JPH027367A - Cadmium negative plate and alkaline secondary battery using this negative plate - Google Patents

Cadmium negative plate and alkaline secondary battery using this negative plate

Info

Publication number
JPH027367A
JPH027367A JP63158937A JP15893788A JPH027367A JP H027367 A JPH027367 A JP H027367A JP 63158937 A JP63158937 A JP 63158937A JP 15893788 A JP15893788 A JP 15893788A JP H027367 A JPH027367 A JP H027367A
Authority
JP
Japan
Prior art keywords
cadmium
electrode plate
negative electrode
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63158937A
Other languages
Japanese (ja)
Other versions
JP2591987B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63158937A priority Critical patent/JP2591987B2/en
Publication of JPH027367A publication Critical patent/JPH027367A/en
Application granted granted Critical
Publication of JP2591987B2 publication Critical patent/JP2591987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a cadmium negative plate having high charging efficiency by containing a specified weight of barium tungstate based on the total weight of cadmium. CONSTITUTION:A negative plate contains 0.25-15wt.% barium tungstate based on the total weight of cadmium. In particular, in a content range of 0.5-10wt.%, charging efficiency reaches 98% or more and inactive cadmium hydroxide is decreased. The cadmium negative plate having high charging efficiency is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はカドミウム負極板と、その負極板を用いたアル
カリ二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery using the negative electrode plate.

従来の技術とその課題 現在、二次電池としては、主として!9電池およびニッ
ケルーカドミウム電池が用いられているが、特にニッケ
ルーカドミウム電池は、高率放電での特性が良好である
ことや、鉛電池に比べて寿命が長いなどの理由によって
需要が急増している。また一方では、近年の電子機器の
小型化、軽量化などに伴って、高容量化や充電時間の短
縮が二次電池に対して要求されている。
Conventional technology and its challengesCurrently, secondary batteries are mainly used! 9 batteries and nickel-cadmium batteries are used, but demand for nickel-cadmium batteries in particular is rapidly increasing due to their good characteristics at high rate discharge and longer lifespan than lead batteries. ing. On the other hand, as electronic devices have become smaller and lighter in recent years, secondary batteries are required to have higher capacity and shorter charging time.

カドミウム負極板を用いた従来のアルカリ二次電池には
次のような問題がある。それはカドミウム負極板に関す
るもので、充放電反応に関与しない水酸化カドミウムを
多く有していることである。
Conventional alkaline secondary batteries using cadmium negative electrode plates have the following problems. This is related to the cadmium negative electrode plate, which contains a large amount of cadmium hydroxide that does not participate in charge/discharge reactions.

つまり、水酸化カドミウムの水素ガス発生までの充電効
率は、通常90%程度であり、残り約10%の水酸化カ
ドミウムは何等役に立つこともなく不要な体積を占めて
いる。さらにニッケル−カドミウム電池を例にとると、
電池の密閉状態を保つために、負極板内に正極板の容量
の20%以上のいわゆるリザーブの水酸化カドミウムが
必要であった。
In other words, the charging efficiency of cadmium hydroxide until hydrogen gas is generated is usually about 90%, and the remaining 10% of cadmium hydroxide is of no use and occupies unnecessary volume. Furthermore, taking a nickel-cadmium battery as an example,
In order to keep the battery sealed, a so-called reserve of cadmium hydroxide of 20% or more of the capacity of the positive electrode plate was required in the negative electrode plate.

このリザーブの水酸化カドミウムは正極活物質の保持体
である金属ニッケルの活物質化や電池内の空間体積を補
償するものであり、放電容量には寄与しない、これらの
水酸化カドミウムを有していることが、カドミウム負極
板および電池の高容量化を妨げている一因である。
This reserve cadmium hydroxide is used to make the metal nickel, which is the support for the positive electrode active material, into an active material and to compensate for the space volume inside the battery, and does not contribute to the discharge capacity. This is one of the reasons that prevents higher capacity of cadmium negative electrode plates and batteries.

また、従来のニッケルーカドミウム電池は、電池の密閉
状態を保つために定電流で充電した場合には電流を約I
CA以下に抑えなければならないという問題を有してい
る。これは、充電電流を1C^以上に大きくした場合に
は、過充電領域において正極板から発生した全ての酸素
ガスを負極板で吸収することができずに、結局は安全弁
が作動して電解液の減少を起こし、容量低下と寿命特性
の劣化を起こすためである。そこで、特願昭62−83
582号や特願昭63・133.45号で提案されてい
るように、充電時における負極板の水素発生にいたる過
程の電位変化を充電電圧の変化として検出して充電制御
を容易にし、かつ急速充電を可能にする試みがあるが、
負極板の充電効率の点で不十分である。
In addition, when conventional nickel-cadmium batteries are charged at a constant current to keep the battery sealed, the current is about I.
There is a problem in that it must be kept below CA. This is because when the charging current is increased to 1C^ or more, the negative electrode plate cannot absorb all the oxygen gas generated from the positive electrode plate in the overcharge region, and the safety valve is activated and the electrolyte solution is This is because it causes a decrease in capacity, a decrease in capacity, and a deterioration in life characteristics. Therefore, the special application
As proposed in No. 582 and Japanese Patent Application No. 133.45 of 1983, changes in potential during the process leading to hydrogen generation in the negative electrode plate during charging are detected as changes in charging voltage to facilitate charging control, and There are attempts to enable rapid charging, but
The charging efficiency of the negative electrode plate is insufficient.

課題を解決するための手段 本発明はカドミウム負極板と、その負極板を備えたアル
カリ二次電池に関するものであって、該負極板はタング
ステン酸バリウムを全カドミウム量に対し0.25重量
%以上15重量%以下含有することを特徴とするもので
ある。
Means for Solving the Problems The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery equipped with the negative electrode plate, wherein the negative electrode plate contains barium tungstate in an amount of 0.25% by weight or more based on the total amount of cadmium. It is characterized by containing 15% by weight or less.

作用 カドミウム負極板の充電効率について検討した結果、負
極活物質中にタングステン酸バリウムを含有させること
によって充電効率が高くなることがわかった。
As a result of investigating the charging efficiency of a functional cadmium negative electrode plate, it was found that the charging efficiency was increased by incorporating barium tungstate into the negative electrode active material.

例えば、水酸化カドミウムあるいは酸化カドミウムと金
属カドミウムとを活物質の主体とするカドミウム負極板
を、酸化カドミウムあるいは水酸化カドミウムの理論容
量を基準として ICAの電流で充電した際の水素ガス
が発生ずるまでの充電効率は約93πであるが、タング
ステン酸バリウムを全カドミウム量に対し1重量%含有
する場合には充電効率が98%以上に向上する。
For example, when a cadmium negative electrode plate whose main active materials are cadmium hydroxide or cadmium oxide and metal cadmium is charged with an ICA current, based on the theoretical capacity of cadmium oxide or cadmium hydroxide, until hydrogen gas is generated. The charging efficiency is about 93π, but when barium tungstate is contained in an amount of 1% by weight based on the total amount of cadmium, the charging efficiency improves to 98% or more.

また、このような充電効率の優れた負極板を用いて、そ
の負極板の充電時の水素発生にいたる電位変化を端子電
圧の変化として検出すれば充電制御が容易であり、その
時点で定電圧に設定すれば過充電領域では電流が小さく
なるために、急速充電が可能でしかも電解液の減量のな
いアルカリ二次電池となる。
In addition, by using such a negative electrode plate with excellent charging efficiency, it is easy to control charging by detecting the potential change that leads to hydrogen generation during charging of the negative electrode plate as a change in terminal voltage, and at that point, the constant voltage If set to , the current becomes small in the overcharge region, resulting in an alkaline secondary battery that allows rapid charging and does not cause loss of electrolyte.

実施例 以下本発明を好適な実施例を用いて詳細に説明する。Example The present invention will be explained in detail below using preferred embodiments.

本発明の目的は、充電効率の優れたカドミウム負極板を
得ることであり、またそれを電池に適用することである
。従って、まず最初にカドミウム負極板について述べる
An object of the present invention is to obtain a cadmium negative electrode plate with excellent charging efficiency, and to apply it to batteries. Therefore, first we will discuss the cadmium negative electrode plate.

[実施例1] 酸化カドミウム粉末2401gと金属カドミウム粉末2
101gと配合量を0〜84mgの範囲で変えたタング
ステン酸バリウムとを混合してから、230klll 
/CI2の圧力で加圧成形して、全カドミウムの理論容
量が200iAhの錠剤とした。さらにこの錠剤を20
メツシユのニッケル網で包んで負極板とした。これを負
極板群(イ)とする。
[Example 1] Cadmium oxide powder 2401g and metal cadmium powder 2
After mixing 101g and barium tungstate with varying amounts in the range of 0 to 84mg, 230klll
The tablets were press-molded at a pressure of /CI2 to form tablets with a theoretical total cadmium capacity of 200 iAh. 20 more of these tablets
It was wrapped in mesh nickel netting and used as a negative electrode plate. This is called the negative electrode plate group (a).

[実施例2] 水酸化カドミウム粉末273ngと金属カドミウム粉末
210mgと配合量を0〜84mgの範囲で変えたタン
グステン酸バリウムとを混合した後、実施例1と同様に
して、理論容量が200nAhの錠剤形負極板とした。
[Example 2] After mixing 273 ng of cadmium hydroxide powder, 210 mg of metal cadmium powder, and barium tungstate with varying amounts in the range of 0 to 84 mg, tablets with a theoretical capacity of 200 nAh were prepared in the same manner as in Example 1. It was made into a negative electrode plate.

これを負極板群(ロ)とする。This is called the negative electrode plate group (b).

なお、全カドミウム量とはカドミウム負極板に含まれる
Cd原子の総量である。
Note that the total amount of cadmium is the total amount of Cd atoms contained in the cadmium negative electrode plate.

これらの負極板を比ff11.250(20℃)の水酸
化カリウム水溶液中で、対極にニッケル平板2枚を用い
て、配合時における酸化カドミウム粉末あるいは水酸化
カドミウム粉末の理論容量を基準として1C^(100
nA)の電流で充放電を繰り返し、下記の式(1)から
充電効率を求めた。
These negative electrode plates were mixed in a potassium hydroxide aqueous solution with a ratio of ff 11.250 (20°C), using two nickel flat plates as counter electrodes, and 1C^ based on the theoretical capacity of the cadmium oxide powder or cadmium hydroxide powder at the time of compounding. (100
Charging and discharging were repeated at a current of nA), and the charging efficiency was determined from the following equation (1).

水素ガスの発生が認められるまでの充EK気量充電効率
= (%)   放電状態にあったカドミウム活物質の理論
容量×100・・・(1) その結果を第1図に示す。同図から活物質原料として酸
化カドミウムあるいは水酸化カドミウムを用いたことに
よる差は認められず、全カドミウム量に対するタングス
テン酸バリウムの含有率が0.25重置火以上15重量
%以下の範囲で充電効率の向上が認められる。特に含有
率が0.5重量%以上10重量%以下の範囲では充電効
率が98%以上と極めて高く、充電できない不活性な水
酸化カドミウムが減少していることを示している。
EK volume charge efficiency until hydrogen gas generation is observed = (%) Theoretical capacity of the cadmium active material in the discharged state x 100 (1) The results are shown in FIG. From the same figure, no difference was observed due to the use of cadmium oxide or cadmium hydroxide as the active material raw material, and charging was performed when the content of barium tungstate was 0.25 to 15% by weight relative to the total amount of cadmium. Improvement in efficiency is recognized. In particular, when the content is in the range from 0.5% by weight to 10% by weight, the charging efficiency is extremely high at 98% or more, indicating that inactive cadmium hydroxide, which cannot be charged, is reduced.

以上のことから全カドミウムに対するタングステン酸バ
リウムの含有率は、0.25重量%以上15重量%以下
とするのが適しているといえる。
From the above, it can be said that the content of barium tungstate relative to the total cadmium is suitably 0.25% by weight or more and 15% by weight or less.

以下に実施例で用いた各原料の性状を示す。The properties of each raw material used in the examples are shown below.

く酸化カドミウム粉末〉 アトマイズ法によって製作した平均粒子径1μ藷のもの く水酸化カドミウム粉末〉 上記の酸化カドミウム粉末を精製水中に浸漬して水和さ
せたもの く金属カドミウム粉末〉 電気化学的な置換法によって製作した平均粒子径2μm
のもの くタングステン酸バリウム〉 市販の試薬 次に以上の実施例で説明した極めて高い充電効率を有す
る本発明のカドミウム負極板を用いた電池の評価を行っ
た。
Cadmium hydroxide powder with an average particle diameter of 1μ produced by the atomization method Metallic cadmium powder obtained by immersing the above cadmium oxide powder in purified water to hydrate it Electrochemical substitution Average particle diameter 2μm produced by the method
Monoku Barium Tungstate> Commercially available reagent Next, a battery using the cadmium negative electrode plate of the present invention having extremely high charging efficiency as described in the above examples was evaluated.

本発明のカドミウム負極板はリザーブの水酸化カドミウ
ムを必要とする従来のニッケルーカドミウム電池に使用
できる他に、これよりも高容量化と充電時間の短縮が可
能であるリザーブの水酸化カドミウムを有しない電池に
使用した場合にその効果がより明確である。それは、本
発明のカドミウム負極板の充電効率が優れていることに
起因する。従って以下の実施例ではリザーブの水酸化カ
ドミウムを有しない電池を例にして説明する。
The cadmium negative electrode plate of the present invention can be used in conventional nickel-cadmium batteries that require cadmium hydroxide as a reserve, and also has cadmium hydroxide as a reserve, which enables higher capacity and shorter charging time. The effect is more obvious when used with batteries that do not. This is due to the excellent charging efficiency of the cadmium negative electrode plate of the present invention. Therefore, in the following examples, a battery without cadmium hydroxide as a reserve will be described as an example.

本発明のアルカリ電池に使用できる正極活物質は水酸化
ニッケル、二酸化マンガンおよび酸化銀である。これら
のうち一般的に多く用いられている活物質は水酸化ニッ
ケルであるので、ニッケルーカドミウム電池を中心にし
て説明する。
Positive electrode active materials that can be used in the alkaline battery of the present invention are nickel hydroxide, manganese dioxide and silver oxide. Among these, the most commonly used active material is nickel hydroxide, so the explanation will focus on nickel-cadmium batteries.

本発明に用いるカドミウム負極板は、基本的に以下に示
す集電体を用いて製造することができる。
The cadmium negative electrode plate used in the present invention can basically be manufactured using the current collector shown below.

すなわち、ニッケルや銅やカドミウムの網、エクスパン
デッドメタル、穿孔板あるいは集電体と活物質保持体を
兼ねる三次元構造の金属発泡体や金属繊維のマットであ
る。
That is, it is a nickel, copper, or cadmium net, an expanded metal, a perforated plate, or a three-dimensionally structured metal foam or metal fiber mat that serves both as a current collector and an active material holder.

また、鉄にニッケルメッキしたものや、鉄あるいはニッ
ケルに銅メツキしたもの、さらに鉄、ニッケルあるいは
銅にカドミウムメツキしたものも使用できる。
Further, iron plated with nickel, iron or nickel plated with copper, and iron, nickel or copper plated with cadmium can also be used.

[実施例3コ 酸化カドミウム粉末60 ffi量部と金属カドミウム
粉末40ffin部とタングステン酸バリウム2重量部
と長さ 11IImのポリプロピレン製の短繊維0.1
重量部とを1.5重量%のポリビニルアルコールを含む
エチレングリコール301で混合してペースト状にする
。このペーストをニッケルメッキ(5μ1m)した穿孔
鋼板に塗着し、次いで乾燥、加圧して酸化カドミウムの
理論容量が960nAhで寸法が2.9x 14x 5
21mm)の負極板を製作した。
[Example 3] 60 ffi parts of co-cadmium oxide powder, 40 ffin parts of metal cadmium powder, 2 parts by weight of barium tungstate, and 0.1 part of short polypropylene fiber having a length of 11 II m.
parts by weight with ethylene glycol 301 containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste was applied to a nickel-plated (5μ1m) perforated steel plate, then dried and pressurized to form a plate with a theoretical capacity of cadmium oxide of 960nA and dimensions of 2.9x 14x 5.
A negative electrode plate with a diameter of 21 mm was manufactured.

一方、正極板は次の方法で製作しな。On the other hand, fabricate the positive electrode plate using the following method.

多孔度が約80%の焼結式ニッケル基板に、ニッケルと
コバルトとの合計に対するコバルトの含有率が8モルX
の硝酸コバルトと硝酸ニッケルとの混合水溶液[PH・
2、比重1.50(20℃)1を含浸した後、比f!1
.200  (20℃)の水酸化ナトリウム水溶液に浸
漬し、湯洗、乾燥する。この操作を繰り返して、水酸化
ニッケルと水酸化コバルトの理論容量の合計が4001
1Ahテ寸法が1.4 x14x52nnノ正極板を製
作した。
A sintered nickel substrate with a porosity of approximately 80% has a cobalt content of 8 mol x based on the total of nickel and cobalt.
Mixed aqueous solution of cobalt nitrate and nickel nitrate [PH・
2. After impregnating specific gravity 1.50 (20℃) 1, the ratio f! 1
.. The sample was immersed in a sodium hydroxide aqueous solution at 200°C (20°C), washed with hot water, and dried. Repeat this operation until the total theoretical capacity of nickel hydroxide and cobalt hydroxide is 4001.
A 1Ah positive electrode plate with dimensions of 1.4 x 14 x 52 nn was manufactured.

次に負極板1枚を厚さ0.2nmのポリアミドの不織布
に包んだ後に正極板2枚の間にはさみ、電解液として比
重1.250  (20℃)の水酸化カリウム水溶液2
.41を用いて、公称容量が700nAhの合成樹脂製
の電槽を用いたニッケルーカドミウム電池(^)を製作
した。外形寸法は(37x 1f3.5x 8(in)
であり、0.1kg/co2で作動する安全弁を付けて
いる。
Next, one negative electrode plate was wrapped in a polyamide non-woven fabric with a thickness of 0.2 nm, and then sandwiched between two positive electrode plates.
.. Using No. 41, a nickel-cadmium battery (^) with a nominal capacity of 700 nAh and a synthetic resin container was manufactured. External dimensions are (37x 1f3.5x 8 (in)
It is equipped with a safety valve that operates at 0.1 kg/co2.

また、この電池の負極板中の酸化カドミウムは電解液を
入れると以下の式(2)に示す反応によって水を消費す
るため、その消費分に相当する水を余分に注入した。
In addition, since the cadmium oxide in the negative electrode plate of this battery consumes water by the reaction shown in the following equation (2) when an electrolytic solution is added, an extra amount of water corresponding to the consumed amount was injected.

CdO十H,O→Cd(OH)t  ・・・(2)[実
施例4] 水酸化カドミウム粉末68.5重量部と金属カドミウム
粉末40重量部とタングステン酸バリウム211部と長
さ 11111のポリプロピレン製の短株維0.1重量
部とを1.5重量%のポリビニルアルコールを含むエチ
レングリコール30+a Iで混合してペースト状にす
る。このペーストを銅メツ’N5μn+)した穿孔銅板
に塗着し、次いで乾燥、加圧して水酸化カドミウムの理
論容量が9GOiAhで寸法が2.9 X111x52
1on)の負極板を製作した。
CdO1H,O→Cd(OH)t...(2) [Example 4] 68.5 parts by weight of cadmium hydroxide powder, 40 parts by weight of metal cadmium powder, 211 parts of barium tungstate, and polypropylene of length 11111 0.1 part by weight of the short stock fibers produced by the company Co., Ltd. are mixed with ethylene glycol 30+a I containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste was applied to a perforated copper plate made with copper (N5 μn+), then dried and pressurized to form a cadmium hydroxide solution with a theoretical capacity of 9 GOiAh and dimensions of 2.9 x 111 x 52.
1on) negative electrode plate was manufactured.

次に上記の負極板と実施例3と同じ正極板とを用いて実
施例3と同様な構成の公称容量が700nAhの角形ニ
ッケルーカドミウム電池(B)を製作した。
Next, using the above negative electrode plate and the same positive electrode plate as in Example 3, a prismatic nickel-cadmium battery (B) having the same configuration as in Example 3 and having a nominal capacity of 700 mAh was manufactured.

[実施例5] 実施例3における負極板の集電体すなわちニッケルメッ
キした穿孔鋼板の代わりにカドミウムメツ”r15μm
)した穿孔鋼板を用いた以外は全て実施例3と同様にし
て公称容量700raAhの角形ニッケルーカドミウム
電池(C)を製作した。
[Example 5] Instead of the current collector of the negative electrode plate in Example 3, that is, the nickel-plated perforated steel plate, a cadmium metal with a thickness of 15 μm was used.
) A prismatic nickel-cadmium battery (C) with a nominal capacity of 700 raAh was manufactured in the same manner as in Example 3, except that a perforated steel plate was used.

[比較例1] 実施例3における負極板の配合からタングステン酸バリ
ウムを削除した以外は全て実施例3と同様にして公称容
量700nAhの角形ニッケルーカドミウム電池[D)
を製作した。
[Comparative Example 1] A prismatic nickel-cadmium battery [D] with a nominal capacity of 700 mAh was prepared in the same manner as in Example 3 except that barium tungstate was removed from the formulation of the negative electrode plate in Example 3.
was produced.

以上のようにして製作した電池(A)、 (B)、 (
C)および(D)を20℃において最大電流3CAの電
流で1.90Vの定電圧充電を30分間行った後、0.
2CAの電流でo、sv=で放電するという充放電サイ
クルを250回行った。1サイクル目の放電容量を10
0とした場合の各サイクルにおける容量保持率を第2図
に示す。同図から本発明の電池(A)、 (B)、およ
び(C)は比較電池(D)よりも容量保持率が明らかに
高いことがわかる。この原因は本発明の電池の負極活物
質の充電効率が極めて高<、3CAのような大きな電流
であっても充電終期の負極電位の立ち上がりまでの充電
電気量が多いためであり、また充電効率のサイクルにお
ける低下がほとんどないためである。
Batteries (A), (B), (
C) and (D) were charged at a constant voltage of 1.90V at a maximum current of 3CA for 30 minutes at 20°C, and then 0.
A charging/discharging cycle of discharging at o, sv= with a current of 2 CA was performed 250 times. The discharge capacity of the first cycle is 10
FIG. 2 shows the capacity retention rate in each cycle when it is set to 0. From the figure, it can be seen that the batteries (A), (B), and (C) of the present invention clearly have a higher capacity retention rate than the comparative battery (D). This is because the charging efficiency of the negative electrode active material of the battery of the present invention is extremely high, and even at a large current such as 3CA, the amount of electricity charged until the negative electrode potential rises at the end of charging is large, and the charging efficiency is This is because there is almost no decline during the cycle.

なお、電池(^)、 (B)、 (C)および(D)の
負極板中の水酸化カドミウムの含有量は重量比で正極中
の水酸化ニッケルの約0.95倍[2,73(g/Ah
) /2.88((+/Ah))となっている、また負
極板の製作に用いた酸化カドミウム等の原料の性状は先
の錠剤形負極板の実施例で用いたものと同様である。
The content of cadmium hydroxide in the negative electrode plates of batteries (^), (B), (C) and (D) is approximately 0.95 times the weight ratio of nickel hydroxide in the positive electrode [2,73( g/Ah
) /2.88 ((+/Ah)), and the properties of the raw materials such as cadmium oxide used to manufacture the negative electrode plate are the same as those used in the previous example of the tablet-shaped negative electrode plate. .

以上のように、本発明の電池は、定電圧制御という簡便
な充電方法で超急速充電が可能である。
As described above, the battery of the present invention can be charged very quickly using a simple charging method called constant voltage control.

なお、充電方法は、鍛大電流を規制して定電圧充電する
方法を適用したがこの方法は、従来のニッケルーカドミ
ウム電池で用いられている定電流で充電した後、充電電
圧がガス吸収によって低下するのを検出して充電を打切
る方法やガス吸収による発熱を検出して充電を打切る方
法のような複雑な充電システムではない、また本発明の
特徴のひとつは従来ニッケルーカドミウム電池ではその
適用が困器であった定電圧充電方式が容易に行えること
である。すなわち従来のニッケルーカドミウム電池では
充電過程の電圧と充電終期の電圧との差が高々150〜
200nVと少なかったため、定電圧充電方式が適用で
きなかったが、本発明による電池の場合にはその差が0
.2CA以上の電流で400IIv以上にも達するため
に充電電圧の変化を検出することが容易である。この場
合、定電流で充電して、充電電圧の上昇を検出してから
電流を下げてもよいし、定電圧で充電してもよい、なお
、従来の焼結式極板を用いた公称容量が700nAhの
円筒形ニッケルーカドミウム電池(AAサイズ)を最大
電流3C^の′r4流で1.9vの定電圧充電を30分
間行ったところ、安全弁が作動して液漏れが発生した。
The charging method used a constant voltage charging method by regulating the large current, but in this method, after charging with the constant current used in conventional nickel-cadmium batteries, the charging voltage changes due to gas absorption. One of the features of the present invention is that it does not require a complicated charging system, such as a method that stops charging by detecting a drop in battery voltage or a method that stops charging by detecting heat generation due to gas absorption. The constant voltage charging method, which has been difficult to apply, can be easily implemented. In other words, in conventional nickel-cadmium batteries, the difference between the voltage during the charging process and the voltage at the end of charging is at most 150 ~
Since the voltage was as low as 200 nV, the constant voltage charging method could not be applied, but in the case of the battery according to the present invention, the difference was 0.
.. Since the current reaches 400 IIv or more with a current of 2 CA or more, it is easy to detect changes in charging voltage. In this case, you can charge with a constant current and then lower the current after detecting an increase in the charging voltage, or you can charge with a constant voltage. When a cylindrical nickel-cadmium battery (AA size) with a capacity of 700 nAh was charged at a constant voltage of 1.9 V for 30 minutes at a maximum current of 3 C^, a liquid leakage occurred due to activation of the safety valve.

このことは従来の電池の充電電圧が1.9vに達しない
ために電池が過充電されたことによるものである。
This is because the battery was overcharged because the charging voltage of the conventional battery did not reach 1.9V.

このように本発明の電池では、充電終期の負極板の電位
変化を大きくすることが有利であり、集電体の表面は、
基本的に水素発生の過電圧が大きい銅あるいはカドミウ
ムであるもの、例えば銅やカドミウムの網、エクスパン
デッドメタル、穿孔板あるいは集電体と活物質保持体を
兼ねる三次元構造の金属発泡体や金属繊維のマット等、
さらに材質としては鉄あるいはニッケルに銅あるいはカ
ドミウムメツキしたものが適している。しかし、水素発
生の過電圧が小さいニッケルの集電体であっても、活物
質にニッケル粉末等の水素過電圧の小さい物質を少なく
することによって、例えば5重量%以下にすれば集電体
として用いることができる。
As described above, in the battery of the present invention, it is advantageous to increase the potential change of the negative electrode plate at the end of charging, and the surface of the current collector is
Basically copper or cadmium with a large overvoltage for hydrogen generation, such as copper or cadmium nets, expanded metals, perforated plates, or three-dimensional metal foams and metals that serve as current collectors and active material holders. fiber mat etc.
Further, suitable materials include iron or nickel plated with copper or cadmium. However, even if a nickel current collector has a small hydrogen overvoltage, it can still be used as a current collector by reducing the amount of a substance with a small hydrogen overvoltage, such as nickel powder, in the active material, for example to 5% by weight or less. I can do it.

以上の本発明実施例では、正極活物質として水酸化ニッ
ケルを用いて説明したが、活物質として二酸化マンガン
を用いてもニッケルーカドミウム電池と同様な効果が現
れる。以下に、本発明を二酸化マンガン−カドミウム電
池に適用した場合について好適な実施例を用いて説明す
る。
Although the above embodiments of the present invention have been described using nickel hydroxide as the positive electrode active material, the same effects as those of the nickel-cadmium battery can be obtained even when manganese dioxide is used as the active material. Below, the case where the present invention is applied to a manganese dioxide-cadmium battery will be explained using preferred embodiments.

[実施例6] 金属カドミウム粉末100重量部と、タングステン酸バ
リウム2重量部と長さ 1+a+−のポリプロピレン製
の短繊維0.1重量部とを1.5重量%のポリビニルア
ルコールを含むエチレングリコール3011で混合して
ペースト状にする。このペーストを銅のエクスパンデッ
ドメタルに塗着し、次いで乾燥。
[Example 6] 100 parts by weight of metal cadmium powder, 2 parts by weight of barium tungstate, and 0.1 part by weight of short polypropylene fibers having a length of 1+a+- were mixed into ethylene glycol 3011 containing 1.5% by weight of polyvinyl alcohol. Mix to make a paste. This paste is applied to expanded copper metal and then dried.

加圧して金属カドミウムの容量が800nAhで寸法が
2.9x 14x 52(ni)の負極板を製作した。
A negative electrode plate having a metal cadmium capacity of 800 nAh and dimensions of 2.9 x 14 x 52 (ni) was manufactured by applying pressure.

一方、正極板は次の方法で製作しな。On the other hand, fabricate the positive electrode plate using the following method.

二酸化マンガン(γ−MnO□)80重量部とグラファ
イト10重量部とを6031量%のポリテトラフルオロ
エチレンの水性デイスパージョン301で混練した後、
ローラーでシート状にし、2oメツシユのニッケル網に
両面がらさらに加圧して理論容量が200 nAh、寸
法が1.4 x 14x 52(In)の正極板を製作
した。
After kneading 80 parts by weight of manganese dioxide (γ-MnO□) and 10 parts by weight of graphite with 6031% by weight of polytetrafluoroethylene aqueous dispersion 301,
The material was formed into a sheet using a roller, and then pressed on both sides of a 2O mesh nickel net to produce a positive electrode plate with a theoretical capacity of 200 nAh and dimensions of 1.4 x 14 x 52 (In).

次に先の負極板1枚を厚さ0.2111のポリビニルア
ルコール製の不織布で包んだ後、正極板2枚の間にはさ
み、電解液として比重1.350  (20’C)の水
酸化カリウム水溶液を2.71用い、公称容量が240
1^hで合成樹脂電槽を用いた角形二酸化マンガン−カ
ドミウム電池(E)を製作した。この電池は外径寸法が
67x16.5x 8(nn)であり、O,Ikg/c
n’で作動する安全弁を有している。
Next, one negative electrode plate was wrapped in a polyvinyl alcohol nonwoven fabric with a thickness of 0.2111, and then sandwiched between two positive electrode plates, and potassium hydroxide with a specific gravity of 1.350 (20'C) was used as the electrolyte. Using 2.71 aqueous solution, the nominal volume is 240
A prismatic manganese dioxide-cadmium battery (E) using a synthetic resin container was manufactured in 1^h. The outer diameter of this battery is 67x16.5x 8 (nn), and the weight is O, Ikg/c.
It has a safety valve that operates at n'.

[比較例2] 実施例6の負極板の配合からタングステン酸バリウムを
削除した以外は全て実施例6と同様にして比較例の角形
二酸化マンガン−カドミウム電池(F)を製作した。
[Comparative Example 2] A prismatic manganese dioxide-cadmium battery (F) of a comparative example was manufactured in the same manner as in Example 6 except that barium tungstate was omitted from the formulation of the negative electrode plate of Example 6.

以上のようにして製作した電池(E)および([)を0
.20の電流で100nAh放電し、次いで同じ電流で
1.6vまで充電するという条件で充放電したときの容
量推移の結果を第3図に示した。
The batteries (E) and ([) produced as above are 0
.. FIG. 3 shows the results of the capacity change when charging and discharging were performed under the conditions of discharging 100 nAh at a current of 20 ns and then charging to 1.6 V with the same current.

第3図から充電効率が優れ、かつ充電効率のサイクルに
おける低下がほとんどない負極板を有する本発明の電池
(E)は、比較電池([)に比べて明らかに容量低下が
小さく、1000サイクルを経過してもほとんど容量が
低下しなかった。
As can be seen from FIG. 3, the battery (E) of the present invention, which has a negative electrode plate that has excellent charging efficiency and almost no decrease in charging efficiency during cycles, has a clearly smaller capacity decrease than the comparative battery ([), and can survive 1000 cycles. There was almost no decrease in capacity over time.

なお、これらの電池のリザーブ用水酸化カドミウムはほ
とんど含まれていない状態となっている。
Note that these batteries contain almost no reserve cadmium hydroxide.

つまり、負極板に含まれる水酸化カドミウムの含有量は
重量比で常に正極活物質の二酸化マンガンの約0.84
倍(2,73(g/^l))/2.34 (q/Ah)
]となっている。
In other words, the content of cadmium hydroxide contained in the negative electrode plate is always about 0.84 of the manganese dioxide of the positive electrode active material in terms of weight ratio.
times (2,73 (g/^l))/2.34 (q/Ah)
].

以上にニッケルーカドミウム電池および二酸化マンガン
−カドミウム電池を例にとって説明したが、正極活物質
として酸化銀を用いても充電制御が容易な酸化銀−カド
ミウム電池を得ることができる。
Although the above description has been made using a nickel-cadmium battery and a manganese dioxide-cadmium battery as examples, a silver oxide-cadmium battery with easy charge control can be obtained even if silver oxide is used as the positive electrode active material.

[実施例7] 金属カドミウム粉末100重量部とタングステン酸バリ
ウムli部と長さ1■のポリプロピレン製の短繊維0.
1重量部とを1.5重量%のポリビニルアルコールを含
むエチレングリコール301で混合してペースト状にす
る。このペーストをカドミウムメツキ(5μs)した銅
のエクスパンデッドメタルに塗着し、次いで乾燥、加圧
して金属カドミウムの理論容量が1000nAhで寸法
が3x 14x 52(nn)の負極板を製作した。
[Example 7] 100 parts by weight of metal cadmium powder, 1 part of barium tungstate, and 0.5 parts of short polypropylene fibers having a length of 1 inch.
1 part by weight and ethylene glycol 301 containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste was applied to expanded copper metal plated with cadmium (5 μs), then dried and pressurized to produce a negative electrode plate with a theoretical capacity of 1000 nAh and dimensions of 3 x 14 x 52 (nn).

一方、正極板は以下の方法で製作した。On the other hand, the positive electrode plate was manufactured by the following method.

活物質である酸化銀粉末と集電体である銀のエクスパン
デッドメタルとを常法によって加圧焼結したものを水酸
化カリウム水溶液中で電界酸化した後水洗、乾燥して理
論容量が500nAhで寸法が1.3 x 14x 5
2(ni)の正極板を製作した。
Silver oxide powder as an active material and expanded silver metal as a current collector are pressurized and sintered by a conventional method, and then electrolytically oxidized in an aqueous potassium hydroxide solution, washed with water, and dried to have a theoretical capacity of 500 nAh. The dimensions are 1.3 x 14 x 5
A 2 (ni) positive electrode plate was manufactured.

次に先の負極板1枚を厚さ0.02mImのセロファン
で4重に巻いた後に正極板2枚の間にはさみ、電解液と
して比重1.250(20℃)の水酸化カリウム水溶液
31を用いて公称容量が500+aAhの角形酸化銀−
カドミウム電池(G)を製作した。外径寸法は67x 
1G、5x 8(in)であり、電槽は合成樹脂製のも
のを用いた。また0、 5kg/cn’の圧力で作動す
る安全弁を取り付けている。
Next, one negative electrode plate was wrapped four times in cellophane with a thickness of 0.02 mIm, then sandwiched between two positive electrode plates, and a potassium hydroxide aqueous solution 31 with a specific gravity of 1.250 (20°C) was added as an electrolyte. A prismatic silver oxide with a nominal capacity of 500+aAh is used.
A cadmium battery (G) was manufactured. Outer diameter size is 67x
The capacity was 1G, 5×8 (in), and the container was made of synthetic resin. It is also equipped with a safety valve that operates at a pressure of 0.5 kg/cn'.

[比較例3コ 実施例7の負極板の配合からタングステン酸バリウムを
削除した以外は全て実施例7と同様にして角形酸化銀−
カドミウム電池(H)を製作した。
[Comparative Example 3] Prismatic silver oxide-
A cadmium battery (H) was manufactured.

なお、これらの電池のリザーブ用水酸化カドミウムは、
はとんどない状態であり、負極板に含まれる水酸化カド
ミウムの含有量は重量比で常に正極活物質の銀の約1.
4倍(2,73(g/Ah)/ 2.01[(1/Ah
)]となっている。
In addition, the cadmium hydroxide for the reserve of these batteries is
The content of cadmium hydroxide contained in the negative electrode plate is always about 1.0% by weight of the silver of the positive electrode active material.
4 times (2,73 (g/Ah) / 2.01 [(1/Ah
)].

以上のようにして製作した電池(G)および(11)を
20℃で0.20^の電流で300nAh放電した後に
、同じ電流で充電するという操作を繰り返した時の充電
電圧特性を第4図に示した。
Figure 4 shows the charging voltage characteristics when the batteries (G) and (11) manufactured as described above were discharged at 20°C for 300nA with a current of 0.20^ and then charged with the same current. It was shown to.

第4図から本発明の酸化銀−カドミウム電池(G)の充
電終期の電圧上昇は、比較電池(H)よりも遅くに起き
ており、その充電効率はほぼ100%である。この2つ
の電池の電圧上昇の時期が異なるのは負極板の充電効率
に基づくものであり、本発明の電池は優れた容量保持率
を有することが明らかである。
From FIG. 4, the voltage rise at the end of charging of the silver oxide-cadmium battery (G) of the present invention occurs later than that of the comparative battery (H), and its charging efficiency is approximately 100%. The difference in the timing of the voltage rise of these two batteries is based on the charging efficiency of the negative electrode plate, and it is clear that the battery of the present invention has an excellent capacity retention rate.

以上の実施例で本発明のカドミウム負極板および電池の
特性について説明した。
The characteristics of the cadmium negative electrode plate and battery of the present invention have been explained in the above examples.

本発明のカドミウム負極板の集電体としては、各実施例
で説明したように、その表面がニッケル。
As explained in each example, the surface of the current collector of the cadmium negative electrode plate of the present invention is nickel.

銅あるいはカドミウムであればよい、つまり、その素材
としてはニッケル、銅、カドミウムの他に鉄の表面にニ
ッケル、銅あるいはカドミウムの層を有するものや、ニ
ッケルの表面に銅あるいはカドミウムの層を有するもの
、さらに銅の表面にカドミウムの層を有するものである
Copper or cadmium is sufficient; in other words, the material is nickel, copper, or cadmium, or a material that has a layer of nickel, copper, or cadmium on the surface of iron, or a material that has a layer of copper or cadmium on the surface of nickel. , which also has a cadmium layer on the copper surface.

またその形状としてはエクスパンデッドメタル。Its shape is expanded metal.

網、穿孔板1発泡体あるいは繊維マットが使用できる。Netting, perforated foam or fiber mats can be used.

発明の効果 以上に述べたように本発明のカドミウム負極板は充電効
率が極めて高いために、不活性な水酸化カドミウムをほ
とんど有していない、従って従来のカドミウム負極板に
比べて実質的な容量密度は高くなる。
Effects of the Invention As stated above, the cadmium negative electrode plate of the present invention has extremely high charging efficiency, so it contains almost no inert cadmium hydroxide, and therefore has a substantial capacity compared to conventional cadmium negative electrode plates. Density increases.

また、これを用いたアルカリ二次電池では正・負極活物
質の量比を調節することによって充電制御が容易で、か
つICA以上の大電流による超急速充電が可能である。
In addition, in an alkaline secondary battery using this, charging control is easy by adjusting the ratio of the positive and negative electrode active materials, and ultra-rapid charging is possible with a large current higher than ICA.

また、この電池にはリザーブ用の水酸化カドミウムがほ
とんど必要でないために高容量化が可能である。
Moreover, this battery requires almost no cadmium hydroxide for reserve, so it is possible to increase the capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のカドミウム負極板において、タング
ステン酸バリウムの含有率と充電効率との関係について
示した図、第2図は、本発明のニラゲル−カドミウム電
池と比較のための電池との充放電サイクルにおける容量
保持率を示した図、第3図は本発明の二酸化マンガン−
カドミウム電池と比較のための電池との充放電サイクル
における容量保持率を示した図、第4図は本発明の酸化
銀−カドミウム電池と比較のための電池との充電特性を
示した図。 纂II!]   0r ぼ 第21目 O j。 o0 1り0 zh) 糺」よt寸イ 21し段 / IgJ 猶31!1 3o。 10o。 たi電すイ 7Iし秋 / 口
FIG. 1 shows the relationship between barium tungstate content and charging efficiency in the cadmium negative electrode plate of the present invention, and FIG. 2 shows the relationship between the nilagel-cadmium battery of the present invention and a battery for comparison. Figure 3 is a diagram showing the capacity retention rate during charge/discharge cycles.
FIG. 4 is a diagram showing the capacity retention rate during charging and discharging cycles of a cadmium battery and a comparative battery, and FIG. 4 is a diagram showing charging characteristics of a silver oxide-cadmium battery of the present invention and a comparative battery.纂II! ] 0r 21st O j. o0 1ri0 zh) 纺”yotsunii 21st step/IgJ 31!1 3o. 10 o. Tai Densui 7Ishiaki/ Mouth

Claims (1)

【特許請求の範囲】 1、全カドミウム量に対し0.25重量%以上15重量
%以下のタングステン酸バリウムを含有することを特徴
とするカドミウム負極板。 2、水酸化ニッケル、二酸化マンガンあるいは酸化銀の
いずれかを活物質の主体とする正極板と請求項1記載の
カドミウム負極板とを備えたことを特徴とするアルカリ
二次電池。
[Scope of Claims] 1. A cadmium negative electrode plate containing barium tungstate in an amount of 0.25% by weight or more and 15% by weight or less based on the total amount of cadmium. 2. An alkaline secondary battery comprising a positive electrode plate whose active material is either nickel hydroxide, manganese dioxide or silver oxide, and a cadmium negative electrode plate according to claim 1.
JP63158937A 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate Expired - Lifetime JP2591987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158937A JP2591987B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158937A JP2591987B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Publications (2)

Publication Number Publication Date
JPH027367A true JPH027367A (en) 1990-01-11
JP2591987B2 JP2591987B2 (en) 1997-03-19

Family

ID=15682602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158937A Expired - Lifetime JP2591987B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Country Status (1)

Country Link
JP (1) JP2591987B2 (en)

Also Published As

Publication number Publication date
JP2591987B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH027367A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH027369A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JPH027363A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH027371A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH027370A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH0230063A (en) Cadmium negative electrode plate and alkaline secondary battery using the same
JPH02155165A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH027365A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH0221562A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH025362A (en) Cadmium negative plate and alkaline secondary battery using the same
JPH0224964A (en) Cadmium negative electrode plate and alkaline secondary battery using its negative electrode plate
JPH0224965A (en) Cadmium negative electrode plate and alkaline secondary battery using its negative electrode plate
JP2001266860A (en) Nickel hydrogen storage battery