JPH0271922A - Electro-chemical machining method - Google Patents

Electro-chemical machining method

Info

Publication number
JPH0271922A
JPH0271922A JP21920288A JP21920288A JPH0271922A JP H0271922 A JPH0271922 A JP H0271922A JP 21920288 A JP21920288 A JP 21920288A JP 21920288 A JP21920288 A JP 21920288A JP H0271922 A JPH0271922 A JP H0271922A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
machining
short circuit
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21920288A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21920288A priority Critical patent/JPH0271922A/en
Publication of JPH0271922A publication Critical patent/JPH0271922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To perform re-machining without human assistance and prevent lower machining efficiency by setting an electrode back up to a distance where a work piece and the electrode are free from short circuit when the condition of the short circuit arises between them to start re-machining at the fed rate of the electrode corresponding to this distance. CONSTITUTION:When the condition of short circuit between an electrode 2 and a work piece 1 is detected by a detecting means 3, the electrode 2 is set back from the work piece 1 up to a point where such condition of the short circuit is dissolved. A distance where this electrode 2 is set back is enumerated by an enumeration means 6a to start machining as the electrode 2 is fed by a motor M at a rate corresponding to a enumerated set-back distance of the electrode 2 in the direction of the work piece 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電解加工方法に係り、特に短絡発生時にお
ける111極送り制御の方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic machining method, and particularly to a method of controlling 111 pole feeding when a short circuit occurs.

〔従来の技術〕[Conventional technology]

第5図は例えば従来の電解加工装置Itを示す構成図で
あり、肉において、(1)は加工対象である被加工物、
(2)は被加工物(1)を所望の形状に加工する電極、
(3)は正極側が被加工物(1)に、負極側がW1極(
2)に接続され、直流電流を出力する加工1を源、(8
a)は被加工物(1)とγ橋(2)間に流れる加工電流
を常に検出し、その検出値が急激に上昇あるいは一定の
上限値を超過し1こ時に、上記被加工物(1)とW極(
2)間に短絡状態が発生したとして信号を出力する短絡
検出手段、(4)はモータ、(5)はモータ(4)の回
転力をIIf極(2)に伝達して、被加工物(1)方向
への直進運動を行わせるボールネジ、(6)は力ロエ電
源(3)の出力電流、電圧を制御すると共にモータ(4
)の制御を行う制御装置、(7)は2)0工用媒体の電
解液に高圧ガスを混入して、被加工物(1)とWl極(
2)間に供給する電解液供給装置、(8)は電解液供給
装置(7)の電解液を被加工物(1)とtZm(2)+
mに導くパイプであり、この場合26 J4 (2)を
介して導く様になっている。
FIG. 5 is a configuration diagram showing, for example, a conventional electrolytic processing apparatus It. In meat, (1) is the workpiece to be processed;
(2) is an electrode that processes the workpiece (1) into a desired shape;
In (3), the positive electrode side is attached to the workpiece (1), and the negative electrode side is attached to the W1 pole (
2), processing 1 that outputs direct current is the source, (8
a) constantly detects the machining current flowing between the workpiece (1) and the gamma bridge (2), and when the detected value rises rapidly or exceeds a certain upper limit value, the workpiece (1) ) and W pole (
2) a short-circuit detection means that outputs a signal when a short-circuit condition has occurred between the two; (4) is a motor; The ball screw (6) controls the output current and voltage of the power source (3) and also controls the motor (4).
), (7) mixes high-pressure gas into the electrolytic solution of 2) zero working medium to control the workpiece (1) and the Wl pole (
2) An electrolyte supply device (8) supplies the electrolyte between the electrolyte supply device (7) and the workpiece (1) and tZm(2)+
26 J4 (2) in this case.

次に動作について説明する。電解加工に際して、先ず電
解液供給袋!(7)−パイプ(8)−電極(2)の経路
で、電解液を被加工物(1)とW極(2)間に供給する
Next, the operation will be explained. When performing electrolytic processing, the first thing to do is an electrolyte supply bag! (7) Supply the electrolytic solution between the workpiece (1) and the W pole (2) through the path of pipe (8) and electrode (2).

続いて、加工電源(3)を起動して、所定の電圧値を有
する大?E流を被加工物(1)とgt橘(2)に、電解
液を介して通電する。この大電流による電解液の電気分
解作用によって、被加工物(1)が電極(2)形状に対
力がボールネジ(5)によ−て*極(2)に伝達され、
該電極(2)は被加工物(1)方向に進行して、最終的
に該電極(2)形状に対応した形状に被加工物(1)が
電解加工される訳である。さて、上記電解加工中におい
て被加工物(1)とfIt極(2)間に短絡状態が発生
した場合には、相方に大きなダメージが加わるので、即
刻電解加工を停止する必要がある。次に、この方法iζ
ついて第6図を用いて説明する。ステつプ(SIJに示
す様に、被加工物(1)と電極(2)間に短絡状態が発
生すると、ステ・9ブ(82)に示す様に、短絡検出手
段(3&)によってその短絡状態が検出さi]、その検
出信号?受信しTコ制御装首(6)は、ステ、・ブt8
8)、<84)に示す様に、瞬時に加工電源(3)とモ
ータ(4)の駆動を停止させ、加工電流を遮断でると共
に[JM (2)の送りを停止させる。この後オペレー
タは電極(2)を後退させπ後、仮加工物(1)と[極
(2)の短絡痕の大きさを調査して、電極(2)の送す
速度が適切であつ1こかどうかを判断し、加工を再開し
た場合に再び短絡状態が発生しない様に、電極(2)の
送り速度を変更して再度加工を開始する。
Next, start the machining power supply (3) and turn on the power supply with a predetermined voltage value. Flow E is applied to the workpiece (1) and GT Tachibana (2) via the electrolyte. Due to the electrolytic action of the electrolytic solution caused by this large current, the workpiece (1) is shaped like an electrode (2), and a force is transmitted to the electrode (2) by the ball screw (5).
The electrode (2) advances toward the workpiece (1), and finally the workpiece (1) is electrolytically processed into a shape corresponding to the shape of the electrode (2). If a short circuit occurs between the workpiece (1) and the fIt pole (2) during the electrolytic machining, the electrolytic machining must be stopped immediately because a large damage will be caused to the other part. Next, this method iζ
This will be explained using FIG. When a short circuit occurs between the workpiece (1) and the electrode (2) as shown in step (SIJ), the short circuit detection means (3 &) detects the short circuit as shown in step 9 (82). When the state is detected, the detection signal is received and the T control head (6)
As shown in 8) and <84), the drive of the machining power source (3) and motor (4) is instantaneously stopped, the machining current is cut off, and the feed of [JM (2) is stopped]. After this, the operator moves back the electrode (2) and after π, investigates the size of the short circuit mark between the temporary workpiece (1) and the [electrode (2)], and checks whether the feeding speed of the electrode (2) is appropriate or not. The feed rate of the electrode (2) is changed and the machining is started again so that the short-circuit condition does not occur again when the machining is restarted.

この場合、Wl極(2)の送り速度は、被加工物(1)
と電極(2)間に短絡状態が発生し1こ時の送り速度よ
りも遅くするのが一般的である。なお、上記被加工物(
1)と*極(2)間の短絡は、電気分解作用による被加
工物(1)の溶出速度が、*極(2)の送り速度に対し
て遅い1こめ、電極(2)が仮加工物(1)に突っ込み
気味となり、加工が不安定になった後短絡状態に移行す
ることが主原因をなしている。
In this case, the feed rate of Wl pole (2) is
Since a short circuit occurs between the electrode (2) and the electrode (2), the feed speed is generally slower than the one at this time. In addition, the above-mentioned workpiece (
The short circuit between 1) and *pole (2) is because the elution rate of workpiece (1) due to electrolysis is slower than the feeding speed of *pole (2), and electrode (2) is temporarily processed. The main cause is that the machine tends to pierce object (1), making machining unstable and then transitioning to a short-circuit state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電解加工方法は以上の様に行われているので、被
加工物(1)と電極(2)間に短絡状態が発生した場合
、オペレータが電極(2)を後退させπ後、短絡痕の大
きさを調査して、該短絡痕に対応した電極(2)の送り
速度を設定して再加工を開始せねばならず、又、これら
の作業に多大な時間を要するので、加工効率が低下する
等の問題点がありに。
The conventional electrolytic machining method is performed as described above, so when a short circuit occurs between the workpiece (1) and the electrode (2), the operator moves back the electrode (2) and after π, the short circuit trace is removed. It is necessary to investigate the size of the short-circuit mark, set the feeding speed of the electrode (2) corresponding to the short circuit trace, and then start re-machining.Also, since these operations take a lot of time, the machining efficiency is reduced. There are problems such as a decline in performance.

この発明は上記の様な問題点を解消する為になされTコ
もので、被加工物と電極間に短絡状態が発生しても、オ
ペレータの手をわずられすことなく、又、加工効率を低
下させることのない電解加工方法を得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and even if a short circuit occurs between the workpiece and the electrode, the operator does not have to worry about it, and the machining efficiency is improved. The purpose is to obtain an electrolytic processing method that does not reduce the

〔課題を解決する1こめの手段〕 この発明に係る電解加工方法は、電極と被加工物間の短
絡吠態ケ検出する段階と、上記短絡状態が解消する地点
迄上記電極を上記被加工物に対して後退させる段階と、
上記電極が後退しTコ距離を算出する段階と、上記算出
された電極の後退距離に対応しTコ速度で、上記電極を
上記被加工物方向に送りつつ加工を開始する段階とから
なるものである。
[First Means for Solving the Problem] The electrolytic machining method according to the present invention includes a step of detecting a short-circuit condition between an electrode and a workpiece, and a step of detecting a short-circuit condition between the electrode and the workpiece. a step of retreating against the
The method consists of a step of retracting the electrode and calculating a T-distance, and a step of starting machining while feeding the electrode in the direction of the workpiece at a T-distance corresponding to the calculated retracted distance of the electrode. It is.

〔作用〕[Effect]

この発明においては、*極と被加工物が短絡し1こ地点
から、該短絡状態が解消する地点迄上記電極を後退させ
つつその後退距離を算出し、該算出距離に対応した速度
で再度加工を開始しつつ、上記電極を被加工物方向に送
る。
In this invention, the electrode is retracted from the point where the electrode and the workpiece are short-circuited to the point where the short-circuit condition is resolved, the retraction distance is calculated, and processing is performed again at a speed corresponding to the calculated distance. While starting, the electrode is sent toward the workpiece.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

絡 第1図において、(3h)は従来例に示しTこ短路検出
手段CB&)の機能に、更に、電極(2)後退中に被加
工物(1)と*極(2)に電流を通電させて、被刀ロ工
物(1)と電極(2)間の短絡状態の継続状態を検出す
る短絡検出手段、(687は被加工物(1)と電極(2
)が短絡しT二地点から該短絡状態が解消される地点迄
の上記電極(2)の後退距離を算出する後退距離算出手
段である。なお、他の従来例を示す第5図と同一の符号
については同一の部分を示しているので、その説明は省
略する。
In Fig. 1, (3h) indicates the function of the short circuit detection means CB&) shown in the conventional example, and also applies current to the workpiece (1) and the electrode (2) while the electrode (2) is retracting. short-circuit detection means (687 is a short-circuit detection means for detecting a continuation of the short-circuit state between the workpiece (1) and the electrode (2);
) is a retraction distance calculation means for calculating the retraction distance of the electrode (2) from the two points T where the short circuit occurs to the point where the short circuit state is eliminated. Note that the same reference numerals as in FIG. 5, which shows another conventional example, indicate the same parts, so a description thereof will be omitted.

次に動作について説明する。なお、電解加工については
従来例と同様であるのでその説明は省略し7、被加工物
(1)と電極(2)とが短絡しγこ場合Cζついて第2
図を用いて説明する。なお、同図において従来例を示す
第6図と同一の符号については同一のステーlブを示し
ているので、その説明は省略し、ステ11.プ(88J
、(84)に引き続いて実行される処理1ζついて説明
する。
Next, the operation will be explained. The electrolytic machining is the same as the conventional example, so its explanation will be omitted7.If the workpiece (1) and the electrode (2) are short-circuited,
This will be explained using figures. Note that in this figure, the same reference numerals as in FIG. 6, which shows the conventional example, indicate the same staves, so the explanation thereof will be omitted, and step 11. Pu (88J
, (84) will now be described.

ここで、ステ・・・ブC88)A84)が実行された時
点の被加工物(1)とW、極(2)との関係を詳しく説
明しておく。第8図(a)又は第4図(b)に示す様に
、被加工物(1)と[tM(2)が対向する加工面には
、微視的には凹凸が存在しでおり、加工電流による被加
工物(1)の溶出速度よりも電極(2)の送り速度が速
い場合には、最短間隙部において短絡が発生する。短絡
部分は必然的に高電流密度となり、溶解部(9)を生成
することになる。この部分が冷却され固まりTこものが
短絡部である。
Here, the relationship between the workpiece (1), W, and the pole (2) at the time when steps C88) and A84) are executed will be explained in detail. As shown in FIG. 8(a) or FIG. 4(b), there are microscopic irregularities on the machined surface where the workpiece (1) and [tM(2) face each other, If the feed rate of the electrode (2) is faster than the elution rate of the workpiece (1) due to the machining current, a short circuit will occur at the shortest gap. The short circuit will inevitably result in a high current density, creating a melted part (9). This part is cooled and solidified, and the T-shaped part is the short circuit part.

さて、ステーJプ(88)、<84)に引き続いて、ス
テーリブ(86)に示す様に、制御装!(6)の指令に
よりモータ(4)が駆動され、ボールネジ(5)を介し
てN極(2)の後退が開始される。次いで、ステー・ブ
(87月こおいて被万ロエ物(1)と電極(2)間の短
絡状態が解消されにかどうかが確認される。この場合の
被加工物(1)とflE極(2)との関係は第8図(b
)又は第4図向に示す様になる。この間、短絡検出手段
(fllb)は被加工物(1)と電極(2)に電流を流
し続ける。そして、この′1F流が零になった時点でス
テ・リブt88)に示す様に!gl(2)の後退が停止
される。次いで、ステ・・プ(89月こ示す様に、後退
距離算出手段(6a、)によって被加工物(1)と電極
(2)とが短絡しない距離が算出されろ。つまり、第3
1N(b)又は第4図(b)に示す距離(alJ又(a
Jが算出される訳である。、次に、ステ・・・ブ(Sl
(りに示す様に、これらの距離に対応しr:’$極(2
)の送り速度が、制御装置(6)において演算される。
Now, following the stay J tape (88), <84), as shown in the stay rib (86), there is a control device! The motor (4) is driven by the command (6), and the N pole (2) starts to retreat via the ball screw (5). Next, it is checked whether the short circuit between the workpiece (1) and the electrode (2) has been resolved by placing the workpiece (1) and the electrode (2) in place. The relationship with (2) is shown in Figure 8 (b
) or as shown in Figure 4. During this time, the short circuit detection means (fllb) continues to apply current to the workpiece (1) and the electrode (2). Then, when this '1F flow becomes zero, as shown in Ste. Rib t88)! Retraction of gl(2) is stopped. Next, as shown in step 89, the retreat distance calculation means (6a,) calculates the distance at which the workpiece (1) and the electrode (2) will not be short-circuited.
1N (b) or the distance (alJ or (a
This means that J is calculated. , then Steve (Sl
(As shown in Figure 2, corresponding to these distances, r: '$ pole (2
) is calculated in the control device (6).

第3図(1))及び第4図(b)の距離(alJ及び(
a、りを例(rとれば、距離(aりの場合は、短絡発生
時の送り速度まhも遅く、距離(a2Jの場合は、距離
(ルリの時よりも更に遅くという具合(こその速度が決
定される。続いて、ステ、・ブ(811)、1812)
に示す様に、上記で演算されγこ送り速度で電極(2)
の送りを開始すると共に、加工〒源(3)を起動して加
工電流の通′IItを開始する。
The distances (alJ and (
For example, if we take a and ri (r), the distance (in the case of a, the feed speed when a short circuit occurs is also slow, and the distance (in the case of a2J, the distance is even slower than in the case of Ruri). The speed is determined.Subsequently, Ste. Bu (811), 1812)
As shown in , the electrode (2) is moved at the feeding speed calculated above.
At the same time, the machining source (3) is activated to start passing the machining current.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば被加工物と電極間に短絡
状態が発生した時、被加工物とRt極が短絡しない距離
迄電極を後退させ、その後退距離に対応し1こ電極の送
り速度で再度加工ケ開始する様にしTこので、人手を介
すことなく副手が再加工ができろと共に加工効率の低下
のないものが得られろ効果がある。
As described above, according to the present invention, when a short circuit occurs between the workpiece and the electrode, the electrode is retracted to a distance where the workpiece and the Rt pole are not short-circuited, and one electrode is removed corresponding to the retracted distance. Machining is started again at the feed speed.This is effective in allowing the sub-manual to re-work without human intervention and without reducing machining efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による電解加工装置を示す
構成図、第2図はこの発明の一実施例による電解加工方
法を示すフローチャート、第3図及び第4□□□は被加
工物と7極間の短絡状態を示す詳細図、第5図は従来の
電解加工装wtを示す構成図、第6図は従来の電解加工
方法ケ示すフローチャートである。 図において、(1)は被加工物、(2)は電極、(3h
Jは短絡検出手段、(4)はモータ□、(6)は制御装
置、t5a7は後退距離算出手段である。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a configuration diagram showing an electrolytic processing apparatus according to an embodiment of the present invention, Fig. 2 is a flowchart showing an electrolytic processing method according to an embodiment of the invention, and Figs. 3 and 4 are workpieces. FIG. 5 is a configuration diagram showing a conventional electrolytic machining device wt, and FIG. 6 is a flowchart showing a conventional electrolytic machining method. In the figure, (1) is the workpiece, (2) is the electrode, (3h
J is a short circuit detection means, (4) is a motor □, (6) is a control device, and t5a7 is a retreat distance calculation means. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物間の短絡状態を検出する段階と、上記短
絡状態が解消する地点迄上記電極を上記被加工物に対し
て後退させる段階と、上記電極が後退した距離を算出す
る段階と、上記算出された電極の後退距離に対応した速
度で、上記電極を上記被加工物方向に送りつつ加工を開
始する段階とからなることを特徴とする電解加工方法。
detecting a short-circuit condition between the electrode and the workpiece; retracting the electrode relative to the workpiece until the short-circuit condition is resolved; and calculating a distance that the electrode has retreated; An electrolytic machining method comprising the step of starting machining while feeding the electrode toward the workpiece at a speed corresponding to the calculated retraction distance of the electrode.
JP21920288A 1988-09-01 1988-09-01 Electro-chemical machining method Pending JPH0271922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21920288A JPH0271922A (en) 1988-09-01 1988-09-01 Electro-chemical machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21920288A JPH0271922A (en) 1988-09-01 1988-09-01 Electro-chemical machining method

Publications (1)

Publication Number Publication Date
JPH0271922A true JPH0271922A (en) 1990-03-12

Family

ID=16731807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21920288A Pending JPH0271922A (en) 1988-09-01 1988-09-01 Electro-chemical machining method

Country Status (1)

Country Link
JP (1) JPH0271922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277949A (en) * 1993-03-30 1994-10-04 Mitsubishi Electric Corp Wire cut discharge machining device
JP2002503159A (en) * 1998-04-06 2002-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical processing method of workpiece and configuration thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277949A (en) * 1993-03-30 1994-10-04 Mitsubishi Electric Corp Wire cut discharge machining device
JP2002503159A (en) * 1998-04-06 2002-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical processing method of workpiece and configuration thereof

Similar Documents

Publication Publication Date Title
SE405690B (en) DEVICE FOR ELEROSIVE OR ELECTROCHEMICAL PROCESSING OF THE WORKPIECES
JPS58109230A (en) Wire cut electric spark machining device
WO1988001550A1 (en) Wire cut electric discharge machine
JP2682310B2 (en) Wire electric discharge machining method and apparatus
JPH0271922A (en) Electro-chemical machining method
JPH0520213B2 (en)
JPS5973232A (en) Wire cut electric discharge machining device
JPH0253526A (en) Wire cut electric discharge machine
JP4348506B2 (en) Electric discharge machining method and apparatus
JP3032336B2 (en) EDM method
JP2650771B2 (en) Electric discharge machining method and equipment
JP2732293B2 (en) Small hole electrical discharge machining method
JPH0732218A (en) Wire electric discharge machining device
JPS6195824A (en) Wire cut electric discharge machining
JPH10217033A (en) Numerical control electric discharge processor
JPH04289026A (en) Short circuit releasing method for wire cut electric discharge machine
JP2539111Y2 (en) Double arc detector for plasma cutting machine
JPS5919633A (en) Wire-cut electric discharge machine
JPH0138614B2 (en)
JP2762086B2 (en) Small hole electric discharge machining method by wire electric discharge machine
JP2001269821A (en) Additional machining method and device by discharge
JPH0138615B2 (en)
JP2762198B2 (en) Electric discharge machining method and apparatus
JPS6377608A (en) Electric discharge device
JPS6294248A (en) Numerical control device