JPH0275738A - Air/fuel feedback controller for internal combustion engine - Google Patents

Air/fuel feedback controller for internal combustion engine

Info

Publication number
JPH0275738A
JPH0275738A JP22738688A JP22738688A JPH0275738A JP H0275738 A JPH0275738 A JP H0275738A JP 22738688 A JP22738688 A JP 22738688A JP 22738688 A JP22738688 A JP 22738688A JP H0275738 A JPH0275738 A JP H0275738A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
correction coefficient
ratio feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22738688A
Other languages
Japanese (ja)
Inventor
Naomi Tomizawa
冨澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP22738688A priority Critical patent/JPH0275738A/en
Publication of JPH0275738A publication Critical patent/JPH0275738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the focusing performance of an air/fuel ratio to a target air/fuel ration by counting a reversal passing time after the reversal of an air/fuel ratio and also detecting deviation from the reference value of an air/fuel ratio feedback correction coefficient and setting an increase or decrease integral component according to the passing time or the deviation. CONSTITUTION:An air/fuel ratio feedback controller is constructed by providing an air/fuel ratio detecting means A for detecting the air/fuel ratio of fuel-air mixture, an air/fuel ratio feedback correction coefficient integral control means B, for increasing or decreasing an integral component, in which air/fuel ratio feedback correction integral coefficient, according to the lean/rich of the air/fuel ratio, and a fuel supply quantity correction means D for correcting fuel supply quantity by a fuel supply means C through the air/fuel ratio feedback correction coefficient at the time. In this case, furthermore, a counting means E for counting a reversal passing time after the reversal of the air/fuel ratio and a deviation detecting means F for detecting deviation from the reference value of the air/fuel ratio feedback correction coefficient are provided, an increased or decreased integral component is set by an integral component setting means G according to the counted passing time and the detected deviation.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、内燃機関において、空燃比を目標空燃比にフ
ィードバック制御する空燃比フィードバック制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air-fuel ratio feedback control device for feedback-controlling an air-fuel ratio to a target air-fuel ratio in an internal combustion engine.

〈従来の技術〉 例えば、電子制御燃料噴射装置に用いられる燃料噴射弁
は、機関の回転に同期して与えられる駆動パルス信号に
よって開弁じ、その開弁期間中、所定圧力の燃料を噴射
することになっている。
<Prior Art> For example, a fuel injection valve used in an electronically controlled fuel injection device is opened by a drive pulse signal given in synchronization with the rotation of an engine, and during the valve opening period, fuel at a predetermined pressure is injected. It has become.

従って、燃料噴射量は駆動パルス信号のパルス巾により
制御され、このパルス巾をTi として燃料噴射量に相
当する制御信号とすれば、目標空燃比である理論空燃比
を得るために、Tiは次式によって定められる。
Therefore, the fuel injection amount is controlled by the pulse width of the drive pulse signal, and if this pulse width is set as Ti and the control signal corresponds to the fuel injection amount, then in order to obtain the stoichiometric air-fuel ratio, which is the target air-fuel ratio, Ti is determined by the formula.

Ti =Tp XC0EFXα+Ts 但し、Tpは基本燃料噴射量に相当する基本パルス巾で
、便宜上基本燃料噴射量と呼ぶ。Tp−K X Q/N
で、Kは定数、Qは機関吸入空気流量、Nは機関回転数
である。C0EFは水温補正、加速補正等の各種補正係
数である。αは後述する空燃比のフィードバック制?l
1l(λコントロール)のための空燃比フィードバック
補正係数である。
Ti = Tp XC0EFXα+Ts However, Tp is the basic pulse width corresponding to the basic fuel injection amount, and is called the basic fuel injection amount for convenience. Tp-K
where K is a constant, Q is the engine intake air flow rate, and N is the engine speed. C0EF is various correction coefficients such as water temperature correction and acceleration correction. Is α a feedback system for the air-fuel ratio, which will be described later? l
This is an air-fuel ratio feedback correction coefficient for 1l (λ control).

Tsは電圧補正骨で、バッテリ電圧の変動による燃料噴
射弁の噴射流量変化を補正するためのも、のである。
Ts is a voltage correction element, which is used to correct changes in the injection flow rate of the fuel injector due to fluctuations in battery voltage.

空燃比のフィードバック制御については、排気系に0.
センサを設けて実際の空燃比を検出し、空燃比が理論空
燃比(λ−1)よりリッチかリーンかをスライスレベル
により判定して制御する。
Regarding air-fuel ratio feedback control, 0.0% is applied to the exhaust system.
A sensor is provided to detect the actual air-fuel ratio, and control is performed by determining whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio (λ-1) based on the slice level.

このため、前記の空燃比フィードバック補正係数αとい
うものを定めて、このαを変化させることにより理論空
燃比に保つようにしている。
For this reason, the above-mentioned air-fuel ratio feedback correction coefficient α is determined, and by changing this α, the stoichiometric air-fuel ratio is maintained.

かかる空燃比フィードバック補正係数αの値は比例・積
分制@ (P I制?11)により変化させ、安定した
制御としtいる。
The value of the air-fuel ratio feedback correction coefficient α is changed by a proportional/integral system @ (PI system? 11) to achieve stable control.

即ち、02センサの出力電圧とスライスレベル電圧とを
比較して空燃比のリッチ・リーンを判定し、例えば空燃
比がリーン(リッチ)の場合には、始めに所定の比例分
(P分)だけ上げて(下げて)、それから所定時間毎に
所定の積分分(1分)ずつ    −徐々に上げて(下
げて)いき、空燃比を理論空燃比に近づけるように制御
する(例えば特開昭60−240840号公報参照)。
That is, the output voltage of the 02 sensor and the slice level voltage are compared to determine whether the air-fuel ratio is rich or lean. Raise (lower) the air-fuel ratio, then gradually raise (lower) it by a predetermined integral amount (1 minute) at predetermined time intervals to control the air-fuel ratio to approach the stoichiometric air-fuel ratio (for example, JP-A-60 (Refer to Publication No.-240840).

〈発明が解決しようとする課題〉 ところで、定常運転時においては、上記空燃比フィード
バック制御装置における比例・積分制御分(PI制御分
)による混合気の理論空燃比(λ−1)近傍での変動を
最小限とするため、比例分(P分)及び積分分(1分)
を小さく設定することが要求される。
<Problems to be Solved by the Invention> By the way, during steady operation, the air-fuel mixture fluctuates around the stoichiometric air-fuel ratio (λ-1) due to the proportional/integral control component (PI control component) in the air-fuel ratio feedback control device. In order to minimize the
is required to be set small.

しかし、過渡運転等において、第5図(b)に示すよう
な定常運転に合わせて設定した一定の積分分(1分)で
は、空燃比フィードバック補正係数αの追い掛けに時間
が掛かり、第5図(a)の実線で示すように、λ=1へ
の収束性が悪くなって、空燃比が長時間リーン又はリッ
チ化してしまうという問題点が生じ、排気性能等が悪化
する。
However, during transient operation, etc., with a constant integral (1 minute) set for steady-state operation as shown in Figure 5(b), it takes time to chase up the air-fuel ratio feedback correction coefficient α; As shown by the solid line in (a), the convergence to λ=1 deteriorates, causing the problem that the air-fuel ratio remains lean or rich for a long time, resulting in deterioration of exhaust performance and the like.

そこで、本発明は以上のような従来の問題点に鑑み、定
常運転時の空燃比の変動を抑制しつつ、過渡運転等にお
いて、空燃比フィードバック補正係数αの追い掛けを早
(し、もって空燃比が長時間リーン又はリッチ化してし
まうのを防止することを目的とする。
Therefore, in view of the above-mentioned conventional problems, the present invention suppresses fluctuations in the air-fuel ratio during steady operation, while quickly catching up on the air-fuel ratio feedback correction coefficient α during transient operation. The purpose is to prevent the oil from becoming lean or rich for a long period of time.

〈課題を解決するための手段〉 このため、本発明の内燃機関の空燃比フィードバック制
御装置は、第1図に示すように、機関吸入混合気の空燃
比を検出する空燃比検出手段と、空燃比のリーン・リッ
チに応じて空燃比フィードバック補正係数を設定された
積分分増大又は減少させる空燃比フィードバック補正係
数積分制御手段と、機関への燃料供給手段による燃料供
給量をその時の空燃比フィードバック補正係数で補正す
る燃料供給量補正手段と、を備えて構成され、更に、空
燃比の反転後の反転経過時間を計時する計時手段と、空
燃比フィードバック補正係数の基準値からの偏差を検出
する偏差検出手段と、該計時手段により計時された前記
経過時間と偏差検出手段により検出された空燃比フィー
ドバック緘正係数の基準値からの偏差に応じて前記増大
又は減少積分分を設定する積分分設定手段と、を設けて
構成される。
<Means for Solving the Problems> For this reason, the air-fuel ratio feedback control device for an internal combustion engine of the present invention, as shown in FIG. an air-fuel ratio feedback correction coefficient integral control means for increasing or decreasing the air-fuel ratio feedback correction coefficient by a set integral amount according to lean/rich of the fuel ratio; and air-fuel ratio feedback correction for controlling the amount of fuel supplied by the fuel supply means to the engine at that time. A fuel supply amount correction means for correcting the air-fuel ratio using a coefficient, and a timer for measuring the elapsed time of reversal after the air-fuel ratio is reversed; and a deviation for detecting the deviation of the air-fuel ratio feedback correction coefficient from the reference value. a detection means, and an integral setting means for setting the increase or decrease integral according to the elapsed time measured by the timer and the deviation from a reference value of the air-fuel ratio feedback correction coefficient detected by the deviation detection means. It is configured by providing and.

く作用〉 上記の構成においては、例えば、過渡運転等において、
空燃比のリーン状態又はリッチ状態が所定時間以上継続
するような場合即ち、空燃比の反転後の反転経過時間が
長引くような場合に、積分分設定手段により、空燃比の
反転後の反転経過時間と、空燃比フィードバック補正係
数αの基準値からの偏差に応じて設定される積分分を大
きくすれば、空燃比フィードバック補正係数αが増大又
は減少し、空燃比の目標空燃比への収束性が向上する。
Effect> In the above configuration, for example, during transient operation, etc.
When the lean state or rich state of the air-fuel ratio continues for a predetermined period of time or more, that is, when the elapsed time after reversal of the air-fuel ratio is prolonged, the integral setting means sets the elapsed time after reversal of the air-fuel ratio. If the integral set according to the deviation of the air-fuel ratio feedback correction coefficient α from the reference value is increased, the air-fuel ratio feedback correction coefficient α will increase or decrease, and the convergence of the air-fuel ratio to the target air-fuel ratio will be improved. improves.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図において、機関1には、エアクリーナ2゜吸気ダ
クト3.スロットルチャンバ4及び吸気マ二ホールド5
を介して空気が吸入される。
In FIG. 2, the engine 1 includes an air cleaner 2°, an intake duct 3. Throttle chamber 4 and intake manifold 5
Air is inhaled through.

吸気ダクト3には吸入空気流量Q検出用のエアフローメ
ータ6が設けられていて、吸入空気流量Q信号に対応す
る電圧信号を出力する。スロットルチャンバ4には図示
しないアクセルペダルと連動して吸入空気流量Qを制御
するスロットル弁7が設けられている。吸気マニホール
ド5又は411関1の吸気ボートには燃料供給手段とし
ての燃料噴射弁8が設けられている。この燃料噴射弁8
はソレノイドに通電されて開弁し、通電停止されて閉弁
する電磁式のものであって、駆動パルス信号によりソレ
ノイドに通電されて開弁すると、図示しない燃料ポンプ
から圧送されてプレッシャレギュレータにより所定圧力
に制御された燃料を機関1に噴射供給する。
The intake duct 3 is provided with an air flow meter 6 for detecting the intake air flow rate Q, and outputs a voltage signal corresponding to the intake air flow rate Q signal. The throttle chamber 4 is provided with a throttle valve 7 that controls the intake air flow rate Q in conjunction with an accelerator pedal (not shown). The intake manifold 5 or the intake boat of the 411 section 1 is provided with a fuel injection valve 8 as a fuel supply means. This fuel injection valve 8
is an electromagnetic type in which the solenoid is energized to open the valve and de-energized to close the valve. When the solenoid is energized by a drive pulse signal and the valve is opened, fuel is fed under pressure from a fuel pump (not shown) to a predetermined level by a pressure regulator. Pressure-controlled fuel is injected and supplied to the engine 1.

機関1からは、排気マニホールド9.排気ダクト10.
三元触媒11及びマフラー12を介して排気が排出され
る。
From engine 1, exhaust manifold 9. Exhaust duct 10.
Exhaust gas is discharged via a three-way catalyst 11 and a muffler 12.

排気マニホールド9には、0!センサ13が設けられて
いる。このOtセンサ13は大気中の酸素濃度(一定)
と排気中の酸素濃度との比に応じた電圧信号を出力し、
混合気を理論空燃比で燃焼させた時を境として起電力が
急変する公知のセンサである。従って、Otセンサ13
は空燃比(リッチ・リーン)検出手段である。
Exhaust manifold 9 has 0! A sensor 13 is provided. This Ot sensor 13 detects the oxygen concentration in the atmosphere (constant).
outputs a voltage signal according to the ratio of the oxygen concentration in the exhaust gas and
This is a known sensor in which the electromotive force suddenly changes after the air-fuel mixture is combusted at the stoichiometric air-fuel ratio. Therefore, Ot sensor 13
is an air-fuel ratio (rich/lean) detection means.

この他、クランク角センサ14.水温センサ15゜スロ
ットル開度センサ16等が設けられている。
In addition, the crank angle sensor 14. A water temperature sensor 15°, a throttle opening sensor 16, etc. are provided.

クランク角センサ14は、ディストリビュータ17に内
蔵されており、クランク角2°毎の単位角信号とクラン
ク角120”  (6気筒の場合)毎の基準角信号上を
出力する。ここで、基準角信号の周期等を計測すること
により、機関回転数Nを算出可能である。
The crank angle sensor 14 is built into the distributor 17 and outputs a unit angle signal for every 2 degrees of crank angle and a reference angle signal for every 120" crank angle (in the case of 6 cylinders). Here, the reference angle signal The engine rotation speed N can be calculated by measuring the period etc. of the engine.

水温センサ15は、機関冷却水温度Twを検出し、これ
に対応する電圧信号を出力する。
Water temperature sensor 15 detects engine cooling water temperature Tw and outputs a voltage signal corresponding to this.

スロットル開度センサ16はスロットル弁7の開度θを
検出し、対応する電圧信号を出力する。
The throttle opening sensor 16 detects the opening θ of the throttle valve 7 and outputs a corresponding voltage signal.

前記エアフローメータ6.0.センサ13. クランク
角センサ14.水温センサ15及びスロットル開度セン
サ16からの出力信号は共にコントロールユニット1日
に入力されている。更に、コントロールユニット18に
はその動作電源としてまた電源電圧の検出のためバッテ
リ19の電圧が印加されている。
Said air flow meter 6.0. Sensor 13. Crank angle sensor 14. The output signals from the water temperature sensor 15 and the throttle opening sensor 16 are both input to the control unit on the first day. Furthermore, the voltage of a battery 19 is applied to the control unit 18 as its operating power source and for detecting the power supply voltage.

コントロールユニット18は、CPU、ROM。The control unit 18 includes a CPU and a ROM.

RAM、Ilo等を含んで構成されるマイクロコンピュ
ータを内蔵しており、第3図及び第4図に示すフローチ
ャート(燃料噴射量演算ルーチン。
It has a built-in microcomputer including RAM, Ilo, etc., and the flowchart (fuel injection amount calculation routine) shown in FIGS. 3 and 4.

比例・積分制御ルーチン)に基づくプログラムに従って
、各種入力信号に基づいて演算処理し、最適なパルス巾
の駆動パルス信号を燃料噴射弁8に出力して、燃料噴射
量を制御する。
According to a program based on a proportional/integral control routine, arithmetic processing is performed based on various input signals, and a drive pulse signal with an optimal pulse width is output to the fuel injection valve 8 to control the fuel injection amount.

尚、空燃比フィードバック制御装置としての機能は、前
記プログラムにより達成される。
Note that the function of the air-fuel ratio feedback control device is achieved by the program.

次に、第3図及び第4図のフローチャートを参照しつつ
作動を説明する。
Next, the operation will be explained with reference to the flowcharts of FIGS. 3 and 4.

第3図の燃料噴射量演算ルーチンにおいて、ステップ(
以下、図と同様Sと称する)lでは、エアフローメータ
6からの信号によって得られる吸入空気流量Qとクラン
ク角センサ14からの信号によって得られる機関回転数
Nとから、基本燃料噴射量T、を次式により算出する。
In the fuel injection amount calculation routine shown in FIG.
(hereinafter referred to as S as in the figure), the basic fuel injection amount T is determined from the intake air flow rate Q obtained from the signal from the air flow meter 6 and the engine speed N obtained from the signal from the crank angle sensor 14. Calculated using the following formula.

T、−KxQ/N (Kは定数) S2では、必要に応じ各種補正係数C0EFを設定する
T, -KxQ/N (K is a constant) In S2, various correction coefficients C0EF are set as necessary.

S3では、バッテリ19の電圧値に基づいて電圧補正分
子sを設定する。S4では、後述する第4図の比例・積
分制御ルーチンによって設定されている現在の空燃比フ
ィードバック補正係数αを読み込む。
In S3, a voltage correction numerator s is set based on the voltage value of the battery 19. In S4, the current air-fuel ratio feedback correction coefficient α set by the proportional/integral control routine shown in FIG. 4, which will be described later, is read.

S5では、最終的な燃料噴射量T1を次式に従って演算
する。
In S5, the final fuel injection amount T1 is calculated according to the following equation.

T! −To X COE F Xα+T1この演算に
おける空燃比フィードバック補正係数αによる補正の部
分が燃料供給量補正手段に相当する。
T! -To

燃料噴射量T+が演算されると、そのT、のパルス巾を
もつ駆動パルス信号が機関回転に同期して所定のタイミ
ングで出力されて、燃料噴射弁8に与えられ、燃料噴射
が行われる。
When the fuel injection amount T+ is calculated, a drive pulse signal having a pulse width of T is outputted at a predetermined timing in synchronization with the engine rotation, and is applied to the fuel injection valve 8 to perform fuel injection.

次に、第4図の比例・積分制御ルーチンについて説明す
る。
Next, the proportional/integral control routine shown in FIG. 4 will be explained.

尚、このルーチンは所定時間(例えば10m5)毎にタ
イマ割り込みにより実行される。
Note that this routine is executed every predetermined time (for example, 10 m5) by a timer interrupt.

Sllでは、02センサ16の出力電圧V。tを読み込
み、次の312で理論空燃比相当のスライスレベル電圧
V r*fと比較することにより、空燃比のリッチ・リ
ーンを判定する。
In Sll, the output voltage V of the 02 sensor 16. t is read and compared with the slice level voltage Vr*f corresponding to the stoichiometric air-fuel ratio in the next step 312, whether the air-fuel ratio is rich or lean is determined.

空燃比がリッチ(V o t≧V、、t )の時には、
S13に進んで1見目の噴射か否かを判定し、1見目の
噴射であれば(YES) 、S 14でタイマーによる
計時値Tをクリアーした後、315で2分マツプを参照
してP分を設定し、316で空燃比フィードバック補正
係数αを前回値に対して2分減少させる。一方、1見目
の噴射でなければ(NO)、S17に進んで、タイマー
による計時値Tを1アツプし、318に進んで、カウン
トアツプ後の空燃比フィードバック補正係数αの基準値
であるα−1からの偏差E(−α−1)を検出し、S1
9に進んで、予め設定したタイマーによる計時値Tと空
燃比フィードバック補正係数αの偏差已に対する1分設
定係数に1の三次元マツプを参照し、S20に進んで、
1分設定係数に1と基本設定1分とから、IxK+を演
算し、このIxK+による■1を設定する。
When the air-fuel ratio is rich (V o t≧V,,t ),
Proceeding to S13, it is determined whether or not it is the first injection. If it is the first injection (YES), after clearing the time value T by the timer in S14, the 2-minute map is referred to in 315. P minute is set, and in step 316, the air-fuel ratio feedback correction coefficient α is decreased by 2 minutes from the previous value. On the other hand, if it is not the first injection (NO), the process proceeds to S17, in which the timer value T is incremented by 1, and the process proceeds to 318, which is the reference value α of the air-fuel ratio feedback correction coefficient α after counting up. Detect the deviation E(-α-1) from -1 and S1
Proceeding to step 9, refer to the three-dimensional map of the 1-minute setting coefficient 1 for the deviation between the time value T by the preset timer and the air-fuel ratio feedback correction coefficient α, and proceeding to step S20.
IxK+ is calculated from the 1 minute setting coefficient of 1 and the basic setting of 1 minute, and 1 is set based on this IxK+.

そして、S21で空燃比フィードバック補正係数αを前
回値に対して19分減少させる。
Then, in S21, the air-fuel ratio feedback correction coefficient α is decreased by 19 minutes from the previous value.

空燃比がリーン(Vex<V、−r )の時には、S2
2に進んで1見目の噴射か否かを判定し、1見目の噴射
であれば(YES)、S23でタイマーによる計時値T
をクリアーした後、S24で2分マツプを参照してP分
を設定し、S25で空燃比フィードバック補正係数αを
前回値に対してP分増大させる。一方、1見目の噴射で
なければ(NO)、326に進んで、タイマーによる計
時値Tを1アツプし、S27に進んで、カウントアツプ
後の空燃比フィードバック補正係数αの基準値であるα
=1からの偏差E(=α−1)を検出し、32Bに進ん
で、予め設定したタイマーによる計時値Tと空燃比フィ
ードバック補正係数αの偏差已に対する1分設定係数に
8の三次元マツプを参照し、S29に進んで、この1分
設定係数Kgと基本1分とから、IxKxを演算し、こ
の1XKzによる■8を設定する。
When the air-fuel ratio is lean (Vex<V, -r), S2
Proceed to step 2 to determine whether or not it is the first injection, and if it is the first injection (YES), the timer value T is determined in step S23.
After clearing, P minutes is set with reference to the 2-minute map in S24, and the air-fuel ratio feedback correction coefficient α is increased by P from the previous value in S25. On the other hand, if it is not the first injection (NO), the process proceeds to 326, where the timer value T is incremented by 1, and the process proceeds to S27, where α is the reference value of the air-fuel ratio feedback correction coefficient α after the count-up.
The deviation E (=α-1) from =1 is detected, and the process proceeds to 32B, where a three-dimensional map of 8 is mapped to the 1-minute setting coefficient for the deviation of the time value T by the preset timer and the air-fuel ratio feedback correction coefficient α. Referring to the above, the process proceeds to S29, where IxKx is calculated from this 1 minute setting coefficient Kg and the basic 1 minute, and 8 is set by this 1XKz.

そして、S30で空燃比フィードバック補正係数αを前
回値に対して18分増大させる。
Then, in S30, the air-fuel ratio feedback correction coefficient α is increased by 18 minutes from the previous value.

上記319及び328における三次元マツプは、例えば
、ある計時値tlまでは1分設定係数に、。
The three-dimensional maps in 319 and 328 above have, for example, a one-minute setting coefficient up to a certain time value tl.

K2を一定とし、tl以降は1分設定係数に、、K。K2 is constant, and after tl, the coefficient is set to 1 minute, K.

を漸次増加させ、t!以降は再び1分設定係数K11K
gを一定としており、且つ偏差Eが大きくなるほど目標
空燃比への収束性を向上させるため1分設定係数に、、
に、を漸次増加させるように設定されている。
Gradually increase t! After that, set the 1 minute setting coefficient K11K again.
g is kept constant, and in order to improve convergence to the target air-fuel ratio as the deviation E increases, the 1-minute setting coefficient is set as follows:
is set to gradually increase.

ここで、317及び326の実行が空燃比の反転後の反
転経過時間を計時する計時手段に相当し、318及び3
27の実行が空燃比フィードバック補正係数の基準値か
らの偏差を検出する偏差検出手段に相当し、S19及び
328の実行が、計時手段により計時された前記経過時
間と偏差検出手段により検出された空燃比フィードバッ
ク補正係数の基準値からの偏差に応じて前記増大又は減
少積分分を設定する積分分設定手段に相当し、S21及
びS30の実行が空燃比フィードバック補正係数積分制
御手段に相当する。
Here, the execution of steps 317 and 326 corresponds to a timing means for timing the reversal elapsed time after the reversal of the air-fuel ratio;
The execution of Step 27 corresponds to the deviation detection means for detecting the deviation of the air-fuel ratio feedback correction coefficient from the reference value, and the execution of Steps S19 and 328 corresponds to the deviation detection means that detects the deviation of the air-fuel ratio feedback correction coefficient from the reference value, and the execution of Steps S19 and 328 corresponds to the deviation detection means that detects the deviation of the air-fuel ratio feedback correction coefficient from the reference value. This corresponds to integral setting means for setting the increase or decrease integral according to the deviation of the fuel ratio feedback correction coefficient from the reference value, and the execution of S21 and S30 corresponds to air-fuel ratio feedback correction coefficient integral control means.

かかる構成によると、例えば、過渡運転等において、空
燃比のリーン状態又はリッチ状態が所定時間以上継続す
るような場合即ち、空燃比の反転後の反転経過時間が長
引くような場合に、第5図(C)に示すように積分分の
設定値を大きくするようにしたから、空燃比フィードバ
ック補正係数αが増大又は減少し、第5図(a)の−点
鎖線で示すように、空燃比の目標空燃比への収束性が向
上する。
According to this configuration, for example, when the air-fuel ratio is in a lean state or rich state for a predetermined period of time or more during transient operation, that is, when the elapsed time after reversal of the air-fuel ratio is prolonged, Since the set value of the integral is increased as shown in (C), the air-fuel ratio feedback correction coefficient α increases or decreases, and the air-fuel ratio increases or decreases as shown by the - dotted line in Fig. 5 (a). Convergence to the target air-fuel ratio is improved.

実施例では、空燃比の反転時に、空燃比の比例分を増大
または減少させる構成としたが、積分分のみでフィード
バック制御するものに適用些てもよい。
In the embodiment, the proportional portion of the air-fuel ratio is increased or decreased when the air-fuel ratio is reversed, but the present invention may also be applied to feedback control using only the integral portion.

〈発明の効果〉 以上説明したように、本発明によれば、空燃比の反転後
の反転経過時間を計時し、空燃比フ゛l−ドパツク補正
係数の基準値からの偏差を検出して、前記経過時間及び
空燃比フィードバック補正係数の偏差に応じて増大又は
減少積分分を設定するようにしたから、過渡運転等にお
いて、空燃比のリーン状態又はリッチ状態が所定時間以
上継続するような場合即ち、空燃比の反転後の反転経過
時間が長引くような場合に、積分分設定手段により積分
分を大きく設定すれば、空燃比フィードバック補正係数
αが増大又は減少し、空燃比の目標空燃比への収束性が
向上し、空燃比が長時間リーン又はリッチ化してしまう
のを防止でき、排気性能等の向上を図れるものである。
<Effects of the Invention> As described above, according to the present invention, the elapsed time of reversal after the reversal of the air-fuel ratio is measured, the deviation of the air-fuel ratio field correction coefficient from the reference value is detected, and the Since the increase or decrease integral is set according to the elapsed time and the deviation of the air-fuel ratio feedback correction coefficient, if the lean or rich state of the air-fuel ratio continues for more than a predetermined time during transient operation, etc. If the reversal elapsed time after the reversal of the air-fuel ratio is prolonged, if the integral is set large using the integral setting means, the air-fuel ratio feedback correction coefficient α increases or decreases, and the air-fuel ratio converges to the target air-fuel ratio. This improves performance, prevents the air-fuel ratio from becoming lean or rich for a long time, and improves exhaust performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の空燃比フィードバック
制御装置の構成を示す機能ブロック図、第2図は同上の
内燃機関の空燃比フィードバック制御装置の一実施例を
示すシステム図、第3図及び第4図は制御内容を示すフ
ローチャート、第5図は従来及び本発明の制御特性図で
ある。 1・・・機関  8・・・燃料噴射弁  13・・・0
8センサ  18・・・コントロールユニット特許出願
人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄
FIG. 1 is a functional block diagram showing the configuration of an air-fuel ratio feedback control device for an internal combustion engine according to the present invention, FIG. 2 is a system diagram showing an embodiment of the air-fuel ratio feedback control device for an internal combustion engine, and FIG. 4 is a flowchart showing the control contents, and FIG. 5 is a control characteristic diagram of the conventional method and the present invention. 1... Engine 8... Fuel injection valve 13...0
8 sensors 18...Control unit Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima

Claims (1)

【特許請求の範囲】[Claims] 機関吸入混合気の空燃比を検出する空燃比検出手段と、
空燃比のリーン・リッチに応じて空燃比フィードバック
補正係数を設定された積分分増大又は減少させる空燃比
フィードバック補正係数積分制御手段と、機関への燃料
供給手段による燃料供給量をその時の空燃比フィードバ
ック補正係数で補正する燃料供給量補正手段と、を備え
て構成され、空燃比を目標空燃比にフィードバック制御
する内燃機関の空燃比フィードバック制御装置において
、空燃比の反転後の反転経過時間を計時する計時手段と
、空燃比フィードバック補正係数の基準値からの偏差を
検出する偏差検出手段と、該計時手段により計時された
経過時間と偏差検出手段により検出された空燃比フィー
ドバック補正係数の基準値からの偏差に応じて前記増大
又は減少積分分を設定する積分分設定手段と、を設けた
ことを特徴とする内燃機関の空燃比フィードバック制御
装置。
air-fuel ratio detection means for detecting the air-fuel ratio of the engine intake air-fuel mixture;
air-fuel ratio feedback correction coefficient integral control means for increasing or decreasing the air-fuel ratio feedback correction coefficient by a set integral according to the leanness or richness of the air-fuel ratio; and air-fuel ratio feedback for controlling the amount of fuel supplied by the fuel supply means to the engine at that time. In an air-fuel ratio feedback control device for an internal combustion engine that feedback-controls an air-fuel ratio to a target air-fuel ratio and is configured to include a fuel supply amount correction means that corrects the air-fuel ratio using a correction coefficient, the reversal elapsed time after the air-fuel ratio is reversed is measured. a timer; a deviation detector for detecting a deviation of the air-fuel ratio feedback correction coefficient from a reference value; An air-fuel ratio feedback control device for an internal combustion engine, comprising: integral setting means for setting the increasing or decreasing integral according to a deviation.
JP22738688A 1988-09-13 1988-09-13 Air/fuel feedback controller for internal combustion engine Pending JPH0275738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22738688A JPH0275738A (en) 1988-09-13 1988-09-13 Air/fuel feedback controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22738688A JPH0275738A (en) 1988-09-13 1988-09-13 Air/fuel feedback controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0275738A true JPH0275738A (en) 1990-03-15

Family

ID=16860006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22738688A Pending JPH0275738A (en) 1988-09-13 1988-09-13 Air/fuel feedback controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0275738A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195351A (en) * 1987-02-07 1988-08-12 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPS63195350A (en) * 1987-02-07 1988-08-12 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195351A (en) * 1987-02-07 1988-08-12 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPS63195350A (en) * 1987-02-07 1988-08-12 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPH0463936A (en) Air-fuel ratio control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
US4787358A (en) Fuel supply control system for an engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0275738A (en) Air/fuel feedback controller for internal combustion engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPS63295832A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JP2631529B2 (en) Air-fuel ratio control device for internal combustion engine
KR100251168B1 (en) Fuel-air ration feedback control method
JPH0729234Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH03271541A (en) Air-fuel ratio feedback control device of internal combustion engine
JPH089390Y2 (en) Air-fuel ratio feedback control system for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP2531063Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH04101038A (en) Air/fuel ratio control device for internal combustion engine
JPH0227135A (en) Device for controlling air-fuel ratio of internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS6053642A (en) Air-fuel ratio control method in electronically controlled fuel injection type internal- combustion engine
JPH0227133A (en) Device for controlling air-fuel ratio of internal combustion engine
JPS639654A (en) Fuel injection controller for internal combustion engine
JPH0417748A (en) Air-fuel ratio control system of internal combustion engine
JPH03115752A (en) Air-fuel ratio feedback control device for internal combustion engine
JPS62142841A (en) Electronic control type fuel injection device for internal combustion engine
JPS6181536A (en) Method of controlling feed of fuel during idle running of internal-combustion engine