JPH0274653A - Novel nonwoven fabric and production thereof - Google Patents

Novel nonwoven fabric and production thereof

Info

Publication number
JPH0274653A
JPH0274653A JP63225543A JP22554388A JPH0274653A JP H0274653 A JPH0274653 A JP H0274653A JP 63225543 A JP63225543 A JP 63225543A JP 22554388 A JP22554388 A JP 22554388A JP H0274653 A JPH0274653 A JP H0274653A
Authority
JP
Japan
Prior art keywords
fibers
nonwoven fabric
fiber bundle
dispersed
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225543A
Other languages
Japanese (ja)
Inventor
Ken Yokoyama
横山 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63225543A priority Critical patent/JPH0274653A/en
Publication of JPH0274653A publication Critical patent/JPH0274653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a novel nonwoven fabric, having uniform longitudinal/ transverse strength ratio, small change in dry/wet strength ratio and excellent in flexibility, etc., at a low cost by successively mixing and entangling cut continuous multifilament yarnlike fibers with short fibers by a specific method. CONSTITUTION:A multifilament continuous fiber bundle 1 is initially cut and dispersed with a roller 5 having set needles rotating at >=1000m/min surface speed and mixed with a short fiber bundle 2 which is being simultaneously fed to the same roller 5 and dispersed. The mixed fiber group 18 is then continuously laminated on a net 10 at 0.8-1.3 dispersion orientation index (R) while being exposed to a turbulent air. The resultant fleece-like fibers 19 are then three-dimensionally entangled with high-pressure water columnar streams under 10-100kg/cm<2>G water pressure to provide the objective product, having 10-15mm continuous fiber length distribution, three-dimensionally entangled fibers (1a) having tips fibrillated into >=2 parts and plural short fibers (2a) in a mixed state with 0.8-1.3 (R) in the plane direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な不織布およびその製造法に関する。よ
り詳しくは、連続した繊維長分布を有し、且つ先端部が
2本以上にフィブリル化した繊維を含んで成り、その上
で用いられる繊維の特徴を生かした種々の一般衣料用途
に適した新規な不織布及びその工業的な製造法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel nonwoven fabric and a method for producing the same. More specifically, it has a continuous fiber length distribution and contains fibers with two or more fibrillated tips, and is suitable for various general clothing applications by taking advantage of the characteristics of the fibers used. This invention relates to nonwoven fabrics and industrial manufacturing methods thereof.

〔従来の技術〕[Conventional technology]

不織布の特徴は、その不織布を構成する繊維により、大
きく変化する。即ち、セルロース系繊維では、吸湿性、
吸光性に特徴があるが、逆に湿潤時強力が大幅に低下し
、一般衣料用途への展開に際しては、合成繊維のスクリ
ムを基材としてその耐湿潤性を改良しなければ実使用は
難しかった。
The characteristics of nonwoven fabrics vary greatly depending on the fibers that make up the nonwoven fabric. That is, cellulose fibers have hygroscopicity,
Although it is characterized by light absorption, its strength when wet is significantly reduced, and when it was developed for general clothing applications, it was difficult to actually use it unless a synthetic fiber scrim was used as the base material and its moisture resistance was improved. .

また、ポリプロピレン系繊維やポリエステル系繊維では
逆に吸水性、吸湿性がなく、したがって例えばパルプ等
の天然繊維を該繊維の不織布を作成した後で、再度高圧
水柱状流で交絡させるという工夫か必要であった。この
種の複雑な手法としては、ポリエステル系繊維のフリー
ス状物と木材パルプを高圧水柱状流で交絡させ、手術衣
用のスパンレースド不織布にするという製造法が特開昭
59−94659号公報に開示されている。しかし、こ
の方法では、木材パルプという極度に短い繊維が用いら
れているために、毛羽立ちや繊維の脱落が発生しやすい
という問題点があった。
In addition, polypropylene fibers and polyester fibers, on the other hand, do not have water or moisture absorption properties, so it is necessary to create a nonwoven fabric of natural fibers such as pulp and then entangle them again with a high-pressure water column flow. Met. As a complicated method of this type, Japanese Patent Laid-Open No. 59-94659 discloses a manufacturing method in which a fleece-like material of polyester fibers and wood pulp are entangled in a high-pressure water column flow to produce a spunlaced nonwoven fabric for surgical gowns. has been disclosed. However, this method uses wood pulp, which is an extremely short fiber, and therefore has the problem that fluffing and fibers are likely to fall off.

また、これらの不織布は一般に製造時の繊維の分散挙動
に大きく影響を受けてしまい、該不織布の縦/横強度比
は2〜10という異方性を有しており、一般衣料用途に
使用する場合には取り扱い性に問題があった。
In addition, these nonwoven fabrics are generally greatly affected by the dispersion behavior of fibers during manufacture, and the longitudinal/lateral strength ratio of these nonwoven fabrics is anisotropic, with a ratio of 2 to 10, making them difficult to use for general clothing. In some cases, there were problems with handling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の第1の目的は、不織布の縦/横強度比が均一で
、乾/湿強度変化が小さく、柔軟性、嵩高性、発色性に
優れた一般衣料用途に適した不織布を提供することであ
る。本発明の第2の目的は、従来公知のこの種の不織布
を製造する際に生ずる複雑な製造工程、コストの上昇、
繊維の均一分散、低目付量のウェブの製造時の問題点等
を解決して、2!!I以上の繊維の混合により一般衣料
用途に適した不織布の安価な工業的な製造法を提供する
ことにある。
The first object of the present invention is to provide a nonwoven fabric suitable for general clothing use, which has a uniform machine/width strength ratio, small change in dry/wet strength, and excellent flexibility, bulk, and color development. It is. A second object of the present invention is to address the complicated manufacturing process and increased cost that occur when manufacturing this type of nonwoven fabric that has been known in the past.
By solving problems such as uniform dispersion of fibers and manufacturing of webs with low basis weight, 2! ! The object of the present invention is to provide an inexpensive industrial manufacturing method for nonwoven fabrics suitable for general clothing use by mixing fibers of I or more.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の目的は、繊維の長さが10〜150龍の
範囲に連続的に分布し、かつ該繊維の少なくとも一方の
先端部が2本以上にフィブリル化した複数の繊維と、任
意の繊維長分布を有する複数の短繊維とが混合した状態
で互いに3次元的に交絡して形成されており、平面方向
での分散配向指数Rが0.8〜1.3の範囲であること
を特徴とする不織布によって達成される。
A first object of the present invention is to provide a plurality of fibers whose lengths are continuously distributed in the range of 10 to 150 mm, and at least one of the fibers is fibrillated into two or more tips; A plurality of short fibers with a fiber length distribution of This is achieved by a non-woven fabric characterized by:

本発明の不織布は、該不織布を構成する繊維が少なくと
も一方の先端部が2本以上にフィブリル化した繊維と両
端部がフィブリル化していない繊維の混合物であること
が必要である。上記2種類の混合物の比率は任意に選択
することが出来るが、好ましくは3/7〜7/3の範囲
であれば良い。
The nonwoven fabric of the present invention requires that the fibers constituting the nonwoven fabric be a mixture of two or more fibrillated fibers at one end and non-fibrillated fibers at both ends. The ratio of the above two types of mixture can be selected arbitrarily, but preferably it is in the range of 3/7 to 7/3.

特に、少なくとも一方の先端部が2本以上にフィブリル
化した繊維が混合していることにより、高圧水柱状流に
よる繊維交絡が高度に高められるとともに、交絡末端部
での引抜き抵抗力が増大し、目づれの発生しにくい一般
衣料用として十分な物性を有する不織布となる。
In particular, by mixing two or more fibrillated fibers at least one end, the fiber entanglement due to the high-pressure water column flow is highly enhanced, and the pull-out resistance at the entangled end increases. The resulting nonwoven fabric has sufficient physical properties for use in general clothing and is less prone to shedding.

前記少なくとも一方の先端部が2本以上にフィブリル化
した繊維としてはその繊維長分布が10〜150amの
範囲で連続して繊維を用いる必要がある。
As for the fibers in which at least one of the tips is fibrillated into two or more fibers, it is necessary to use continuous fibers with a fiber length distribution in the range of 10 to 150 am.

すなわち繊維長が30〜150龍の繊維によって主に不
織布強度が維持され、10〜30龍の繊維は該30〜1
50龍の繊維の空間部に浸入し、交絡をより高度にする
。10龍より短い繊維では後述の好ましい製造法で示す
高圧水柱状流処理時に、脱落が多くなり好ましくない。
That is, the strength of the nonwoven fabric is mainly maintained by fibers with a fiber length of 30 to 150 mm, and the fibers with a fiber length of 10 to 30 mm maintain the strength of the nonwoven fabric.
It penetrates into the space of 50 fibers and makes intertwining more advanced. Fibers shorter than 10 mm are undesirable because they often fall off during the high-pressure water column flow treatment shown in the preferred manufacturing method described below.

また150nよりも長くなると、後述の製造法でのコー
ミングローラ−での巻き付き等のトラブルが発生しやす
くなり好ましくない。
Further, if the length is longer than 150n, troubles such as winding around a combing roller in the manufacturing method described later are likely to occur, which is undesirable.

−力先端部がフィブリル化していない繊維の繊維長分布
については特に限定せず、任意の繊維長分布を有する短
繊維であればよい。すなわち等長繊維長分布でも綿花の
ような繊維長分布を有するものであってもよい。なおこ
こに云う先端部がフィブリル化していないとは前述の先
端部が2本以上に積極的にフィブリル化している繊維と
の対比での事であって、本発明の不織布の製造過程にお
いて用いる繊維の種類によって必然的に発生する程度の
フィブリル化を生じた繊維も、本発明では先端部がフィ
ブリル化していない繊維に属するものとする。
- There is no particular limitation on the fiber length distribution of the fibers whose tip ends are not fibrillated, and any short fibers having any fiber length distribution may be used. That is, it may have an equal fiber length distribution or a cotton-like fiber length distribution. Note that the term "not fibrillated at the tip" here refers to the above-mentioned fiber in which two or more tips are actively fibrillated. In the present invention, fibers that are fibrillated to a degree that inevitably occurs depending on the type of fiber are also classified as fibers whose tips are not fibrillated.

本発明の不織布においては、構成する繊維が互いに3次
元的交絡をしていることが必要であり、特に高圧水柱状
流等の水流交絡手法によって与えられた3次元交絡であ
ることが好ましい。不織布を構成する繊維に高圧水柱状
流等による交絡を施さない場合には、繊維は平面方向に
積層された状態となり、この状態に対して単に樹脂バイ
ンダーや熱融着繊維等による接着を行ったとしても層間
剥離が発生してしまう。高圧水柱状流の作用により、平
面方向に分散積層していた繊維は厚み方向に部分的に交
絡が起こり、3次元的交絡を形成する。この3次元的交
絡により、嵩高で柔軟な不織布が得られる。
In the nonwoven fabric of the present invention, it is necessary that the constituent fibers are three-dimensionally entangled with each other, and it is particularly preferable that the three-dimensional entanglement is provided by a hydro-entangling method such as a high-pressure water column flow. If the fibers constituting the nonwoven fabric are not entangled by high-pressure water column flow, etc., the fibers will be in a layered state in the plane direction, and in this state, simply bonding with a resin binder, heat-sealing fiber, etc. However, delamination may occur. Due to the action of the high-pressure water column flow, the fibers dispersed and laminated in the plane direction become partially entangled in the thickness direction, forming three-dimensional entanglement. This three-dimensional entanglement results in a bulky and flexible nonwoven fabric.

本発明の不織布は、平面方向での分散配向指数Rが0.
8〜1.3の範囲であることが必要である。
The nonwoven fabric of the present invention has a dispersion orientation index R of 0.
It needs to be in the range of 8 to 1.3.

分散配向指数Rの詳細については、後述するが、マイク
ロ波により不織布を構成する繊維の配向分布を不織布の
平面方向の全角度について求めた分布図をもとに、不織
布の縦方向と横方向の強度比として代表して表した値で
ある。Rが0.8〜1.3の範囲から外れると、不織布
は異方性が強くなり、引裂き方向に異方性を生じ、−S
衣料用としては縫製方向や使用部位の制限が起こり好ま
しくない。
The details of the dispersion orientation index R will be described later, but based on the distribution diagram obtained by using microwaves to determine the orientation distribution of the fibers constituting the nonwoven fabric for all angles in the plane direction of the nonwoven fabric, This value is representatively expressed as an intensity ratio. When R is outside the range of 0.8 to 1.3, the nonwoven fabric becomes more anisotropic, producing anisotropy in the tearing direction, and −S
It is undesirable for use in clothing because it imposes restrictions on the direction of sewing and on the areas where it can be used.

本発明の不織布を構成する繊維としては前述の条件を満
たす限り、各種の繊維を用いることができる。しかし少
なくとも一方の先端が2本以上にフィブリル化した繊維
としてアクリル系繊維を用いるとよい。アクリル系繊維
を不織布の一構成成分とすることによって、アクリル系
繊維自身のをしている柔軟性、風合の良さ、嵩高性およ
び優れた発色性、耐候性の点で一般衣料用不織布として
最も優れた性能を発揮する。アクリル系繊維としては、
一般に市販されているアクリル系繊維であれば良(、特
に制限はない。又アクリル系繊維であれば先端部にフィ
ブリル化を与えやすい。
As the fibers constituting the nonwoven fabric of the present invention, various types of fibers can be used as long as they satisfy the above-mentioned conditions. However, it is preferable to use acrylic fibers as fibers in which at least one end is fibrillated into two or more fibers. By using acrylic fibers as a component of nonwoven fabrics, the acrylic fibers themselves are the best nonwoven fabrics for general clothing in terms of their flexibility, good texture, bulkiness, excellent color development, and weather resistance. Demonstrates excellent performance. As acrylic fiber,
Generally commercially available acrylic fibers may be used (but there are no particular limitations). Acrylic fibers are easy to fibrillate at the tip.

又先端部がフィブリル化していない繊維としては、アク
リル系繊維以外の繊維、特に天然繊維であるウール、綿
、麻、再生繊維であるビスコースレーヨン、キュポラ等
を用いるとよい。これら天然繊維又は再生繊維を用いる
ことにより、得られた不織布の吸湿性、吸水性を高める
ことができる。
Further, as the fibers whose tips are not fibrillated, it is preferable to use fibers other than acrylic fibers, especially natural fibers such as wool, cotton, and linen, and recycled fibers such as viscose rayon and cupola. By using these natural fibers or regenerated fibers, the hygroscopicity and water absorption of the obtained nonwoven fabric can be increased.

本発明の第2の目的は、マルチフィラメント状またはト
ウ状の連続した繊維束を表面速度1000m/ m i
 n以北で回転する植針ローラーで切断・分散すると共
に、同一の植針ローラーに短繊維から成る無撚又は有撚
の繊維束を供給して分散させながら前記連続した繊維束
から切断された繊維と混合し、次いで該混合された繊維
群に乱気流を当てながらネット上に分散配向指数Rが0
.8〜1.3の範囲で連続的に積層してフリース状にし
、該フリース状の繊維を10〜100 kg / cn
lGの水圧を存する少なくとも一段の高圧水柱状流で3
次元的に交絡することを特徴とする不織布の製造法によ
って達成される。
The second object of the present invention is to spin a continuous fiber bundle in the form of a multifilament or tow at a surface speed of 1000 m/m i
At the same time as cutting and dispersing with a needle roller rotating north of n, untwisted or twisted fiber bundles made of short fibers are supplied to the same needle roller and cut from the continuous fiber bundle while being dispersed. The dispersion orientation index R is 0 on the net while applying turbulence to the mixed fiber group.
.. The fleece-like fibers are laminated continuously in the range of 8 to 1.3 to form a fleece, and the fleece-like fibers are 10 to 100 kg/cn.
3 with at least one stage of high-pressure water column having a water pressure of lG.
This is achieved by a method for producing non-woven fabrics characterized by dimensional entanglement.

本発明の不織布の製造法としては、公知の繊維を利用し
得るという利点がある上に、従来の不織布製造方法では
成し得なかった以下の4つの特徴を同時に兼ねそなえた
画期的方法である。即ち、■ 10〜150mの連続し
た繊維長分布を有する繊維を一構成成分とする不織布が
一段で出来る。
The nonwoven fabric manufacturing method of the present invention has the advantage of being able to utilize known fibers, and is also an innovative method that simultaneously has the following four characteristics that could not be achieved with conventional nonwoven fabric manufacturing methods. be. That is, (1) A nonwoven fabric having one constituent component fibers having a continuous fiber length distribution of 10 to 150 m can be produced in one step.

■ 前記10〜150mmの連続した繊維長分布を有す
る繊維を少なくとも一方の繊維先端部が2本以上にフィ
ブリル化した繊維にすることが出来る。
(2) The fibers having a continuous fiber length distribution of 10 to 150 mm can be made into fibers in which at least one of the fiber tips is fibrillated into two or more fibers.

■ 2種以上の繊維の混合分散が一段で出来る。■ Two or more types of fibers can be mixed and dispersed in one step.

■ 不織布の強度分布が等方向で、眉間剥離がない不織
布の製造が出来る。
■ The strength distribution of the nonwoven fabric is isodirectional, making it possible to manufacture a nonwoven fabric that does not peel off between the eyebrows.

という特徴を有する。以下に、本発明の不織布の工業的
に有用な製造法について、図示の一実施態様により詳細
に説明する。
It has the following characteristics. Below, the industrially useful manufacturing method of the nonwoven fabric of the present invention will be explained in detail using one embodiment shown in the drawings.

第1図は、本発明の製造法の一実施態様を示した側面図
である。第1図において、繊維束1は数10〜数千デニ
ールの連続したフィラメント状物の集合体であってもよ
いし、数万〜数十万デニルの捲縮を有する連続繊維(一
般にトウ状物と呼ぶ)の集合体であってもよい。
FIG. 1 is a side view showing one embodiment of the manufacturing method of the present invention. In FIG. 1, the fiber bundle 1 may be an aggregate of continuous filament-like materials having tens to thousands of deniers, or continuous fibers (generally tow-like fibers) having crimps of tens of thousands to hundreds of thousands of deniers. ) may be a collection of

繊維束2は、ゲレンが数g / raから数十g/mの
トップスライバーあるいは粗糸の集合体である。
The fiber bundle 2 is an aggregate of top slivers or rovings having gelation of several g/ra to several tens of g/m.

繊維束1と繊維束2のニップロール3及び4へ同時に投
入することが必要だが、その投入量は、コーミングロー
ラ−5の直径及び針布によって、また不織布の目付量、
繊維混合比率によって任意に選択することが出来る。ま
た、ニップロール3及び4の速度比は1:1〜1:1.
2程度にすることによってコーミングローラ−5への繊
維束の投入形態が向上する。コーミングローラ−5につ
いては、従来紡績工程に用いられているような、その表
面に複数の開繊用針布を有したものであればどの様な構
造でもよいが、特開昭59−116462号(特許第1
065573号)に開示された針刃ロールを用いるとよ
り効果的である。
It is necessary to feed the fiber bundle 1 and the fiber bundle 2 to the nip rolls 3 and 4 at the same time, but the amount of input depends on the diameter of the combing roller 5 and the cloth, and the basis weight of the nonwoven fabric.
It can be arbitrarily selected depending on the fiber mixing ratio. Further, the speed ratio of the nip rolls 3 and 4 is 1:1 to 1:1.
By setting the number to about 2, the manner in which the fiber bundle is fed to the combing roller 5 is improved. The combing roller 5 may have any structure as long as it has a plurality of opening cloths on its surface, as conventionally used in the spinning process, but it is described in Japanese Patent Application Laid-Open No. 59-116462. (Patent No. 1
It is more effective to use the needle blade roll disclosed in No. 065573).

その際コーミングローラ−5の表面速度は1000@/
min以上であることが必要である。即ち、表面速度が
1000m/minより低くなると、コーミングローラ
−5とニップローラー4との間での切断及び(又は)分
散効果が極端に低下し、繊維長が極端に長い繊維塊やコ
ーミングローラ−5への繊維の巻き付きが多く発生し、
好ましくない。コーミングローラ−5の表面速度は、1
000m/win以上、好ましくは、1000m/mi
n〜5000m/minである。
At that time, the surface speed of the combing roller 5 is 1000@/
It is necessary to be equal to or greater than min. That is, if the surface speed is lower than 1000 m/min, the cutting and/or dispersion effect between the combing roller 5 and the nip roller 4 will be extremely reduced, resulting in a fiber lump with an extremely long fiber length or a combing roller. Many fibers are wrapped around 5,
Undesirable. The surface speed of the combing roller 5 is 1
000m/win or more, preferably 1000m/mi
n~5000m/min.

第1図に示すようにコーミングローラ−で切断されたり
、又は分散された繊維束Iと繊維束2からの繊維18は
風洞部7を経て、複数の駆動ロール11で駆動され、且
つ風洞部7との間を吸引シール用ロール8でシールされ
たネットコンベアー10上に吸引積層される。ネットコ
ンベア10の下側にはバキューム装置9が配置され、一
方風洞部7の上方にはダンパー6が配置されていること
により、吸引空気は第1図中でのと[F]の二方向から
風洞部7に入り、それによって乱気流がダンパー6の下
方で発生し、その乱気流によって繊維18の撹拌が加速
される。繊維18はこのような撹拌を受けながら3〜1
0m/secの落下速度で落下してネットコンベアー1
0上に積層される。その際乱気流により得られる繊維1
8の落下速度が3In/secよりも遅いと、ネットコ
ンベアー10上への積層が不均一となり、得られたフリ
ース状物19の平面方向での分散配向指数Rは0.5〜
4.0の範囲を示し、安定した積層が出来ないので好ま
しくない。また、10m/secより速い落下速度であ
っても特に得られたフリース状物19の分散配向指数R
は本発明の範囲を満足し得るが、吸引に要するエネルギ
ーが多大となると共に、繊維のネットコンベアー10上
へのかみ込みによる工程トラブルが増加し、好ましくな
い。
As shown in FIG. 1, the fibers 18 from the fiber bundle I and the fiber bundle 2 that have been cut or dispersed by the combing roller pass through the wind tunnel section 7 and are driven by a plurality of drive rolls 11. The net conveyor 10 is suction-stacked onto the net conveyor 10, which is sealed with a suction-sealing roll 8. A vacuum device 9 is disposed below the net conveyor 10, and a damper 6 is disposed above the wind tunnel section 7, so that the suction air is drawn from two directions, as shown in FIG. 1 and [F]. It enters the wind tunnel 7, thereby generating turbulent air below the damper 6, which accelerates the agitation of the fibers 18. While undergoing such agitation, the fibers 18 are
Falling at a falling speed of 0m/sec and reaching net conveyor 1
0. Fiber 1 obtained by turbulence
If the falling speed of 8 is slower than 3 In/sec, the stacking on the net conveyor 10 will be uneven, and the obtained fleece-like material 19 will have a dispersion orientation index R in the plane direction of 0.5 to
4.0, which is not preferable because stable lamination cannot be achieved. Moreover, even if the falling speed is faster than 10 m/sec, the dispersion orientation index R of the obtained fleece-like material 19 is
Although this can satisfy the scope of the present invention, it requires a large amount of energy for suction and increases process troubles due to the fibers getting caught on the net conveyor 10, which is not preferable.

本発明の実施態様の一例である実施例1で用いた繊維束
2中の繊維のステープルダイヤグラムと、フリース状′
V!A19中の繊維及び不織布20中の繊維のステープ
ルダイヤグラムを各々第2図の綿実線■、大実線■及び
破線■で示した。第2図の■と■は、ステープルダイヤ
グラムが大きく異なる。
A staple diagram of the fibers in the fiber bundle 2 used in Example 1, which is an example of the embodiment of the present invention, and a fleece-like
V! Staple diagrams of the fibers in A19 and the fibers in nonwoven fabric 20 are shown by solid cotton lines (■), large solid lines (■), and broken lines (■) in FIG. 2, respectively. ■ and ■ in FIG. 2 have very different staple diagrams.

即ち、■のステープルダイヤグラムは、繊維束1の切断
繊維と繊維束2の繊維の混合物からなることを示してい
る。また、■と■の線がはソ”同一であり、この事は吸
引積層により得られた繊維長分布が高圧水柱状流等の後
工程を経てもほとんど変化せずに維持されていることを
示している。第3図にフリース状物19中の構成繊維の
先端部の形状を示す。繊維1aは繊維束1の繊維が切断
され、その先端部1bがフィブリル化している。一方繊
維束2の繊維2aの先端はフィブリル化していない。
That is, the staple diagram (■) indicates that the staple is made of a mixture of the cut fibers of the fiber bundle 1 and the fibers of the fiber bundle 2. In addition, the lines ■ and ■ are the same, which indicates that the fiber length distribution obtained by suction lamination is maintained almost unchanged even after subsequent processes such as high-pressure water column flow. Figure 3 shows the shapes of the tips of the constituent fibers in the fleece-like material 19.For the fibers 1a, the fibers of the fiber bundle 1 are cut, and the tips 1b thereof are fibrillated. The tips of the fibers 2a are not fibrillated.

また、該フリース状物19と不織布20の平面方向での
分散配向指数Rは110 、1.06で、吸引積層によ
り得られた繊維の平面方向での分散配向挙動は、高圧水
柱状流等の後工程を経てもほとんど変化せずに維持され
る。
Furthermore, the dispersion orientation index R of the fleece-like material 19 and the nonwoven fabric 20 in the plane direction is 110 and 1.06, and the dispersion orientation behavior in the plane direction of the fibers obtained by suction lamination is similar to that of a high-pressure water column flow, etc. It remains almost unchanged even after post-processing.

本発明の不織布は第1図の高圧水柱状流装置(柱状流ノ
ズル部12、サクションボックス部13)を用いて、水
流交絡により3次元的交絡を施される。フリース状物1
9は吸引積層されている為、層状構造を有し、熱圧着や
樹脂処理だけでは風合いが堅くなる以上に層間剥離が起
こり、好ましくない。
The nonwoven fabric of the present invention is three-dimensionally entangled by hydroentanglement using the high-pressure water column flow device (column flow nozzle section 12, suction box section 13) shown in FIG. Fleece-like material 1
Since the material No. 9 is laminated under suction, it has a layered structure, and if only thermocompression bonding or resin treatment is used, delamination will occur in addition to hardening the texture, which is not preferable.

3次元水流交絡については公知の柱状流設備を用いるこ
とが出来、更に、片面、両面等の処理を任意に施すこと
が出来る。
For three-dimensional water entanglement, a known columnar flow facility can be used, and furthermore, single-sided, double-sided, etc. treatments can be arbitrarily performed.

高圧水柱状流の圧力は、10〜100 kg / cu
t Gの範囲であれば、任意に選択出来る。10kg/
cnlGより低いと、3次元的交絡が弱く、得られる不
織布の物性は極端に低下する。また、100kg/−G
よりも高い圧力であると、水流により逆に繊維切断が発
生し、不織布物性を低下させるとともに、下部ネットへ
の繊維の付着が発生し、工業的に好ましくない。
The pressure of high-pressure water column flow is 10-100 kg/cu
It can be arbitrarily selected as long as it is within the range of tG. 10kg/
When it is lower than cnlG, three-dimensional entanglement is weak and the physical properties of the obtained nonwoven fabric are extremely deteriorated. Also, 100kg/-G
If the pressure is higher than that, fibers will be cut due to the water flow, which will deteriorate the physical properties of the nonwoven fabric and cause the fibers to adhere to the lower net, which is industrially undesirable.

また、柱状流処理回数は、高圧水柱状流圧力の分配比と
表面形態によって任意に選択することが出来る。
Further, the number of columnar flow treatments can be arbitrarily selected depending on the distribution ratio of the high pressure water columnar flow pressure and the surface morphology.

高圧水柱状流により3次元的に交絡されたフリース状物
はニップロール14で乾燥機15に移送され、二ツブロ
ール16を通って、不織布20として捲取ロール17に
捲取られる。
The fleece-like material three-dimensionally entangled by the high-pressure water column flow is transferred to a dryer 15 by a nip roll 14, passes through a two-piece roll 16, and is wound onto a wind-up roll 17 as a nonwoven fabric 20.

ただし、第1図は本発明の製造法の一実施態様を示した
にすぎず、これに限定されるものではない。
However, FIG. 1 merely shows one embodiment of the manufacturing method of the present invention, and the present invention is not limited thereto.

〔実施例〕〔Example〕

次に本発明を実施例により更に詳述する。実施例の説明
に先立ち、ここで用いられる特性値の測定方法を記載す
る。
Next, the present invention will be explained in more detail with reference to Examples. Prior to describing the examples, a method for measuring characteristic values used here will be described.

目付■:標準状態のサンプルから250 tm X 2
50 mmのサンプル3枚を採取し、水分平衡状 態に至らせて後、重さ(g)を秤り、 その平均値を単位面積当たり(g/%)で表す。
Weight: 250 tm x 2 from standard sample
Take three 50 mm samples, allow them to reach a moisture equilibrium state, weigh them (g), and express the average value in g/% per unit area.

強伸度: J[S−11068に準じて測定した。強度
(kir15cm幅)、伸度(%)で表す。
Strength and elongation: Measured according to J[S-11068. Expressed in strength (kir15cm width) and elongation (%).

分散配向指数:神崎製祇■社製マイクロ波分子配向計を
用い、標準状態のサンプルか らlQc+sXIQcmのサンプルを採取し、周波数3
.98GH2でサンプルの平面方向における配向強度比
を算出し、R(分散 配向指数)とした。
Dispersion orientation index: Using a microwave molecular orientation meter manufactured by Kanzaki Seizi Co., Ltd., a sample of lQc + sXIQcm was collected from a sample in the standard state, and the frequency was 3.
.. The orientation intensity ratio in the planar direction of the sample was calculated using 98GH2, and was defined as R (dispersed orientation index).

引裂強カニ JIS −L −1085に準じて測定し
、(kg>で表す。
Tear strength crab Measured according to JIS-L-1085 and expressed as (kg>).

吸水性;バイレックス手法で長さ30cIII×幅3 
cn+のサンプルの60分後の吸水高さを測 定した。
Water absorption: Length 30cm x Width 3 using the Virex method
The water absorption height of the cn+ sample was measured after 60 minutes.

去施開上 第1図に示す装置を用いて、下記に示す条件で本発明の
不織布を得た。
EXAMPLE 1 Using the apparatus shown in FIG. 1, a nonwoven fabric of the present invention was obtained under the conditions shown below.

(第1図番号) ■  ・・・ 3.4・・・ (条  件) カシミロンO(旭化成工業01社製 アクリル繊維)KO30万デニール (単糸繊度0.9d)!−ウ ベンベルブ0 (旭化成工業−社製 キュプラ繊維)2dX64龍トツプス ライバー(ゲレンl1g/mX3本) 供給速度 4 m/min/4.1m/minコーミン
グローラー径 2001φ 回転速度 5000rpm 針布長 2m1m 繊維落下速度 6m/win #70ステンレス製ベルト 走行速度 10m/min 高圧水柱状流 オリフィス径 0.15龍φ 処理密度 1511o1e/ cm X 3段処理圧力 15 ・・・ 乾燥温度 90℃ 17−fl取速度 10m/min その目付量、強伸度及び分散配向指数Rを第1表に示し
た。また、繊維束2、フリース状物19、不織布20の
繊維のステーブルダイヤグラムを常法により測定し、第
2図に示した。第1図19の繊維の形状を顕微鏡で観察
した際の模式図を第3図に示した。更に、フリース状物
19および不織布20の断面の模式図を第4図(A)お
よび第4図(B)に示した。第4図(A)でOで示すフ
リース状物の断面は、層状積層構造であるが、第4図(
B)で◎で示す不織布では高圧水柱状流の作用により、
繊維が高度に3次元的交絡をしていることがわかる。
(Figure 1 number) ■ ... 3.4 ... (Conditions) Cashmilon O (acrylic fiber manufactured by Asahi Kasei Kogyo 01) KO 300,000 denier (single yarn fineness 0.9 d)! - Ubemberub 0 (cupra fiber manufactured by Asahi Kasei Industries) 2dX64 dragon top sliver (Gellen 1g/m x 3 pieces) Feeding speed 4m/min/4.1m/min Combing roller diameter 2001φ Rotation speed 5000rpm Clothes length 2m1m Fiber falling speed 6m /win #70 stainless steel belt running speed 10 m/min High pressure water column flow orifice diameter 0.15 long φ Processing density 1511 o1e/cm Table 1 shows the basis weight, strong elongation, and dispersion orientation index R. Further, the stability diagrams of the fibers of the fiber bundle 2, fleece-like material 19, and nonwoven fabric 20 were measured by a conventional method and are shown in FIG. FIG. 3 shows a schematic diagram of the shape of the fiber shown in FIG. 19 observed under a microscope. Furthermore, schematic cross-sectional views of the fleece-like material 19 and the nonwoven fabric 20 are shown in FIG. 4(A) and FIG. 4(B). The cross section of the fleece-like material indicated by O in FIG. 4(A) has a layered laminated structure;
In the nonwoven fabric marked with ◎ in B), due to the action of high-pressure water column flow,
It can be seen that the fibers are highly three-dimensionally intertwined.

第 表 第1図に示す装置を用いて、実施例1で示した条件のう
ち、繊維束1と2を第2表に示す様に変化させた以外は
、実施例1と同様の方法で不織布を得た。得られた不織
布の目付量、分散配向指数R及び強伸度を第2表に示し
た。
Using the apparatus shown in Table 1, the non-woven material was fabricated in the same manner as in Example 1, except that fiber bundles 1 and 2 were changed as shown in Table 2 under the conditions shown in Example 1. I got it. Table 2 shows the basis weight, dispersion orientation index R, and strength and elongation of the obtained nonwoven fabric.

ス1m人 第1図に示す装置を用いて、実施例1で示した条件のう
ちコーミングローラ−5の表面速度及び風洞部7での繊
維落下速度を第3表に示す様に変化させて各々の不織布
を得た。該不織布の目付量、分散配向指数R及び工程性
について検討し、その結果を第3表に示した。
Using the apparatus shown in Figure 1, the surface speed of the combing roller 5 and the fiber falling speed in the wind tunnel section 7 were changed as shown in Table 3 under the conditions shown in Example 1. A nonwoven fabric was obtained. The basis weight, dispersion orientation index R, and processability of the nonwoven fabric were examined, and the results are shown in Table 3.

第3表 此J2Jホし 目付量40〜50g/mの市販の衣料用不織布の分散配
向指数Rを測定すると共に、衣料着用時に必要な機能の
一つである不織布の引裂強力及び乾/湿強度比吸水性を
常法により測定した。実施例1及び実施例2−1.2−
2で得られた不織布と比較し、その結果を第4表に示し
た。
Table 3: Measurement of dispersion orientation index R of commercially available nonwoven fabrics for clothing with a basis weight of 40 to 50 g/m, as well as tear strength and dry/wet strength of nonwoven fabrics, which are one of the functions required when wearing clothing. Specific water absorption was measured by a conventional method. Example 1 and Example 2-1.2-
The results were compared with the nonwoven fabric obtained in step 2, and the results are shown in Table 4.

第4表 〔発明の効果〕 本発明の不織布により、一般衣料用として市販されてい
る従来品に比べ、不織布物性の等方性および吸水性に優
れ、乾/湿強度比が均一でかつ、本来アクリル繊維のも
つ柔軟性、嵩高性等の利点を生かした一般衣料用不織布
として最適な不織布を提供することが出来た。更に、本
発明の不織布の製造法により、多種類の繊維の混合が任
意に、安価に製造することが可能となり、高性能不織布
への工業的製造法の提供が可能となった。
Table 4 [Effects of the Invention] Compared to conventional products commercially available for general clothing, the nonwoven fabric of the present invention has excellent isotropy and water absorption properties in nonwoven fabric properties, has a uniform dry/wet strength ratio, and We were able to provide a nonwoven fabric that is optimal for use in general clothing by taking advantage of the flexibility and bulkiness of acrylic fibers. Furthermore, the method for manufacturing a nonwoven fabric of the present invention makes it possible to arbitrarily mix various types of fibers and to manufacture the fabric at low cost, making it possible to provide an industrial manufacturing method for high-performance nonwoven fabrics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の不織布の製造法の一実施態様を例示す
る図、第2図は本発明の製造法に於ける繊維、フリース
状物及び不織布の繊維長分布の一例を示すステープルダ
イヤグラム図、第3図は第1図19で得られたフリース
状物中の2種類の繊維の先端部を顕微鏡下で観察した際
の模式図、第4図(A)および第4図(B)は本発明の
不織布の製造過程に於ける繊維の交絡形態を示す断面の
模式1・・・フィラメント状の繊維束、 1a・・・繊維束1中の繊維、 1b・・・繊維1aのフィブリル化した先端部、2・・
・トップスライバー状の繊維束、2a・・・繊維束2中
の繊維、 3.4・・・ニップロール、 5・・・コーミングローラ−16・・・ダンパー7・・
・風洞部、       9・・・バキューム装置、1
0・・・ネットコンベアー 12・・・柱状流ノズル部、 13・・・サクションボックス部、 14 、16・・・ニップロール、 15・・・乾燥機
、17・・・捲取ロール、 18・・・乱流にさらされた繊維、 I9・・・フリース状物、   20・・・不織布。 第 図 b 第 図 (A) 第 図
FIG. 1 is a diagram illustrating an embodiment of the nonwoven fabric manufacturing method of the present invention, and FIG. 2 is a staple diagram diagram showing an example of the fiber length distribution of fibers, fleece-like materials, and nonwoven fabrics in the manufacturing method of the present invention. , FIG. 3 is a schematic diagram of the tips of two types of fibers in the fleece-like material obtained in FIG. Cross-sectional schematic 1 showing the entangled form of fibers in the manufacturing process of the nonwoven fabric of the present invention...Filamentary fiber bundle, 1a...Fibers in fiber bundle 1, 1b...Fibrillated fibers 1a Tip, 2...
・Top sliver fiber bundle, 2a... Fibers in fiber bundle 2, 3.4... Nip roll, 5... Combing roller 16... Damper 7...
・Wind tunnel section, 9... Vacuum device, 1
0... Net conveyor 12... Column flow nozzle section, 13... Suction box section, 14, 16... Nip roll, 15... Dryer, 17... Winding up roll, 18... Fibers exposed to turbulence, I9...Fleece-like material, 20...Nonwoven fabric. Figure b Figure (A) Figure

Claims (4)

【特許請求の範囲】[Claims] 1.繊維の長さが10〜150mmの範囲に連続的に分
布し、かつ該繊維の少なくとも一方の先端部が2本以上
にフィブリル化した複数の繊維と、任意の繊維長分布を
有する複数の短繊維とが混合した状態で互いに3次元的
に交絡して形成されており、平面方向での分散配向指数
Rが0.8〜1.3の範囲であることを特徴とする不織
布。
1. A plurality of fibers whose fiber lengths are continuously distributed in the range of 10 to 150 mm, and at least one of the fibers has two or more fibrillated ends, and a plurality of short fibers having an arbitrary fiber length distribution. A nonwoven fabric is formed by intertwining three-dimensionally with each other in a mixed state, and has a dispersion orientation index R in a plane direction in a range of 0.8 to 1.3.
2.前記10〜150mmの範囲の繊維長分布を有する
繊維がアクリル系繊維であることを特徴とする請求項1
記載の不織布。
2. Claim 1, wherein the fibers having a fiber length distribution in the range of 10 to 150 mm are acrylic fibers.
Nonwoven fabric as described.
3.前記短繊維としてアクリル系繊維以外の繊維を用い
ることを特徴とする請求項2記載の不織布。
3. The nonwoven fabric according to claim 2, wherein fibers other than acrylic fibers are used as the short fibers.
4.マルチフィラメント状またはトウ状の連続した繊維
束を表面速度1000m/min以上で回転する植針ロ
ーラーで切断・分散すると共に、同一の植針ローラーに
短繊維から成る無撚又は有撚の繊維束を供給して分散さ
せながら前記連続した繊維束から切断された繊維と混合
し、次いで該混合された繊維群に乱気流を当てながらネ
ット上に分散配向指数Rが0.8〜1.3の範囲で連続
的に積層してフリース状にし、該フリース状の繊維を1
0〜100kg/cmGの水圧を有する少なくとも一段
の高圧水柱状流で3次元的に交絡することを特徴とする
不織布の製造法。
4. A continuous fiber bundle in the form of a multifilament or tow is cut and dispersed with a needle roller rotating at a surface speed of 1000 m/min or more, and a non-twisted or twisted fiber bundle made of short fibers is cut and dispersed on the same needle roller. The fibers cut from the continuous fiber bundle are mixed with the fibers cut from the continuous fiber bundle while being supplied and dispersed, and then the fibers are dispersed onto the net while applying turbulence to the mixed fiber group so that the orientation index R is in the range of 0.8 to 1.3. The fleece-like fibers are laminated continuously to form a fleece, and the fleece-like fibers are
1. A method for producing a nonwoven fabric, which comprises three-dimensionally entangling the nonwoven fabric in at least one stage of high-pressure water column flow having a water pressure of 0 to 100 kg/cmG.
JP63225543A 1988-09-10 1988-09-10 Novel nonwoven fabric and production thereof Pending JPH0274653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225543A JPH0274653A (en) 1988-09-10 1988-09-10 Novel nonwoven fabric and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225543A JPH0274653A (en) 1988-09-10 1988-09-10 Novel nonwoven fabric and production thereof

Publications (1)

Publication Number Publication Date
JPH0274653A true JPH0274653A (en) 1990-03-14

Family

ID=16830941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225543A Pending JPH0274653A (en) 1988-09-10 1988-09-10 Novel nonwoven fabric and production thereof

Country Status (1)

Country Link
JP (1) JPH0274653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191256A (en) * 1989-12-15 1993-03-02 American Motion Systems Interior magnet rotary machine
JP2003265528A (en) * 2002-03-15 2003-09-24 Daio Paper Corp Disposable paper diaper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191256A (en) * 1989-12-15 1993-03-02 American Motion Systems Interior magnet rotary machine
JP2003265528A (en) * 2002-03-15 2003-09-24 Daio Paper Corp Disposable paper diaper

Similar Documents

Publication Publication Date Title
CN105401334B (en) A kind of preparation method of needle punched non-woven fabrics
US10577727B2 (en) Ring composite spinning method based on film filamentization
EP1688522B2 (en) Method for producing spunlace non-woven cloth, method for producing spunlace non-woven cloth with X-Ray detectable element, spunlace non-woven cloth with X-Ray detectable element
MXPA06014144A (en) A hydroentangled split-fibre nonwoven material.
US3523059A (en) Needled fibrous batting and method of making the same
CN112726029B (en) Filament non-woven composite material and preparation method thereof
CN108385228B (en) Method for compounding high-rigidity brittle fiber into yarn by short-process double-twisting
US3014263A (en) Manufacture of nonwoven fabrics
CN108396428B (en) Short-process double-twisting yarn forming method for high-rigidity brittle fibers
KR200498146Y1 (en) Machine and method for preparing fibrous web, fibrillar fiber aggregate or nonwoven fabric, and fibrous web, fibrillar fiber aggregate or nonwoven fabric prepared thereby
JPH08291451A (en) Nonwoven fabric and its production
CN1008455B (en) Adhesive-boned fabric and its manufacturing method
JPH0274653A (en) Novel nonwoven fabric and production thereof
US3135023A (en) Method and apparatus for making strands, yarns, and the like
CN210561077U (en) Device for producing a fibrous web, a mass of filaments or a nonwoven
Sawhney et al. Effect of web formation on properties of hydroentangled nonwoven fabrics
CN102517738A (en) Cellulose fiber/synthetic fiber sheath core type composite modified continuous filament yarn and preparation method thereof
CN108286100B (en) Method for short-process yarn formation of down-like difficult-to-spin fibers
JPS6260492B2 (en)
CN108468155A (en) A kind of functionality carboxymethyl cellulose fiber non-woven fabrics and its production technology and application
CN86102459A (en) Novel water-dispersible synthetic fiber
CN215163569U (en) Filament non-woven composite cloth and production device thereof
JPH0241452A (en) Novel nonwoven fabric and production thereof
JP2001159031A (en) Method for producing sliver using used batting of futon
Tabor The Role of Staple Fiber Length on the Performance of Carded Nonwovens.