JPH0273137A - Measurement discriminating method for laser type gas sensor - Google Patents

Measurement discriminating method for laser type gas sensor

Info

Publication number
JPH0273137A
JPH0273137A JP22357788A JP22357788A JPH0273137A JP H0273137 A JPH0273137 A JP H0273137A JP 22357788 A JP22357788 A JP 22357788A JP 22357788 A JP22357788 A JP 22357788A JP H0273137 A JPH0273137 A JP H0273137A
Authority
JP
Japan
Prior art keywords
point
threshold
signal
laser
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22357788A
Other languages
Japanese (ja)
Inventor
Shoji Doi
土肥 正二
Akira Sawada
亮 澤田
Iwao Sugiyama
巌 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22357788A priority Critical patent/JPH0273137A/en
Publication of JPH0273137A publication Critical patent/JPH0273137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To discriminate whether measured data is effective or not and to improve the reliability by invalidating a standardized signal only at the time when a difference signal exceeds two threshold ranges and a laser current value is between two minimum points of the standardized signal. CONSTITUTION:When it is supposed that the standardized signal quantity for the laser current, which is changed stepwise, in each stage is one point, the difference spectrum at a difference of 10-point width in 1024 points is as shown in a figure (a) in the case of a figure (b). Minimum points ML and MR are points where the difference signal is changed from negative to positive, and a maximum point MAX in the point where the difference signal is changed from positive to negative. The first threshold is a positive threshold T+, and the second threshold is a negative threshold T-. Meanwhile, the difference signal at a mode hop occurrence point (e) greatly exceeds the threshold T- as shown by a point E. This point E is between points MAX and MR out of three extreme values where the extent of absorption is obtained. Consequently, it is judged by the existence of this point E that measurement at this time is ineffective.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ方式ガスセンサに係り、特に波長可変半
導体レーザから放射されたレーザ光を用いて被測定ガス
のIuffなどを測定するレーザ方式ガスセンサにおけ
る測定判定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a laser gas sensor, and particularly to a laser gas sensor that measures Iuff of a gas to be measured using laser light emitted from a wavelength tunable semiconductor laser. It relates to a measurement and judgment method.

レーザ方式ガスセンサは概略第3図に示す如き構成とさ
れている。同図中、1は波長可変半導体レーザで、これ
より放射された赤外光領域のレーザ光はビームスプリッ
タ2によりその光路を2つに分岐され、−7Jは測定セ
ル3を透過して光検知素子4に入射され、他方は参照セ
ル5を透過して光検知素子6に入射される。測定セル3
内にはガス濃度が未知の被測定ガスが充満しており、参
照セル5内には種類、濃度が既知の参照ガスが充満され
ている。
The laser type gas sensor has a configuration as schematically shown in FIG. In the figure, 1 is a wavelength tunable semiconductor laser, and the laser light in the infrared region emitted from this is split into two optical paths by a beam splitter 2, and -7J is transmitted through a measurement cell 3 and is detected by light. The light is incident on the element 4, and the other light is transmitted through the reference cell 5 and is incident on the photodetector element 6. Measuring cell 3
The inside is filled with a gas to be measured whose gas concentration is unknown, and the reference cell 5 is filled with a reference gas whose type and concentration are known.

光検知素子4及び6は上記の被測定ガス及び参照ガスの
固有の波長帯において減資を受けたレーザ光を光電変換
し、得られた電気信号をマイクロコンピュータで構成さ
れている信号処理装置7に供給する。信号処理装置7は
この入力電気信号に基づいて被測定ガスのガス′a度を
口出する。
The photodetecting elements 4 and 6 photoelectrically convert the reduced laser light in the specific wavelength bands of the above-mentioned gas to be measured and the reference gas, and send the obtained electrical signals to a signal processing device 7 composed of a microcomputer. supply The signal processing device 7 determines the gas concentration of the gas to be measured based on this input electric signal.

また、信号処理装置7は半導体レーザ1に駆動Ti流(
レーザ電流)を供給して、その電流値に応じた波長でレ
ーザ光を発振出力させると共に、定時間角に漸次段階的
にレーザ電流値を増加してシー11光の波長掃引を特定
吸収線付近で行なわける。更にこの波長掃引は周期的に
行なわれる。
Further, the signal processing device 7 supplies the semiconductor laser 1 with a driving Ti current (
At the same time, the laser current value is increased step by step at a fixed time angle to sweep the wavelength of the C11 light near a specific absorption line. It will be done. Furthermore, this wavelength sweep is performed periodically.

このような構成のレーザ方式ガスセンサにおいては、半
導体レーザの発振波長特性が変化しても、正確にガス濃
度測定を行なうことが必要とされる。
In a laser type gas sensor having such a configuration, it is necessary to accurately measure the gas concentration even if the oscillation wavelength characteristics of the semiconductor laser change.

〔従来の技術〕[Conventional technology]

従来のレーザ方式ガスセンサにおけるガス濃度測定方法
は、信号処理装置7がその入力電気信号レベルから被測
定ガス及び参照ガスの夫々について第4図<A)に示す
如き特性の受信パワーを測定し、また入力電気信号の変
化分を同期検波し又第4図(B)に示す如き二次微分信
号を生成し、その後にこの二次微分信号を上記受信パワ
ーで除算して生成した第4図(C)に示す如き2つの極
小点a、、a2と1つの極大点b【とを有する規格化信
号から吸収量を求める。
In the conventional gas concentration measurement method in a laser gas sensor, the signal processing device 7 measures the received power of the characteristics shown in FIG. The changes in the input electric signal are synchronously detected and a second-order differential signal as shown in FIG. 4(B) is generated, and then this second-order differential signal is divided by the received power to generate The amount of absorption is determined from the normalized signal having two minimum points a, , a2 and one maximum point b, as shown in ).

ここで、上記吸収量は第4図(C)に示す規格化信号(
すなわち規格化された吸収スペクトル)の1つの極大点
b1から2つの極小点at * azを結ぶ線分C土の
、極大点b1と同一の波長(ただし、信号処理装置7は
レーザ電流から波長を推定している)の点dまでの信@
量である。
Here, the above absorption amount is the normalized signal (
That is, the wavelength is the same as the maximum point b1 of the line segment C connecting one maximum point b1 of the normalized absorption spectrum to the two minimum points at*az (however, the signal processing device 7 extracts the wavelength from the laser current). estimate) up to point d@
It is quantity.

信号処理装置!7は従来、このようにして求めた被測定
ガスの吸収量に、参照ガスの吸収量とガス濃度の比例値
を掛は合わせてガス濃度を算出していた。
Signal processing device! Conventionally, the gas concentration was calculated by multiplying the absorption amount of the gas to be measured thus determined by the absorption amount of the reference gas and the proportional value of the gas concentration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、半導体レーザ1は経時変化によりその発振波
長特性が変化することがあり、その場合にはスペクトル
に不連続点が生じることがある(これをモードホップと
いう)。
However, the oscillation wavelength characteristics of the semiconductor laser 1 may change over time, and in this case, a discontinuous point may occur in the spectrum (this is called a mode hop).

すなわち、第5図に破線で示す如く、レーザ電流の変化
に従って規格化信号が得られない不連続部分が生じる。
That is, as shown by the broken line in FIG. 5, a discontinuous portion where no normalized signal is obtained occurs as the laser current changes.

これは、この位置でレーザの発娠縦モードが変化したこ
とによるもので、この不連続点を境として半導体レーザ
1の発振波長は20OA以、E大きく変化する。換言す
ると、半導体レーザ1の発掘波長はレーザ電流に応じて
変化するが、上記の不連続部分ではレーザ電流の僅かな
変化に対して発振波長が非線形に大きく変化することに
なる。
This is because the launched longitudinal mode of the laser changes at this position, and the oscillation wavelength of the semiconductor laser 1 changes significantly by E over 20 OA with this discontinuity point as a boundary. In other words, the excavation wavelength of the semiconductor laser 1 changes in accordance with the laser current, but in the discontinuous portion, the oscillation wavelength significantly changes nonlinearly in response to a slight change in the laser current.

これにより、規格化信号の2つの極小点のうち不連続部
分が存在する方の極小点は第5図にa3で示す如く本来
の極小値とは異なった極小飴となり、このときのガス濃
度の測定データは無効である。
As a result, of the two minimum points of the normalized signal, the minimum point where the discontinuous part exists becomes a minimum value different from the original minimum value, as shown by a3 in Figure 5, and the gas concentration at this time Measurement data is invalid.

しかるに、従来はレーザ電流の変化からレーザ光の発振
波長の変化を推定して測定データを生成していたため、
レーザ電流が正常に変化している限り、上記のモードホ
ップが生じたか否かは検知できず、モードホップ時にも
無効な測定データからガス濃度を測定しており、測定の
信頼性が低かった。
However, conventionally, measurement data was generated by estimating changes in the oscillation wavelength of the laser light from changes in the laser current.
As long as the laser current is changing normally, it is not possible to detect whether or not the above-described mode hop has occurred, and even at the time of mode hop, the gas concentration is measured from invalid measurement data, resulting in low measurement reliability.

本発明は上記の点に鑑みてなされたもので、測定データ
の有効/無効を判定することのできるレーザ方式ガスセ
ンサにおける測定判定方法を提供することを目的とする
The present invention has been made in view of the above points, and an object of the present invention is to provide a measurement determination method for a laser gas sensor that can determine whether measurement data is valid or invalid.

(課題を解決するための手段) 本発明のレーザ方式ガスセンサにおける測定判定方法は
、規格化信号から一定差分幅の差分信号をケ成し、差分
信号が予め定めた第1及び第2のしきい値の範囲を越え
る値で、かつ、そのときのレーザ電流値が規格化信号の
2つの極小値の範囲内のレーザ電流値であるときにのみ
、その規格化信号を無効と判定する。
(Means for Solving the Problems) A measurement judgment method in a laser gas sensor of the present invention is to construct a difference signal with a constant difference width from a normalized signal, and to set the difference signal between predetermined first and second thresholds. The normalized signal is determined to be invalid only when the value exceeds the value range and the laser current value at that time is within the range of the two minimum values of the normalized signal.

〔作用〕[Effect]

第5図に示した規格化信号スペクトルにおいて、段階的
に変化するレーザ電流値各段階のレーザ電流における規
格化信号量を1ポイントとすると、例えば1024ポイ
ントで差分の幅10ポイントのときの差分スペクトルは
、第5図の場合は第2図に示す如くになる。
In the normalized signal spectrum shown in Fig. 5, if the normalized signal amount at each stage of the laser current value that changes stepwise is one point, then for example, the difference spectrum when the difference width is 10 points with 1024 points. In the case of FIG. 5, it becomes as shown in FIG. 2.

第2図において極大点MAXは第5図の極大点b1に対
応し、左側の極小点MLと右側の極小点MRは夫々第5
図の極小点at 、a3に相当する。
In FIG. 2, the maximum point MAX corresponds to the maximum point b1 in FIG.
This corresponds to the minimum point at, a3 in the figure.

すなわち、極小点ML、MRは差分信号が負から正へ変
化する点であり、極大点MAXは差分信号が正から負へ
変化する点である。
That is, the minimum points ML and MR are the points at which the difference signal changes from negative to positive, and the maximum point MAX is the point at which the difference signal changes from positive to negative.

前記第1のしきい値は第2図中、正のしきい値T+で、
また前記第2のしきい値は負のしきい値T に相当する
。一方、第5図にeで示したモード小ツブ発生点く不連
続点)における差分信号は、第2図にEで示す如く負の
しきい値F−,を大きく越える。
The first threshold is a positive threshold T+ in FIG.
Further, the second threshold corresponds to a negative threshold T 2 . On the other hand, the difference signal at the discontinuity point at which the small mode bump occurs, indicated by e in FIG. 5, greatly exceeds the negative threshold value F-, as indicated by E in FIG.

この点Eは吸収色を求める3つの極値のうち極大点MA
Xと極小点MRの間にある(換言すると第5図に示した
規格化信号の2つの極小点al。
This point E is the maximum point MA among the three extreme values for determining the absorption color.
X and the minimum point MR (in other words, the two minimum points al of the normalized signal shown in FIG. 5).

a3における各レーザ電流値の中間のレーザ電流値を示
す)。従って、この点Eの存在により、このときの測定
が無効であると判定できる。
The middle laser current value among the respective laser current values in a3 is shown). Therefore, due to the existence of this point E, it can be determined that the measurement at this time is invalid.

〔実施例〕〔Example〕

第1図は本発明の一実施例の説明用フローチャートを示
す。
FIG. 1 shows an explanatory flowchart of one embodiment of the present invention.

この70−ヂヤートは第3図に示した信号処理装置7で
行なわれる動作を示している。第3図において、変数N
に差分の幅りの半分の値を代入しくステップS1)、変
数Nで示す値のポイントにおける規格化信号量5(N)
をS (N + (D/2))−8(N−(D/2))
なる式から算出する(ステップ82)。従って、最初は
D番目のポイントの規格化信号fins(D)と0番目
のポイントの規格化信号5(0)との差分がとられる。
This 70-diameter indicates the operation performed in the signal processing device 7 shown in FIG. In Figure 3, the variable N
Substituting half the value of the difference width into (step S1), the normalized signal amount 5 (N) at the point of the value indicated by the variable N
S (N + (D/2))-8(N-(D/2))
It is calculated from the formula (step 82). Therefore, first, the difference between the normalized signal fins(D) at the D-th point and the normalized signal 5(0) at the 0-th point is taken.

次に、ポイントNにおける差分信号ff1E (N)が
正のしきい値T+と負のしきい値T−との間の値である
か否か判定され(ステップSz ) 、−r+とT と
の範囲内にあれば測定が有効と判定され(ステップS4
)、その範囲内にないときは、そのときのポイントN(
換言するとレーザ電流値)が右側の極小点MRより大で
あるか又は左側の極小点MLより小であるか否か判定さ
れる(ステップSs>。
Next, it is determined whether the difference signal ff1E (N) at point N has a value between the positive threshold T+ and the negative threshold T- (step Sz), and the difference between -r+ and T is determined. If it is within the range, the measurement is determined to be valid (step S4
), if it is not within that range, then the point N(
In other words, it is determined whether the laser current value) is larger than the minimum point MR on the right side or smaller than the minimum point ML on the left side (step Ss>).

ポイントNが左側の極小点MLと右側の極小点MRとの
範囲の外にあるときは、極小点MLとMRの値は正しい
から測定は有効と判定され(ステップS4)、他方、上
記の範囲内にあるときは第2図、第5図に示したように
極小点ML又はMR(第2図、第5図ではMR)の値が
本来の値でなくなっているから、測定は無効と判定され
る(ステップS6)。
When the point N is outside the range between the minimum point ML on the left and the minimum point MR on the right, the measurement is determined to be valid because the values of the minimum points ML and MR are correct (step S4); If it is within the range, the value of the minimum point ML or MR (MR in Figures 2 and 5) is no longer the original value, as shown in Figures 2 and 5, and the measurement is determined to be invalid. (Step S6).

次にポイントNの値が規格化信号の総ポイント数M(第
2図の例では“1024” )からD/2を差し引いた
値以下か否か判定され、以上のときはまだすべてのポイ
ントについての測定の有効/無効が判定されていないか
らポイントNの値を1つインクリメントした後(ステッ
プS8)、前記ステップS2の差分信号算出処理を再び
行なう。
Next, it is determined whether the value of point N is less than or equal to the value obtained by subtracting D/2 from the total number of points M (“1024” in the example in Fig. 2) of the normalized signal. Since the validity/invalidity of the measurement has not been determined, the value of point N is incremented by one (step S8), and then the difference signal calculation process of step S2 is performed again.

以下、上記と同様の動作が繰り返され、M−(D/2)
がNより大になった時点で、すべてのポイントについて
の差分信号生成及びその測定の有効/無効の判定が終了
するので、判定動作を終了する(ステップ89)。
Thereafter, the same operation as above is repeated, and M-(D/2)
When becomes larger than N, generation of differential signals for all points and determination of validity/invalidity of measurement thereof are completed, so the determination operation is ended (step 89).

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、測定が有効か否かの判定
ができるため、もし無効と判定された場合には無意味な
測定の継続を直ちに中止したり、有効に戻すために半導
体レーザを新しいものに交換したり、動作条件の変更等
の、無効発生に対する適切な処理を迅速にとることがで
きる等の特長を有するものである。
As described above, according to the present invention, it is possible to determine whether the measurement is valid or not, so if it is determined that the measurement is invalid, the continuation of the meaningless measurement can be immediately stopped, or the semiconductor laser can be turned on to restore the validity. It has the advantage of being able to quickly take appropriate measures against the occurrence of invalidity, such as replacing the device with a new one or changing operating conditions.

図において、 1は半導体レーザ、 3は測定セル、 4.6は光検知素子、 5は参照セル、 7は信号処理装置、 81〜S9はステップ を丞す。In the figure, 1 is a semiconductor laser, 3 is a measurement cell, 4.6 is a photodetecting element, 5 is the reference cell, 7 is a signal processing device; 81-S9 are steps to lead.

Claims (1)

【特許請求の範囲】  半導体レーザ(1)から放射されセル(3、5)内の
ガスを透過したレーザ光を光検知素子(4、6)に入射
し、ここで光電変換された電気信号に基づいて生成した
規格化信号の吸収量から前記ガスの濃度を測定検知する
レーザ方式ガスセンサにおいて、 前記規格化信号から一定差分幅の差分信号を生成し(S
_1、S_2)、該差分信号が予め設定した正の第1の
しきい値と負の第2のしきい値との範囲を越える値で、
かつ、そのときのレーザ電流値が前記規格化信号の2つ
の極小点の間のレーザ電流値のときにのみ、その規格化
信号を無効と判定する(S_3〜S_6)ことを特徴と
するレーザ方式ガスセンサにおける測定判定方法。
[Claims] Laser light emitted from the semiconductor laser (1) and transmitted through the gas in the cell (3, 5) is incident on the photodetector element (4, 6), where it is photoelectrically converted into an electrical signal. In a laser gas sensor that measures and detects the concentration of the gas from the absorption amount of a normalized signal generated based on the
_1, S_2), the difference signal exceeds the range between the preset positive first threshold and the negative second threshold,
And only when the laser current value at that time is a laser current value between two minimum points of the normalized signal, the normalized signal is determined to be invalid (S_3 to S_6). Measurement judgment method for gas sensors.
JP22357788A 1988-09-08 1988-09-08 Measurement discriminating method for laser type gas sensor Pending JPH0273137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22357788A JPH0273137A (en) 1988-09-08 1988-09-08 Measurement discriminating method for laser type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22357788A JPH0273137A (en) 1988-09-08 1988-09-08 Measurement discriminating method for laser type gas sensor

Publications (1)

Publication Number Publication Date
JPH0273137A true JPH0273137A (en) 1990-03-13

Family

ID=16800345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22357788A Pending JPH0273137A (en) 1988-09-08 1988-09-08 Measurement discriminating method for laser type gas sensor

Country Status (1)

Country Link
JP (1) JPH0273137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873550B1 (en) * 2006-04-27 2008-12-11 아이알 마이크로시스템 에스.에이. Gas Detection Method and Gas Detection Device
CN108041689A (en) * 2018-02-14 2018-05-18 深圳市研桥科技有限公司 Electronic cigarette igniter and its control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873550B1 (en) * 2006-04-27 2008-12-11 아이알 마이크로시스템 에스.에이. Gas Detection Method and Gas Detection Device
CN108041689A (en) * 2018-02-14 2018-05-18 深圳市研桥科技有限公司 Electronic cigarette igniter and its control method

Similar Documents

Publication Publication Date Title
JPH085686A (en) Field sensor
JPH0273137A (en) Measurement discriminating method for laser type gas sensor
CN107356319B (en) A kind of dual-polarization state optical fiber vibration sensing Time-Domain Detection Method
JP3289120B2 (en) Human body detection device
JPH0480566B2 (en)
JP3289119B2 (en) Human body detection device
JP3439521B2 (en) Photoelectric sensor
CN115452754A (en) Infrared gas detection circuit, signal adjustment method and infrared gas sensor
JPH01285841A (en) Signal processing system of gas sensor
JP3461399B2 (en) Camera ranging device
JPS6345504A (en) Range finder
JPH0943056A (en) Instrument for measuring intensity of light
JP2020106457A (en) measuring device
KR200144344Y1 (en) Laser diode output control circuit of internal pipe inspection device
JPS63236985A (en) Ultrasonic distance measuring instrument
JPH01156694A (en) Photoelectric switch
JPS62133432A (en) Method and circuit for automatically determining exposure value
SU1045003A1 (en) Photometer
CN111678594A (en) Logarithmic calibration method for response linearity of laser power tester
JPH03199912A (en) Displacement measuring apparatus
JPH04373308A (en) Photoelectric switch
JPH0577735U (en) Light sensor
JPS5948352B2 (en) Lightwave ranging device with automatic light control device
JPH0626860A (en) Semiconductor position detecting element for detecting distance
JPS59160781A (en) Light wave range finder