JPH0273151A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0273151A
JPH0273151A JP22459588A JP22459588A JPH0273151A JP H0273151 A JPH0273151 A JP H0273151A JP 22459588 A JP22459588 A JP 22459588A JP 22459588 A JP22459588 A JP 22459588A JP H0273151 A JPH0273151 A JP H0273151A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
contact surface
curvature
spherical shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22459588A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hoshino
星野 充宏
Susumu Kosaki
進 幸崎
Yoshimichi Yoshida
吉田 好道
Jinichi Kimura
木村 仁一
Shinya Inoue
慎也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN PUROOBU KK
Mitsubishi Heavy Industries Ltd
Original Assignee
JAPAN PUROOBU KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN PUROOBU KK, Mitsubishi Heavy Industries Ltd filed Critical JAPAN PUROOBU KK
Priority to JP22459588A priority Critical patent/JPH0273151A/en
Publication of JPH0273151A publication Critical patent/JPH0273151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate defect detection by selecting the curvature of a spherical shell-shaped ultrasonic oscillation so that a radiant ultrasonic wave is focused on the contact face between a test body and the curved surface. CONSTITUTION:A small quantity of water or oil is supplied to the surface of a curved surface test body 9, and a creeping wave converging probe 25 is brought into contact with this surface. When a spherical shell-shaped ultrasonic oscillator 22 is oscillated by a high frequency oscillating circuit, a convergent ultrasonic wave 23 is formed in a wedge material 2 and is focused at a point 24 on the probe contact surface. The spot diameter can be <=1mm. Though a gap 19 is formed between the wedge 2 and the test body 9 when the probe 25 is applied to the test body 9 to which its curvature is not adapted, contact surface echo does not occur and only defect echo 17 appears because the ultrasonic wave is converged to a spot having <=1mm diameter on the contact surface, and the defect is easily estimated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超音波探触子に関し、特に曲面探偏時に表面近
傍の微細欠陥の検出性を改善した曲面探従来の技術 超音波探傷法は、非破壊検査法のうちで工業的にかなり
の重要度を占めており、方式としては、透過法、パルス
反射法、共振法の3種に大別される。このうちパルス反
射法は被検査材中からの超音波パルスの反射状況(エコ
ー)をオッシロスコープ等のデイスプレィ上で観察する
方法であり、広く使用されている。超音波探傷法におい
ては、金属に直接探触子を接触させて測定する直接法と
、金属と探触子間に水を満たして測定する水浸法とがあ
る。直接法においては、超音波を金属に垂直に放射する
垂直法が一般的であるが、溶接部の探傷の場合等には超
音波振動子を楔部材の傾斜面に貼り付けた斜角探触子を
用いて、超音波を斜めに放射する斜角探傷法が用いられ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an ultrasonic probe, and in particular to a curved surface probe that improves the detectability of minute defects near the surface during curved surface detection. Among destructive inspection methods, it is of considerable importance industrially, and the methods are roughly divided into three types: transmission method, pulse reflection method, and resonance method. Among these methods, the pulse reflection method is a method in which the reflection state (echo) of ultrasonic pulses from a material to be inspected is observed on a display such as an oscilloscope, and is widely used. Ultrasonic flaw detection methods include the direct method, in which a probe is brought into direct contact with the metal, and the water immersion method, in which water is filled between the metal and the probe. In the direct method, the vertical method in which ultrasonic waves are emitted perpendicularly to the metal is common, but in the case of flaw detection of welds, etc., an angled probe in which an ultrasonic transducer is attached to the inclined surface of a wedge member is used. An oblique flaw detection method is used in which ultrasonic waves are emitted obliquely using a probe.

第3図は試験体の曲面部に適用される斜角探傷法の一種
である従来のクリーピング波超音波探触子を示している
。同図において、2はプラスチッり製等の楔材であり、
その傾斜面3には超音波振動子4が接着されており、超
音波振動子4の背面にはダンパー材5が接着されている
。この接着に代えて、図示しない押圧手段により超音波
振動子4及びダンパー材5を楔材2の傾斜面3に押し付
けるようにしたものもある。超音波振動子4には圧電振
動子、電歪振動子等が採用される。6はプラスチック又
は金属製のハウジングであり、このハウジング6中に超
音波振動子4の取り付けられた楔材2を収納している。
FIG. 3 shows a conventional creeping wave ultrasonic probe, which is a type of angle angle flaw detection method applied to a curved surface of a test specimen. In the figure, 2 is a wedge material made of plastic etc.
An ultrasonic vibrator 4 is bonded to the inclined surface 3, and a damper material 5 is bonded to the back surface of the ultrasonic vibrator 4. Instead of this adhesion, there is also one in which the ultrasonic vibrator 4 and the damper material 5 are pressed against the inclined surface 3 of the wedge material 2 by a pressing means (not shown). The ultrasonic vibrator 4 employs a piezoelectric vibrator, an electrostrictive vibrator, or the like. Reference numeral 6 denotes a housing made of plastic or metal, and the wedge member 2 to which the ultrasonic transducer 4 is attached is housed in the housing 6.

7は図示しない高周波発振回路に接続されるケーブルで
あり、8は接栓(コネクタ)である。楔材2の曲面試験
体9との接触面10は、超音波を試験体に効率良く伝播
するために曲面試験体90曲率に合わせて曲面に加工さ
れている。
7 is a cable connected to a high frequency oscillation circuit (not shown), and 8 is a connector. The contact surface 10 of the wedge material 2 with the curved test piece 9 is processed into a curved surface in accordance with the curvature of the curved test piece 90 in order to efficiently propagate ultrasonic waves to the test piece.

次に第4r:f!Jを参照して斜角探触子により放射さ
れた超音波が鋼中で屈折する様子を説明する。第4図に
おいて、楔材2′内の超音波の入射角αを振動子接着面
の傾き角度γを変えることによって変化させると、鋼中
の超音波12の屈折角βが変化する。このとき楔材2゛
中の音速をCw、鋼中の縦波音速をCs Lとすると、 Sin α   Cw Sin  β   Cm l の関係がある。屈折角βが90°となるとき、試験体表
面を伝播する超音波が発生するが、これをクリーピング
波13という。第4図は平面で説明したが曲面でも同様
である。
Next, 4th r: f! The manner in which ultrasonic waves emitted by an angle probe are refracted in steel will be explained with reference to J. In FIG. 4, when the incident angle α of the ultrasonic waves in the wedge material 2' is changed by changing the inclination angle γ of the bonding surface of the vibrator, the refraction angle β of the ultrasonic waves 12 in the steel changes. At this time, assuming that the sound velocity in the wedge material 2 is Cw and the longitudinal sound velocity in the steel is Cs L, the relationship is Sin α Cw Sin β Cml. When the refraction angle β becomes 90°, an ultrasonic wave propagating on the surface of the specimen is generated, and this is called a creeping wave 13. Although FIG. 4 has been explained using a flat surface, the same applies to a curved surface.

発明が解決しようとする課題 ところが第3図に示したような従来のクリーピング波探
触子1は一般の斜角探触子と同様に、第5図に示すよう
に楔材2内でも超音0111は拡がりをもっており、曲
面状試験体9には拡散ビームとして到達する。
Problems to be Solved by the Invention However, the conventional creeping wave probe 1 as shown in FIG. The sound 0111 has a spread and reaches the curved test body 9 as a diffused beam.

第5図の場合は曲面状試験体9の表面14と探触子接触
面10とが適合しているので、この超音波探触子て欠陥
15を探傷した場合のオッシロスコープ波形は、第6図
に実線で示すように欠陥エコー17の前にでる接触面エ
コー18は小さいために、試験体の欠陥を容易に見分け
ることができる。しかし、第7図に示すように曲面状試
験体9の曲率と探触子接触面の曲率とが異なる場合には
、曲面状試験体9と探触子の楔材2との間にギャップ1
9ができることになる。このギャップ19ができると、
通常探触子で試験体を探傷する場合に試験体の表面に供
給する水、油等の接触媒質が、このギャップ19中で切
れてしまって空気層が露出したりして、第6図のオッシ
ロスコープ波形において、点線21で示すように接触面
エコーの高さや幅が大きくなって、欠陥エコー17の検
出を困難にするという問題があった。第6図において、
26は送信波を示している。
In the case of FIG. 5, the surface 14 of the curved test piece 9 and the probe contact surface 10 match, so the oscilloscope waveform when detecting the defect 15 using this ultrasonic probe is as shown in FIG. Since the contact surface echo 18 appearing before the defect echo 17 is small as shown by the solid line in , the defect in the test piece can be easily identified. However, as shown in FIG. 7, if the curvature of the curved test piece 9 and the curvature of the probe contact surface are different, there is a gap 1 between the curved test piece 9 and the wedge material 2 of the probe.
9 will be possible. When this gap 19 is created,
Normally, when testing a specimen with a probe, the couplant such as water or oil supplied to the surface of the specimen is broken in this gap 19, exposing an air layer, as shown in Figure 6. In the oscilloscope waveform, there is a problem in that the height and width of the contact surface echo become large as shown by the dotted line 21, making it difficult to detect the defective echo 17. In Figure 6,
26 indicates a transmission wave.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、上述した従来技術の欠点を解決
し、試験体の欠陥の検出を容易にする曲面探傷用超音波
探触子を提供することである。
The present invention has been made in view of these points, and its purpose is to provide an ultrasonic probe for curved surface flaw detection that solves the above-mentioned drawbacks of the prior art and facilitates the detection of defects in test specimens. It is to provide a child.

課題を解決するための手段 本発明は、楔材の傾斜面に超音波振動子を設け、試験体
との接触面を曲面状に形成した曲面探傷用超音波探触子
において、超音波振動子をその放射超音波が前記接触面
で集束するように球殻状に形成したことにより、上述し
た課題を解決する。
Means for Solving the Problems The present invention provides an ultrasonic probe for curved surface flaw detection in which an ultrasonic transducer is provided on the inclined surface of a wedge material and the contact surface with the test specimen is formed into a curved surface. The above-mentioned problem is solved by forming the radiating ultrasonic wave into a spherical shell shape so that the radiated ultrasonic waves are focused on the contact surface.

球殻状超音波振動子の曲率は、放射超音波が前記接触面
で焦点を結ぶような曲率が望ましい。
The curvature of the spherical shell-like ultrasonic transducer is preferably such that the radiated ultrasonic waves are focused on the contact surface.

作   用 本発明の超音波探触子は上述したように構成されている
ので、球殻状超音波振動子から発振された超音波は、試
験面で絞られて点状となり、その点からクリーピング波
が試験面を伝播することになる。この構成により、曲面
状試験体の曲率と探触子の接触面の曲率とが不適合の場
合であっても、接触面エコーのような妨害エコーは発生
することなく、欠陥の検出が容易となる。
Function: Since the ultrasonic probe of the present invention is configured as described above, the ultrasonic waves emitted from the spherical shell-like ultrasonic transducer are condensed into a dot shape on the test surface, and from that point, the ultrasonic probe is configured as described above. Reaping waves will propagate on the test surface. With this configuration, even if the curvature of the curved test piece and the curvature of the contact surface of the probe do not match, no disturbing echoes such as contact surface echoes will occur, making it easy to detect defects. .

実  施  例 以下本発明の実施例を図面に基づいて詳細に説明する。Example Embodiments of the present invention will be described in detail below based on the drawings.

実施例の説明において、第3図に示した従来装置と実質
上同一構成部分については同一符号を付して説明する。
In the description of the embodiment, components that are substantially the same as those of the conventional device shown in FIG. 3 will be described with the same reference numerals.

第1図は本発明実施例を曲面試験体に適用した概略構成
図を示している。同図において、2はプラスチック、金
1嘱、セラミック等から形成された楔材であり、この楔
材2の傾斜面には球殻状超音波振動子22が設けられて
いる。球殻状超音波振動子22は、例えば圧電型の水晶
、ロッシェル塩、あるいは電歪型のチタン酸バリウム、
チタン酸ジルコン酸鉛、ニオブ酸リチウム等から形成す
ることができる。5は例えばプラスチックを基材とした
ダンパー材であり、球殻状超音波振動子22の外周面に
接着されている。27はエポキシ樹脂等の充填用プラス
チックであり、球殻状超音波振動子22の内周面に接着
され、さらに表面を鏡面状に研磨した後に楔材2の傾斜
面に接着される。しかし、このように接着剤で上述した
部材を楔材2の傾斜面に取り付けるかわりに、図示しな
い押圧手段によりダンパー材5、球殻状超音波振動子2
2及び充填用プラスチック27を押圧して、楔材2の傾
斜面に取り付けるようにしてもよい。球殻状超音波振動
子220曲率は、超音波振動子22から発振された超音
波23が探触子の楔材2が曲面試験体9に接触する探触
子接触面で焦点24を結ぶような曲率に形成するのが望
ましい。しかし、探触子接触面で焦点を結ばな(でも、
球殻状超音波振動子22から発振された超音波が狭い範
囲に集束するような形状に球殻状超音波振動子22の曲
率を設定すれば本発明の効果はある。
FIG. 1 shows a schematic configuration diagram in which an embodiment of the present invention is applied to a curved surface test specimen. In the figure, reference numeral 2 denotes a wedge material made of plastic, gold, ceramic, etc., and a spherical shell-shaped ultrasonic transducer 22 is provided on the inclined surface of this wedge material 2. The spherical shell-like ultrasonic vibrator 22 is made of, for example, piezoelectric crystal, Rochelle salt, or electrostrictive barium titanate.
It can be formed from lead zirconate titanate, lithium niobate, or the like. Reference numeral 5 denotes a damper material made of, for example, plastic, and is bonded to the outer peripheral surface of the spherical shell-shaped ultrasonic vibrator 22. Reference numeral 27 denotes a filling plastic such as epoxy resin, which is bonded to the inner circumferential surface of the spherical shell-like ultrasonic transducer 22, and further bonded to the inclined surface of the wedge material 2 after polishing the surface to a mirror finish. However, instead of attaching the above-mentioned members to the inclined surface of the wedge material 2 with adhesive, the damper material 5 and the spherical ultrasonic transducer 2 are attached by pressing means (not shown).
2 and the filling plastic 27 may be pressed and attached to the inclined surface of the wedge material 2. The curvature of the spherical shell-like ultrasonic transducer 220 is such that the ultrasonic wave 23 emitted from the ultrasonic transducer 22 focuses 24 at the probe contact surface where the wedge material 2 of the probe contacts the curved test piece 9. It is desirable to form it with a certain curvature. However, do not focus on the probe contact surface (but
The effects of the present invention can be obtained by setting the curvature of the spherical shell ultrasonic transducer 22 in such a shape that the ultrasonic waves emitted from the spherical shell ultrasonic transducer 22 are focused in a narrow range.

6は金属又はプラスチック等から形成されたハウジング
であり、このハウジング6中に上述した球殻状超音波振
動子22を取り付けた楔材2を収容して本発明のクリー
ピング彼集束探触子25が構成される。7はケーブルで
あり、図示しない高周波発振回路に接続されている。8
は接栓(コネクタ)である。図示の例では曲面試験体9
が凸面状であるが、凹面状の場合には楔材2の接触面は
凸面とする。
Reference numeral 6 denotes a housing made of metal, plastic, or the like, and houses the wedge member 2 to which the above-mentioned spherical shell-like ultrasonic transducer 22 is attached. is configured. A cable 7 is connected to a high frequency oscillation circuit (not shown). 8
is a connector. In the illustrated example, the curved surface test piece 9
is a convex surface, but if it is a concave surface, the contact surface of the wedge material 2 is a convex surface.

上記のように構成されたクリーピング波集束探触子25
で曲面試験体9の欠陥を探傷する場合には、まず曲面試
験体9の表面に水又は油等の接触媒質を少量供給し、そ
の上からクリーピング波集束探触子25を接触させる。
Creeping wave focusing probe 25 configured as above
When detecting defects in the curved surface specimen 9, first a small amount of couplant such as water or oil is supplied to the surface of the curved surface specimen 9, and the creeping wave focusing probe 25 is brought into contact thereon.

高周波発振回路により球殻状超音波振動子22を発振さ
せると、楔材2中で集束超音波23が形成され、この集
束超音波23は探触子接触面で焦点24を結ぶように集
束する。このスポット半径を例えば直径1工以下となる
ように集束することができる。
When the spherical shell-shaped ultrasonic transducer 22 is oscillated by a high-frequency oscillation circuit, a focused ultrasonic wave 23 is formed in the wedge material 2, and this focused ultrasonic wave 23 is focused to a focal point 24 at the contact surface of the probe. . The spot radius can be focused to a diameter of 1 mm or less, for example.

このように構成されたクリーピング波集束探触子25を
接触面の曲率が適合しない曲面試験体9に適用すると、
楔材2と曲面試験体9との間にギャップ19が形成され
るが、上述したように超音波は接触面において直径1胴
以下に絞られているため、超音波の入射位置は常に曲面
試験体9に密着した状態となっている。従って、クリー
ピング波集束探触子25と曲面試験体9との間にギャッ
プ19が生じていても、第6図に点線で示したような接
触面エコーは発生せず、むしろ第2図に示すように欠陥
エコー17のみが出現し、欠陥の検出及び推定が極めて
容易となる。第2図において、26は送信波を示してい
る。
When the creeping wave focusing probe 25 configured in this way is applied to a curved surface test piece 9 whose contact surface curvature does not match,
A gap 19 is formed between the wedge material 2 and the curved surface test specimen 9, but as mentioned above, the ultrasonic wave is focused to one diameter or less at the contact surface, so the incident position of the ultrasonic wave is always the curved surface test specimen. It is in close contact with the body 9. Therefore, even if there is a gap 19 between the creeping wave focusing probe 25 and the curved surface test specimen 9, the contact surface echo shown by the dotted line in FIG. 6 does not occur, but rather As shown, only the defect echo 17 appears, making it extremely easy to detect and estimate the defect. In FIG. 2, 26 indicates a transmission wave.

発明の効果 本発明の超音波探触子は以上詳述したように構成したの
で、探触子の接触面の曲率と曲面状試験体との曲率が一
致せず両者の間にギャップが生じるような場合であって
も、接触面エコーのような妨害エコーは発生することな
く欠陥の検出が容易となるという効果を奏する。
Effects of the Invention Since the ultrasonic probe of the present invention is constructed as detailed above, the curvature of the contact surface of the probe and the curvature of the curved test specimen do not match, resulting in a gap between the two. Even in such a case, there is an effect that the defect can be easily detected without generating interfering echoes such as contact surface echoes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るクリーピング波集束探触子の一実
施例概略構成図、 第2図は第1図に示したクリーピング波集束探触子によ
る探傷波形図、 第3図は従来のクリーピング波探触子の概略構成図、 第4図はクリーピング波の発生原理を説明する説明図、 第5図は探触子接触面の曲率と曲面状試験体の曲率とが
一致している場合の説明図、 第6図は従来のクリーピング波探触子による探傷波形図
、 第7図はクリーピング波探触子の曲率と曲面状試験体の
曲率とが一致せず両者の間にギャップが形成される場合
の説明図である。 ・・・楔材、 ・・・傾斜面(振動子接着面)、 ・・・平板状超音波振動子、 ・・・ダンパー材、   6・・・ハウジング、・・・
曲面試験体、    10・・・接触面、3・・・クリ
ーピング波、 5・・・欠陥、      17・・・欠陥エコー8・
・・接触面エコー、  19・・・ギャップ、l・・・
ギャップができた場合の接触面エコー2・・・球殻状超
音波振動子、 24・・・焦点、 25・・・クリーピング波集束探触子、27・・・充填
用プラスチック。
Fig. 1 is a schematic configuration diagram of an embodiment of the creeping wave focusing probe according to the present invention, Fig. 2 is a flaw detection waveform diagram by the creeping wave focusing probe shown in Fig. 1, and Fig. 3 is a conventional Figure 4 is an explanatory diagram illustrating the principle of generation of creeping waves. Figure 5 shows the curvature of the contact surface of the probe and the curvature of the curved test piece. Figure 6 is a waveform diagram for flaw detection using a conventional creeping wave probe. Figure 7 is an explanatory diagram when the curvature of the creeping wave probe and the curvature of the curved test piece do not match. It is an explanatory view when a gap is formed between them. ...Wedge material, ...Slanted surface (oscillator adhesion surface), ...Flat ultrasonic transducer, ...Damper material, 6...Housing, ...
Curved surface test specimen, 10... Contact surface, 3... Creeping wave, 5... Defect, 17... Defect echo 8.
...Contact surface echo, 19...Gap, l...
Contact surface echo when a gap is formed 2... Spherical shell ultrasonic transducer, 24... Focal point, 25... Creeping wave focusing probe, 27... Plastic for filling.

Claims (2)

【特許請求の範囲】[Claims] (1)楔材の傾斜面に超音波振動子を設け、試験体との
接触面を曲面状に形成した曲面探傷用超音波探触子にお
いて、 前記超音波振動子をその放射超音波が前記接触面で集束
するように球殻状に形成したことを特徴とする超音波探
触子。
(1) In an ultrasonic probe for curved surface flaw detection in which an ultrasonic transducer is provided on the inclined surface of a wedge material and the contact surface with the test specimen is formed into a curved surface, An ultrasonic probe characterized by being formed into a spherical shell shape so that it focuses on the contact surface.
(2)放射超音波が前記接触面で焦点を結ぶように前記
球殻状超音波振動子の曲率を設定したことを特徴とする
請求項1記載の超音波探触子。
(2) The ultrasonic probe according to claim 1, wherein the curvature of the spherical shell-like ultrasonic transducer is set so that the emitted ultrasonic waves are focused on the contact surface.
JP22459588A 1988-09-09 1988-09-09 Ultrasonic probe Pending JPH0273151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22459588A JPH0273151A (en) 1988-09-09 1988-09-09 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22459588A JPH0273151A (en) 1988-09-09 1988-09-09 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0273151A true JPH0273151A (en) 1990-03-13

Family

ID=16816189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22459588A Pending JPH0273151A (en) 1988-09-09 1988-09-09 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0273151A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023486A1 (en) * 1997-10-31 1999-05-14 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same
US6427874B2 (en) 1991-12-06 2002-08-06 Seaquist Closures Foreign, Inc. Dispensing valve
US6530504B2 (en) 2001-03-02 2003-03-11 Seaquist Closures Foreign, Inc. Multiple orifice valve
AU2002301997B2 (en) * 1997-09-15 2005-09-15 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaws on surface of circular cylinder
JP2006105680A (en) * 2004-10-01 2006-04-20 Sankyo Eng Kk Non-destructive inspection method of concrete structure
AU2002300189B2 (en) * 1997-10-31 2006-08-17 Kawasaki Steel Corporation Method of grinding roll utilising an apparatus for ultrasonically detecting flaws on surface of circular cylinder
US7413099B2 (en) 2001-06-08 2008-08-19 Shin-Etsu Polymer Co., Ltd. Sealing element with a protruding part approximately obliquely outward and a hermetic container using the same
US8316890B2 (en) 2008-11-11 2012-11-27 Aptargroup, Inc. Port closure system with hydraulic hammer resistance
WO2014126023A1 (en) 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
US9580214B2 (en) 2011-05-04 2017-02-28 Aptargroup, Inc. Port closure system for use with a probe/feed/drain tool
US10189613B2 (en) 2014-01-08 2019-01-29 Weener Plastics Netherlands B.V. Closure assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184859A (en) * 1983-04-06 1984-10-20 Nippon Kokan Kk <Nkk> Ultrasonic skew angle probe
JPS61148366A (en) * 1984-12-21 1986-07-07 Hitachi Ltd Ultrasonic probe
JPS62266456A (en) * 1986-05-15 1987-11-19 Komatsu Ltd Ultrasonic probe for member with curved shape
JPS63120249A (en) * 1986-11-10 1988-05-24 Hitachi Ltd Rolling wheel housing type ultrasonic probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184859A (en) * 1983-04-06 1984-10-20 Nippon Kokan Kk <Nkk> Ultrasonic skew angle probe
JPS61148366A (en) * 1984-12-21 1986-07-07 Hitachi Ltd Ultrasonic probe
JPS62266456A (en) * 1986-05-15 1987-11-19 Komatsu Ltd Ultrasonic probe for member with curved shape
JPS63120249A (en) * 1986-11-10 1988-05-24 Hitachi Ltd Rolling wheel housing type ultrasonic probe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427874B2 (en) 1991-12-06 2002-08-06 Seaquist Closures Foreign, Inc. Dispensing valve
AU2002301997B2 (en) * 1997-09-15 2005-09-15 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaws on surface of circular cylinder
US6341525B1 (en) 1997-10-31 2002-01-29 Kawasaki Steel Corporation Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them
US6446509B1 (en) 1997-10-31 2002-09-10 Kawasaki Steel Corporation Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them
AU752801B2 (en) * 1997-10-31 2002-10-03 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same
AU752801C (en) * 1997-10-31 2003-06-12 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same
WO1999023486A1 (en) * 1997-10-31 1999-05-14 Kawasaki Steel Corporation Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same
AU2002300189B2 (en) * 1997-10-31 2006-08-17 Kawasaki Steel Corporation Method of grinding roll utilising an apparatus for ultrasonically detecting flaws on surface of circular cylinder
US6530504B2 (en) 2001-03-02 2003-03-11 Seaquist Closures Foreign, Inc. Multiple orifice valve
US7413099B2 (en) 2001-06-08 2008-08-19 Shin-Etsu Polymer Co., Ltd. Sealing element with a protruding part approximately obliquely outward and a hermetic container using the same
JP2006105680A (en) * 2004-10-01 2006-04-20 Sankyo Eng Kk Non-destructive inspection method of concrete structure
US8316890B2 (en) 2008-11-11 2012-11-27 Aptargroup, Inc. Port closure system with hydraulic hammer resistance
US9580214B2 (en) 2011-05-04 2017-02-28 Aptargroup, Inc. Port closure system for use with a probe/feed/drain tool
WO2014126023A1 (en) 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
KR20150103290A (en) 2013-02-14 2015-09-09 가부시키가이샤 고베 세이코쇼 Ultrasonic probe
US10189613B2 (en) 2014-01-08 2019-01-29 Weener Plastics Netherlands B.V. Closure assembly

Similar Documents

Publication Publication Date Title
JP2664443B2 (en) Equipment for examining samples with ultrasound
US4137778A (en) Method and apparatus for producing ultrasonic waves in light absorbing surfaces of workpieces
JPH0273151A (en) Ultrasonic probe
US5381695A (en) Apparatus for investigating a sample with ultrasound
JPH0421139B2 (en)
US4779241A (en) Acoustic lens arrangement
RU2290633C2 (en) Ultrasound inclined transformer
JPH10128236A (en) Ultrasonic wave generating device
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JP2001083123A (en) Local immersion type ultrasonic probe and ultrasonic inspection device equipped with it
JP3777071B2 (en) Ultrasonic inspection equipment
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
JPH02184756A (en) Probe for water-dip surface wave
JP3027495B2 (en) Ultrasonic probe
RU45025U1 (en) ULTRASONIC TILTED CONVERTER
SU1569696A1 (en) Transducer for ultrasonic inspection
JP2001041938A (en) Ultrasonic probe
JPS60128358A (en) Wide band focus type probe
JPH0365495B2 (en)
SU1000901A1 (en) Article ultrasonic quality control method
JP2912639B2 (en) Ultrasonic angle beam probe
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young&#39;s modulus and/or poisson ratio measuring instrument using the device
JPH06317567A (en) Ultrasonic flaw-detection apparatus
JPH08292176A (en) Ultrasonic probe