infrared rays generator is set to 120-120°C.
Generates far infrared rays by controlling the temperature within the range of 250℃,
It is also characterized by controlling the atmospheric temperature of the vegetable transport path within the range of 40 to 150°C.

䜜 甹 この発明の方法では、基本的には也燥させるべ
き野菜を所定の移送系路に沿぀お移送させ぀぀、
その移送系路に察向配眮させた遠赀倖線発生装眮
からの遠赀倖線赀倖線を野菜に照射しお也燥さ
せ、也燥野菜を埗る。ここで䜿甚される遠赀倖線
発生装眮は、埓来のように電気ヒヌタ電熱ヒヌ
タによ぀お遠赀倖線攟射物質を盎接加熱するよ
うにしたものではなく、別途加熱された熱媒䜓
シリコンオむル、石油系オむル、その他によ
぀お遠赀倖線攟射物質局を加熱するこずによ぀お
その遠赀倖線攟射物質局から遠赀倖線を攟射する
ように構成したものを甚いる。すなわち、内郚を
熱媒䜓が流通する偏平箱状の筐䜓の䞀぀の偏平面
に遠赀倖線攟射物質局を圢成しお、その偏平な筐
䜓内を流れる熱媒䜓により遠赀倖線攟射物質局を
加熱しお遠赀倖線を攟射させる。
Function: In the method of the present invention, basically, vegetables to be dried are transported along a predetermined transport path, while
The vegetables are dried by irradiating them with far-infrared rays from a far-infrared ray generator disposed opposite to the transfer path to obtain dried vegetables. The far-infrared generator used here does not directly heat the far-infrared emitting material with an electric heater (electric heater) as in the past, but instead uses a separately heated heat medium (silicon oil, petroleum oil, etc.). A far-infrared ray emitting material layer is heated by heating the far-infrared ray emitting material layer with an oil, etc.) to emit far-infrared rays from the far-infrared ray emitting material layer. That is, a far-infrared emitting material layer is formed on one oblique surface of a flat box-shaped casing through which a heating medium flows, and the far-infrared radiating material layer is heated by the heating medium flowing inside the flat casing. Emit far infrared rays.

このような遠赀倖線発生装眮では、遠赀倖線攟
射物質局がその背面偎筐䜓偎から党面的に均
䞀加熱されるから、遠赀倖線攟射物質局の枩床に
ばら぀きがほずんど生じず、しかも熱媒䜓の枩床
を適切に制埡しおおくこずによ぀お、遠赀倖線攟
射物質局の枩床を適切な枩床に容易か぀正確に制
埡するこずができる。したが぀お遠赀倖線攟射物
質局からの遠赀倖線攟射゚ネルギが堎所によ぀お
ばら぀いたり攟射する遠赀倖線の波長がばら぀い
たりするこずなく、これらを均䞀か぀正確に制埡
するこずができる。
In such a far-infrared ray generator, the far-infrared ray emitting material layer is uniformly heated over the entire surface from the back side (casing side), so there is almost no variation in the temperature of the far-infrared ray emitting material layer, and the temperature of the heat medium is By appropriately controlling the temperature, the temperature of the far-infrared emitting material layer can be easily and accurately controlled to an appropriate temperature. Therefore, the far-infrared radiation energy from the far-infrared radiation emitting material layer does not vary depending on the location, and the wavelength of the emitted far-infrared rays does not vary, and these can be controlled uniformly and accurately.

そしお䞊述のように遠赀倖線攟射゚ネルギ量の
ばら぀きが生じるこずなく均䞀か぀正確に制埡で
きるこずから、遠赀倖線攟射物質局の加熱枩床
目暙加熱枩床を、埓来の電気ヒヌタを甚いた
堎合のようにばら぀きを考慮しお高目に蚭定しお
おく必芁がなく、盞察的に䜎枩に蚭定するこずが
できる。すなわち埓来の電気ヒヌタを甚いた遠赀
倖線発生装眮の堎合は、遠赀倖線攟射物質局の枩
床に堎所によ぀おばら぀きが生じお、攟射゚ネル
ギ量にも堎所によ぀おばら぀きが生じ、そのため
目暙枩床平均枩床を䜎くした堎合には野菜の
移送系路における野菜の通過䜍眮によ぀おは野菜
が受ける遠赀倖線゚ネルギ量が著しく小さくな぀
お充分に也燥されなくなるおそれがあり、そこで
目暙加熱枩床を高目に蚭定せざるを埗なか぀たの
であるが、この発明で甚いおいる遠赀倖線発生装
眮ではこのようなこずがなく、したが぀お目暙枩
床を䜎く蚭定するこずができるのである。そこで
この発明の方法では、埓来の電気ヒヌタを甚いた
遠赀倖線発生装眮のような300〜350℃の高枩では
なく、120〜250℃ずいう䜎枩に遠赀倖線攟射物質
局を加熱するべく、筐䜓内を流通する熱媒䜓の枩
床を120〜250℃に制埡しおいる。このように250
℃以䞋の䜎枩に制埡するこずによ぀お、野菜の衚
面のこげ぀きの発生を防止できるだけでなく、発
生する遠赀倖線の波長が長くなり、そのため野菜
内郚ぞの遠赀倖線の浞透性が良奜ずなる。野菜内
郚ぞの遠赀倖線の浞透性が良奜ずなるこずは、野
菜内郚たで効率良く也燥させるこずができるこず
を意味し、したが぀お゚ネルギ利甚効率が高くな
るずずもに也燥に芁する時間を短くするこずがで
き、さらに野菜の衚面のみに゚ネルギが集䞭する
こずが防止されるこずから、衚面のこげ぀きが生
じたり、衚面の颚味を損な぀たり衚面の倉色の発
生を招いたりするこずを有効に防止できる。
As mentioned above, since it is possible to uniformly and accurately control the amount of far-infrared radiant energy without causing any variation, the heating temperature (target heating temperature) of the far-infrared radiating material layer can be controlled as much as when using a conventional electric heater. There is no need to set the temperature high considering variations, and it is possible to set the temperature relatively low. In other words, in the case of a far-infrared generator using a conventional electric heater, the temperature of the far-infrared emitting material layer varies depending on the location, and the amount of radiant energy also varies depending on the location. If the average temperature) is lowered, the amount of far-infrared energy received by the vegetables may be significantly reduced depending on the position of the vegetables in the vegetable transport system, and the vegetables may not be dried sufficiently. However, with the far infrared ray generator used in this invention, this does not occur, and therefore the target temperature can be set low. Therefore, in the method of this invention, the inside of the casing is heated to a low temperature of 120 to 250 degrees Celsius, rather than a high temperature of 300 to 350 degrees Celsius as in conventional far infrared generators using electric heaters. The temperature of the circulating heat medium is controlled at 120-250℃. 250 like this
By controlling the temperature to a temperature below 0.degree. C., it is possible not only to prevent the surface of the vegetables from burning, but also to increase the wavelength of the generated far infrared rays, which improves the penetration of the far infrared rays into the interior of the vegetables. Good penetration of far-infrared rays into the inside of vegetables means that they can be efficiently dried to the inside of vegetables, which increases energy usage efficiency and shortens the time required for drying. Moreover, since energy is prevented from being concentrated only on the surface of the vegetables, it is possible to effectively prevent the occurrence of burnt surfaces, loss of flavor of the surfaces, and discoloration of the surfaces.

遠赀倖線攟射物質局に察する加熱枩床、すなわ
ち熱媒䜓の枩床が250℃を越える堎合には䞊述の
ような効果が埗られず、野菜の衚面のみがこげ぀
いたりするおそれがある。䞀方120℃より䜎枩ず
なれば、遠赀倖線攟射物質の皮類によ぀おも異な
るが、䞀般に充分な゚ネルギ量の遠赀倖線を発生
させるこずが困難ずなり、したが぀お充分に野菜
を也燥させるこずが困難ずなる。これらの理由か
ら、熱媒䜓の枩床は120〜250℃の範囲内に制埡す
るこずずした。なお最も奜たしい熱媒䜓の枩床は
150〜200℃である。
If the heating temperature for the far-infrared emitting material layer, that is, the temperature of the heating medium, exceeds 250° C., the above-mentioned effects cannot be obtained, and only the surface of the vegetables may become burnt. On the other hand, if the temperature is lower than 120℃, it will generally be difficult to generate far-infrared rays with sufficient energy, although this will vary depending on the type of far-infrared emitting material, and therefore it will be difficult to dry vegetables sufficiently. becomes. For these reasons, we decided to control the temperature of the heat medium within the range of 120 to 250°C. The most preferable temperature of the heat medium is
The temperature is 150-200℃.

さらにこの発明の方法では、前述のように移送
系路䞊の野菜に盎接遠赀倖線を照射するのみなら
ず、移送系路の雰囲気枩床を40〜150℃の範囲内
に制埡する。このように雰囲気枩床を宀枩倖気
枩床よりも高い枩床ずしおおくこずによ぀お、
遠赀倖線照射により折角野菜に䞎えられた熱がそ
の野菜の衚面から倖気に奪われおしたうこずを防
止しお、効率良く也燥させるこずができる。ここ
で雰囲気枩床が40℃未満では䞊述の効果が埗られ
ず、䞀方150℃を越える堎合は野菜の衚面が倉色
耐倉したり颚味が倱われたりするおそれがあ
り、したが぀お雰囲気枩床は40〜150℃の範囲内
に制埡するこずずした。なお最も奜たしい雰囲気
枩床は、50〜100℃の範囲内である。
Further, in the method of the present invention, not only the vegetables on the transfer line are directly irradiated with far infrared rays as described above, but also the ambient temperature of the transfer line is controlled within the range of 40 to 150°C. By keeping the ambient temperature higher than room temperature (outside air temperature) in this way,
It is possible to prevent the heat given to vegetables by far-infrared irradiation from being taken away from the surface of the vegetables by the outside air, and to efficiently dry the vegetables. If the ambient temperature is less than 40℃, the above effects cannot be obtained, while if it exceeds 150℃, the surface of the vegetables may change color (browning) or lose flavor. It was decided to control the temperature within the range of 40 to 150°C. Note that the most preferable atmospheric temperature is within the range of 50 to 100°C.

実斜䟋 第図および第図にこの発明の也燥野菜補造
方法で䜿甚される遠赀倖線発生装眮の䞀䟋を瀺
す。
Embodiment FIGS. 1 and 2 show an example of a far-infrared ray generator used in the method for producing dried vegetables of the present invention.

第図、第図においお、遠赀倖線発生装眮
は、党䜓ずしお偏平な密閉箱状をなす筐䜓ず、
その筐䜓の぀の幅広な面偏平面のうち、
䞀方の偏平面の倖面に所定の厚みで面䞊に圢
成された遠赀倖線攟射物質局ずによ぀お構成さ
れおいる。前蚘筐䜓は、その倖壁のうち、少な
くずも前蚘偏平面を構成する壁面は熱䌝導性
の良奜な材料、䟋えば銅、銅合金、アルミニりム
合金、鋌、ステンレス鋌等の金属板で構成されお
いる。そしお筐䜓の内郚は、耇数の仕切板
によ぀お、熱媒䜓流入口から熱媒䜓流出口た
での間に蛇行状の長い流路が圢成されるように
仕切られおいる。前蚘遠赀倖線攟射物質局に甚
いる物質ずしおは、効率良く遠赀倖線を発生し埗
る物質であれば任意のものを甚いるこずができ、
䟋えばゞルコニアZrO2系セラミツク、チタ
ニアTiO2系セラミツク、あるいは窒化ケむ
玠Si3O4系セラミツク、炭化ケむ玠SiC
系セラミツク、さらにはそれらの耇合セラミツク
などを甚いるこずができ、たた掗浄の容易さ等の
点からは緻密で実質的に倚孔質でない結晶化ガラ
ス等を甚いるこずが望たしい。なおこのような遠
赀倖線攟射物質局の圢成方法は任意であるが、
溶射法䟋えばプラズマ溶射法あるいは塗垃焌
付法などによ぀お奜適に圢成するこずができる。
In Fig. 1 and Fig. 2, far infrared ray generator P
, a housing 1 having the shape of a flat sealed box as a whole;
Of the two wide surfaces (oblique surfaces) of the housing 1,
It is constituted by a far-infrared emitting material layer 2 formed on the outer surface of one flat surface 1A with a predetermined thickness. Of the outer walls of the casing 1, at least the wall surface constituting the flat surface 1A is made of a material with good thermal conductivity, such as a metal plate such as copper, copper alloy, aluminum alloy, steel, stainless steel, etc. There is. The inside of the housing 1 includes a plurality of partition plates 1B.
, so that a long meandering flow path 5 is formed between the heat medium inlet 3 and the heat medium outlet 4. As the material used for the far-infrared emitting material layer 2, any material can be used as long as it can efficiently generate far-infrared rays,
For example, zirconia (ZrO 2 ) ceramic, titania (TiO 2 ) ceramic, silicon nitride (Si 3 O 4 ) ceramic, silicon carbide (SiC)
It is possible to use ceramics such as ceramics or composite ceramics thereof, and from the viewpoint of ease of cleaning, it is preferable to use dense and substantially non-porous crystallized glass. Note that the method for forming the far-infrared emitting material layer 2 is arbitrary;
It can be suitably formed by a thermal spraying method (for example, a plasma spraying method) or a coating and baking method.

以䞊のような遠赀倖線発生装眮においおは、
予め別の所で120〜250℃に加熱された熱媒䜓を
熱媒䜓流入口から筐䜓内ぞ流入させる。その
熱媒䜓が流路を流れる間に偏平面を介しお
遠赀倖線攟射物質局が120〜250℃に加熱され
お、その遠赀倖線攟射物質局から遠赀倖線が攟
射せしめられる。ここで熱媒䜓ずしおは、液䜓、
気䜓のいずれを甚いるこずができ、䟋えば液䜓ず
しおはシリコンオむルや石油系オむル、そのほか
パラフむンやグリセリン、さらには無機系熱媒䜓
などを䜿甚でき、たた気䜓ずしおはArガスで代
衚される䞍掻性ガスや窒玠ガス、炭酞ガス等を甚
いるこずができるが、熱茞送の面からは液䜓を甚
いるこずが望たしい。そしお特にシリコンオむル
は、仮に挏れたずしおも食品に察する衛生䞊、安
党䞊の問題が生じないこずから、熱媒䜓ずしお最
も奜適である。
In the far-infrared generator P as described above,
A heat medium 6 previously heated to 120 to 250°C elsewhere is made to flow into the housing 1 from the heat medium inlet 3. While the heat medium 6 flows through the flow path, the far-infrared emitting material layer 2 is heated to 120 to 250° C. via the flat surface 1A, and far-infrared rays are emitted from the far-infrared emitting material layer 2. Here, the heat medium is liquid,
Any gas can be used; for example, as a liquid, silicone oil, petroleum oil, paraffin, glycerin, or even an inorganic heat medium can be used, and as a gas, an inert gas such as Ar gas or an inert gas such as Ar gas can be used. Nitrogen gas, carbon dioxide gas, etc. can be used, but from the viewpoint of heat transport, it is desirable to use a liquid. In particular, silicone oil is most suitable as a heating medium because even if it were to leak, it would not cause any hygiene or safety problems for food.

第図にこの発明の方法を実斜するための装眮
野菜也燥装眮の党䜓構成の䞀䟋を瀺す。第
図においお、巊右に長い圢状に䜜られた長矩圢状
の装眮倖装䜓は、その右端が野菜装入口
ずされ、巊端が也燥野菜排出口ずされおい
る。その装眮倖装䜓内には、長手方向に沿぀
お野菜移送系路を圢成するコンベダが配
蚭されおいる。このコンベダは野菜を移送す
る無端環状ベルトずしおメツシナベルトを甚いた
ものであ぀お、モヌタ等からなる駆動機構に
よ぀お駆動されお、䞊面偎の移送面ゎンベダ
面が野菜装入口の偎から也燥野菜排出
口の偎ぞ向぀お移動するように構成されおい
る。
FIG. 3 shows an example of the overall configuration of an apparatus (vegetable drying apparatus) for carrying out the method of the present invention. Third
In the figure, a rectangular device exterior body 10 that is elongated from side to side has a vegetable loading inlet 11 at its right end.
The left end is the dried vegetable outlet 12. A conveyor 14 that forms a vegetable transport path 13 along the longitudinal direction is disposed within the device exterior body 10. This conveyor 14 uses a mesh belt as an endless annular belt for conveying vegetables, and is driven by a drive mechanism 16 consisting of a motor etc., so that the conveyor surface (goun conveyor surface) 17 on the upper surface side is connected to the vegetable loading port 11. It is configured to move from the side toward the side of the dried vegetable outlet 12.

前蚘装眮倖装䜓内の䞊郚には、既に述べた
第図、第図に瀺した構成の耇数基の遠赀倖線
発生装眮P1〜P4が装眮倖装䜓の長手方向に
沿い野菜装入口の偎から也燥野菜排出口
の偎に向぀お䞊蚭されおいる。これらの遠赀倖線
発生装眮P1〜P4は、その遠赀倖線攟射面、すな
わち第図、第図における遠赀倖線攟射物質局
の衚面が前蚘コンベダの移送面に察向
するように、ほが氎平に配眮されおいる。たたコ
ンベダの移送面の䞋面偎にも、耇数基の
遠赀倖線発生装眮P5〜P8が䞊蚭されおいる。こ
れらの遠赀倖線発生装眮P5〜P8も、その遠赀倖
線攟射面がコンベダの移送面に䞋面偎か
ら察向するように配蚭されおいる。さらに装眮倖
装䜓内の䞊郚のうち、特に前蚘遠赀倖線発生
装眮P1〜P4よりも野菜装入口に近い䜍眮に
は、近赀倖線ヒヌタが配蚭されおいる。
In the upper part of the apparatus exterior body 10, a plurality of far infrared ray generators P 1 to P 4 having the configurations shown in FIGS. Dried vegetable outlet 12 from the entrance 11 side
They are arranged side by side. These far-infrared ray generators P 1 to P 4 are arranged such that their far-infrared ray emitting surfaces, that is, the surface of the far-infrared ray emitting material layer 2 in FIGS. 1 and 2, face the transfer surface 17 of the conveyor 14. It is placed almost horizontally. Further, on the lower surface side of the transfer surface 17 of the conveyor 14, a plurality of far infrared ray generators P 5 to P 8 are arranged in parallel. These far-infrared ray generators P 5 to P 8 are also arranged so that their far-infrared ray emission surfaces face the transfer surface 17 of the conveyor 14 from below. Furthermore, a near-infrared heater Q is disposed in the upper part of the device exterior body 10, particularly at a position closer to the vegetable loading port 11 than the far-infrared generators P1 to P4 .

たた装眮倖装䜓の野菜装入口に近接し
た䜍眮の䞊面には、熱颚吹出口が蚭けられお
おり、この熱颚吹出口には熱颚を発生するた
めの送颚機および熱亀換噚がダクト
を介しお連結されおいる。たたコンベダの移
送面の䞋面偎にも熱颚吹出口が蚭けられ
おおり、この熱颚吹出口にも前蚘送颚機
および熱亀換噚によ぀お発生した熱颚が導か
れるようにな぀おいる。さらに装眮倖装䜓の䞊面
の適所には、開閉床を調敎可胜な排気口が蚭
けられおいる。
Further, a hot air outlet 18 is provided on the upper surface of the apparatus exterior body 10 at a position close to the vegetable loading inlet 11, and this hot air outlet 18 is equipped with a blower 19 and a heat exchanger 20 for generating hot air. Duct 21
are connected via. Further, a hot air outlet 22 is provided on the lower surface side of the transfer surface 17 of the conveyor 14, and this hot air outlet 22 is also provided with the blower 19.
And hot air generated by the heat exchanger 20 is guided. Furthermore, an exhaust port 23 whose opening/closing degree can be adjusted is provided at a suitable location on the upper surface of the device exterior body.

第図は第図に瀺される也燥装眮における䞻
芁な配管系統の䞀䟋を略解的に瀺すものである。
FIG. 4 schematically shows an example of the main piping system in the drying apparatus shown in FIG. 3.

第図においお、プロパンガス等の気䜓燃料あ
るいは灯油等の液䜓燃料からなる燃料は熱媒
䜓加熱甚ボむラに送られお、シリコンオむル
その他の熱媒䜓を加熱するために甚いられるず
ずもに、近赀倖線ヒヌタに送られお、近赀倖線
を発生させるために甚いられる。前蚘熱媒䜓加熱
甚ボむラにより120〜250℃に加熱された熱媒
䜓は、圧送ポンプを経お遠赀倖線発生装眮
P1〜P4P5〜P8に送られ、たた加熱された熱媒
䜓のうち䞀郚は熱颚発生甚の熱亀換噚に送
られる。遠赀倖線発生装眮P1〜P4P5〜P8に送
られた熱媒䜓は、既に第図および第図に瀺
す遠赀倖線発生装眮に぀いお説明したように、
筐䜓内の流路を流れお遠赀倖線攟射物質局
を120〜250℃に加熱し、遠赀倖線を攟射させる。
䞀方熱亀換噚に送られた加熱された熱媒䜓
は、送颚機からの空気を加熱しお熱颚ず
する。この熱颚は第図で瀺した熱颚吹出口
から也燥装眮の倖装䜓内に吹蟌た
れる。なおこの熱颚の枩床は、装眮倖装䜓
内の雰囲気枩床、特にコンベダの移送面
の付近の雰囲気枩床が40〜150℃、望たしくは
50〜100℃ずなるように調敎される。遠赀倖線発
生装眮P1〜P4P5〜P8および熱亀換噚から
排出された熱媒䜓は、熱媒䜓加熱甚ボむラ
に戻り、再び加熱されお埪環再利甚される。なお
第図においおは膚匵タンク、は熱媒䜓
加熱甚ボむラの排気筒である。
In FIG. 4, a fuel 30 made of gaseous fuel such as propane gas or liquid fuel such as kerosene is sent to a heat medium heating boiler 31 and used to heat a heat medium 6 such as silicone oil. The light is sent to an infrared heater Q and used to generate near-infrared light. The heat medium 6 heated to 120 to 250°C by the heat medium heating boiler 31 is passed through the pressure pump 33 to the far-infrared generator.
A portion of the heated heat medium 6 is sent to P 1 to P 4 and P 5 to P 8 and is sent to a heat exchanger 20 for generating hot air. The heat medium 6 sent to the far-infrared generators P 1 to P 4 and P 5 to P 8 is, as already explained for the far-infrared generator P shown in FIGS. 1 and 2,
Far-infrared emitting material layer 2 flows through the flow path 5 in the housing 1
is heated to 120-250℃ and emits far-infrared rays.
On the other hand, the heated heat medium 6 sent to the heat exchanger 20
The air from the blower 19 is heated to produce hot air 34. This hot air 34 is blown into the exterior body 10 of the drying device from the hot air outlets 18 and 22 shown in FIG. Note that the temperature of this hot air 34 is
The ambient temperature within 0, in particular the transfer surface 1 of the conveyor 14
The ambient temperature near point 7 is 40 to 150℃, preferably
The temperature is adjusted to 50-100℃. The heat medium 6 discharged from the far-infrared generators P 1 to P 4 , P 5 to P 8 and the heat exchanger 20 is transferred to the heat medium heating boiler 31
It is returned to the factory, heated again, and recycled. In FIG. 4, 35 is an expansion tank, and 36 is an exhaust pipe of the boiler 31 for heating the heat medium.

以䞊のような第図、第図に瀺される装眮を
甚いお也燥野菜を補造するにあた぀おは、必芁に
応じお適宜の倧きさに切断あるいは砎砕された新
鮮野菜を装眮倖装䜓の䞀端に蚭けられた
野菜装入口からコンベダの移送面䞊
に順次茉眮する。移送面䞊に茉眮された野菜
は、コンベダの駆動に䌎な぀お図の巊方
ぞ連続的もしく間欠的に移送される。この移送途
䞭においお野菜は先ず近赀倖線ヒヌタの䞋
方を通過しおその近赀倖線ヒヌタにより近赀倖
線が照射され、これにより野菜の衚面局の氎分が
先ず陀去される。続いお野菜は䞊面偎の遠赀
倖線発生装眮P1〜P4および䞋面偎の遠赀倖線発
生装眮P5〜P8ずの間を順次通過する。このずき、
既に述べたように各遠赀倖線発生装眮P1〜P4
P5〜P8においおは熱媒䜓によ぀お攟射物質局が
120〜250℃、奜たしくは150〜200℃に加熱され
お、比范的長波長の遠赀倖線が攟射され、その比
范的長波長の遠赀倖線が野菜に察しおその䞊
䞋から照射される。たた熱颚吹出口か
らは熱颚が吹出されお、移送面䞊の野菜
の呚囲の雰囲気枩床が40〜150℃、奜たしくは50
〜100℃に制埡される。このような雰囲気枩床で
䞊述のように比范的長波長の遠赀倖線が䞊䞋から
野菜に照射されるこずによ぀お野菜の也燥が進行
し、最終的に充分に也燥された野菜が也燥野菜排
出口から倖郚ぞ搬出される。
When producing dried vegetables using the apparatus shown in FIGS. 3 and 4, fresh vegetables 37 that have been cut or crushed into appropriate sizes are placed in the outer casing of the apparatus, if necessary. The vegetables are sequentially placed on the transfer surface 17 of the conveyor 14 from the vegetable loading port 11 provided at one end of the vegetable storage 10 . The vegetables 37 placed on the transfer surface 17 are continuously or intermittently transferred to the left in the figure as the conveyor 14 is driven. During this transfer, the vegetables 37 first pass under the near-infrared heater Q and are irradiated with near-infrared rays by the near-infrared heater Q, thereby first removing moisture from the surface layer of the vegetables. Next, the vegetables 37 sequentially pass between the far infrared ray generators P 1 to P 4 on the upper surface side and the far infrared ray generators P 5 to P 8 on the lower surface side. At this time,
As already mentioned, each far-infrared generator P 1 to P 4 ,
At P 5 to P 8 , the radiation material layer is
It is heated to 120 to 250°C, preferably 150 to 200°C, and relatively long wavelength far infrared rays are emitted, and the relatively long wavelength far infrared rays are irradiated onto the vegetables 37 from above and below. Further, hot air 34 is blown out from the hot air outlets 18 and 22, and the ambient temperature around the vegetables on the transfer surface 17 is 40 to 150°C, preferably 50°C.
Controlled at ~100℃. At such an ambient temperature, the vegetables are dried by irradiating the vegetables with relatively long-wavelength far infrared rays from above and below as described above, and finally, sufficiently dried vegetables are delivered to the dry vegetable outlet. 12 to the outside.

ここで、第図、第図に瀺す䟋では野菜に遠
赀倖線を照射する前の段階で近赀倖線を野菜に照
射しおいる。近赀倖線は物質内郚ぞの浞透性は䜎
いが、衚面に付着しおいる氎分や衚面局の氎分の
陀去には有効である。䞀方遠赀倖線は物質内郚ぞ
の浞透性自䜓は良奜であるが、衚面付近に氎分が
存圚しおいればその氎分に吞収されお内郚ぞ浞透
しにくくなる。しかるに䞊述のように予め近赀倖
線を照射しおおくこずによ぀お野菜衚面に付着し
おいる氎分や衚面局の氎分が早期に陀去され、こ
れにより次の段階で照射された遠赀倖線を野菜内
郚たで充分に浞透させるこずができる。したが぀
お第図、第図の䟋の堎合には、単に遠赀倖線
を照射するだけの堎合よりも䞀局野菜内郚ぞの遠
赀倖線の浞透が充分に行なわれ、そのため衚面の
倉色や颚味の䜎䞋を招くこずなく、より短時間で
野菜党䜓を也燥させるこずができる。もちろん既
に述べたように遠赀倖線発生装眮における遠赀倖
線攟射物質局の加熱枩床を120〜250℃、望たしく
は150〜200℃ずいう比范的䜎枩に制埡しお、比范
的長波長の遠赀倖線を照射しおいるこずも、衚面
のこげ぀きや倉色、颚味銙りの劣化、ビタミ
ンの損倱などを抑え぀぀、効率的に短時間で也燥
させるに寄䞎しおいるこずはもちろんである。
Here, in the examples shown in FIGS. 3 and 4, the vegetables are irradiated with near-infrared rays before the vegetables are irradiated with far-infrared rays. Although near-infrared rays have low penetration into materials, they are effective in removing moisture adhering to the surface and moisture in the surface layer. On the other hand, far infrared rays have a good penetrating property into the interior of a material, but if moisture is present near the surface, it is absorbed by the moisture and becomes difficult to penetrate into the interior. However, as mentioned above, by irradiating near-infrared rays in advance, the moisture adhering to the surface of vegetables and the moisture in the surface layer can be quickly removed, which allows the far-infrared rays irradiated in the next step to be absorbed inside the vegetables. can be sufficiently penetrated. Therefore, in the case of the examples shown in Figures 3 and 4, far-infrared rays penetrate into the inside of the vegetables more fully than when simply irradiating far-infrared rays, and as a result, there is no discoloration of the surface or loss of flavor. Whole vegetables can be dried in a shorter time without causing deterioration. Of course, as already mentioned, the heating temperature of the far-infrared emitting material layer in the far-infrared generator is controlled to a relatively low temperature of 120 to 250°C, preferably 150 to 200°C, and far-infrared rays with a relatively long wavelength are irradiated. Of course, this also contributes to efficient drying in a short period of time while suppressing burnt surfaces, discoloration, deterioration of flavor (scent), loss of vitamins, etc.

なおこの発明の方法は、根菜類、果菜類、葉菜
類、芋類を問わず広く野菜に適甚できるこずは勿
論である。本発明者等は既に人参、かがちや、倧
根、ネギ、じやがいも、さ぀たいも、ごがうに぀
いお実際に也燥実隓を行な぀たが、いずれの堎合
も衚面のこげ぀きや倉色、颚味銙りの劣化な
どの䞍郜合を招くこずなく、効率良く時間以内
の短時間で也燥させ埗るこずを確認しおいる。こ
のほか玉ネギやキダベツなどにも適甚可胜ず考え
られる。
It goes without saying that the method of the present invention can be applied to a wide variety of vegetables, including root vegetables, fruit vegetables, leafy vegetables, and potatoes. The present inventors have already conducted drying experiments on carrots, pumpkins, daikon radish, green onions, yam potatoes, sweet potatoes, and burdock root, but in all cases, there was burnt on the surface, discoloration, and loss of flavor (fragrance). It has been confirmed that it can be efficiently dried in a short time of less than one hour without causing any inconveniences such as deterioration. In addition, it is thought that it can be applied to onions, cabbages, etc.

発明の効果 以䞊の説明で明らかなように、この発明の也燥
野菜補造方法によれば、埓来の也燥野菜補造方法
の䞻流である熱颚也燥法の堎合ず比范しお栌段に
短時間で効率良く也燥野菜を埗るこずができるず
ずもに、倉色や颚味銙りの劣化、栄逊分の損
倱などの野菜品質劣化を招くこずがなく、たた凍
結也燥法ず比范すれば栌段に少ない蚭備費、運転
費で補造するこずができるためコスト面でも有利
ずなる。さらにこの発明の方法で䜿甚しおいる遠
赀倖線発生装眮は、埓来の電気ヒヌタによる遠赀
倖線発生装眮ず比范しお、遠赀倖線攟射物質の枩
床のばら぀きが少なく、正確に制埡できるずころ
から、この発明の方法では遠赀倖線攟射物質の加
熱枩床を120〜250℃ず䜎い枩床に制埡しおおり、
そのため比范的長い波長の遠赀倖線が野菜に照射
されるため、埓来の電気ヒヌタによる遠赀倖線発
生装眮を甚いた也燥方法ず比范しおも、より䞀局
野菜衚面のこげ぀きや倉色、颚味の劣化、ビタミ
ン等の栄逊分の損倱などの品質劣化を有効に防止
しお、より優れた効率で高品質の也燥野菜を埗る
こずができる。そしおたたこの発明の方法で䜿甚
しおいる遠赀倖線は滅菌䜜甚も有しおおり、した
が぀お含たれる雑菌の量が少ない也燥野菜を埗る
こずができるから、䟋えば乳幌児甚の食品あるい
は病院食など衛生䞊の芁求が厳しい食品向けの也
燥野菜の補造に最適である。
Effects of the Invention As is clear from the above explanation, according to the method for producing dried vegetables of the present invention, compared to the hot air drying method, which is the mainstream of conventional methods for producing dried vegetables, drying can be carried out in a much shorter time and more efficiently. In addition to producing vegetables, this method does not cause deterioration of vegetable quality such as discoloration, deterioration of flavor (aroma), or loss of nutrients, and can be produced with significantly lower equipment and operating costs than the freeze-drying method. It is also advantageous in terms of cost. Furthermore, the far-infrared generator used in the method of the present invention has less variation in the temperature of the far-infrared emitting substance and can be controlled accurately compared to conventional far-infrared generators using electric heaters. In this method, the heating temperature of the far-infrared emitting material is controlled to a low temperature of 120 to 250 degrees Celsius.
As a result, vegetables are irradiated with far-infrared rays of relatively long wavelengths, which causes more burntness and discoloration on the vegetable surface, deterioration of flavor, and even more damage to vegetables than drying methods that use far-infrared ray generators using electric heaters. It is possible to effectively prevent quality deterioration such as loss of nutrients, etc., and obtain high quality dried vegetables with better efficiency. Furthermore, the far infrared rays used in the method of this invention also has a sterilizing effect, making it possible to obtain dried vegetables containing a small amount of germs, which can be used, for example, as food for infants or hospital food. It is ideal for producing dried vegetables for food products with strict hygiene requirements.

【図面の簡単な説明】[Brief explanation of drawings]

第図はこの発明の方法に䜿甚される遠赀倖線
発生装眮の䞀䟋を瀺す瞊断面図、第図は第図
の−線おける暪断平面図、第図はこの発明
の方法を実斜するための也燥装眮の党䜓構成の䞀
䟋を瀺す瞊断面図、第図は第図の装眮の䞻芁
な配管系統を瀺す線図である。 P1〜P4P5〜P8  遠赀倖線発生装眮、
  筐䜓、  遠赀倖線攟射物質局、  
熱媒䜓、  移送系路、  コンベダ、
  移送面。
FIG. 1 is a longitudinal cross-sectional view showing an example of a far-infrared generator used in the method of the present invention, FIG. 2 is a cross-sectional plan view taken along the line - in FIG. FIG. 4 is a longitudinal sectional view showing an example of the overall configuration of a drying device for drying, and FIG. 4 is a line diagram showing the main piping system of the device shown in FIG. P, P 1 to P 4 , P 5 to P 8 ... far infrared generator,
1... Housing, 2... Far-infrared emitting material layer, 6...
Heat medium, 13... Transfer system path, 14... Conveyor,
17...Transfer surface.

Claims (1)

【特蚱請求の範囲】  新鮮野菜を所芁の移送系路に沿぀お移送させ
぀぀その新鮮野菜に遠赀倖線を照射しお也燥野菜
を補造する方法においお、 遠赀倖線発生装眮ずしお、内郚を熱媒䜓が流通
する偏平箱状の筐䜓の䞀぀の偏平面の倖面に遠赀
倖線攟射物質局を圢成しお、前蚘熱媒䜓により遠
赀倖線攟射物質局を加熱するこずにより遠赀倖線
を発生するようにした装眮を甚い、その遠赀倖線
発生装眮を、遠赀倖線攟射物質局が前蚘移送系路
に察向するように配眮しおおき、120〜250℃の範
囲内に制埡された熱媒䜓を遠赀倖線発生装眮の筐
䜓に流通させお発生した遠赀倖線を前蚘移送系路
䞊の野菜に照射させ、か぀移送系路における雰囲
気枩床を40〜150℃の範囲内に制埡するこずを特
城ずする也燥野菜の補造方法。
[Scope of Claims] 1. A method for producing dried vegetables by irradiating far-infrared rays onto the fresh vegetables while transporting the fresh vegetables along a required transport path, wherein the far-infrared rays generating device comprises a heating medium inside. A device in which a far-infrared ray emitting material layer is formed on the outer surface of one flat surface of a flat box-shaped casing that is distributed, and the far-infrared rays are generated by heating the far-infrared rays emitting material layer with the heat medium. The far-infrared ray generator is arranged so that the far-infrared radiating material layer faces the transport path, and a heating medium controlled within the range of 120 to 250°C is placed in the casing of the far-infrared ray generator. A method for producing dried vegetables, which comprises irradiating the vegetables on the transfer path with far infrared rays generated by the process, and controlling the ambient temperature in the transfer path within a range of 40 to 150°C.
JP62065313A 1987-03-19 1987-03-19 Production of dried vegetable Granted JPS63230033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065313A JPS63230033A (en) 1987-03-19 1987-03-19 Production of dried vegetable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065313A JPS63230033A (en) 1987-03-19 1987-03-19 Production of dried vegetable

Publications (2)

Publication Number Publication Date
JPS63230033A JPS63230033A (en) 1988-09-26
JPH027613B2 true JPH027613B2 (en) 1990-02-20

Family

ID=13283292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065313A Granted JPS63230033A (en) 1987-03-19 1987-03-19 Production of dried vegetable

Country Status (1)

Country Link
JP (1) JPS63230033A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721271B (en) * 2012-06-26 2014-12-17 重庆工商倧孊 Ginger rapid drying device

Also Published As

Publication number Publication date
JPS63230033A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
KR100232445B1 (en) Visible light and infrared cooking apparatus
KR900005965B1 (en) Impingement and steam oven apparatus for preparing products
US5135122A (en) Method and apparatus for dehydrating fruit
JPS58180120A (en) Apparatus for heat treatment of food
US20070131215A1 (en) Continuous cooking oven system
JPWO2006009150A1 (en) Innovative sterilization method and its use and equipment
Yadav et al. Infrared heating and its application in food processing
JP2008253202A (en) Method and apparatus for heat-treating food product
KR20110085901A (en) Method and device for heating food materials
JP3411862B2 (en) Sintering method and smoldering apparatus
Tyagi et al. Infrared heating in food processing: An overview
JP2002119256A (en) Method and arrangement for heat treatment of laver
JPH027613B2 (en)
JPH08247648A (en) System for drying body to be dried
JPS6236148A (en) Multi-stage drier for coarse tea
JPS6115734Y2 (en)
KR20110010398A (en) Dryer
JPH03262469A (en) Thaw-cooking method using a combination of infrared ray and superheated steam and system therefor
JP2007020484A (en) Heating processing method and apparatus for food
JPS63301780A (en) Vacuum drier utilizing far-infrared ray
Joardder et al. Principles of infrared heating in food processing and preservation
JPH0220273A (en) Thawing and cooking of frozen food and device therefor
JPS61124367A (en) Cooking device with thawing function
JPS61293373A (en) Method of sterilizing packed food and device therefor
JPH0610708U (en) Cooking device