JPH0270406A - Die heating and cooling temperature control device - Google Patents

Die heating and cooling temperature control device

Info

Publication number
JPH0270406A
JPH0270406A JP22232788A JP22232788A JPH0270406A JP H0270406 A JPH0270406 A JP H0270406A JP 22232788 A JP22232788 A JP 22232788A JP 22232788 A JP22232788 A JP 22232788A JP H0270406 A JPH0270406 A JP H0270406A
Authority
JP
Japan
Prior art keywords
temperature
heat medium
cavity
control device
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22232788A
Other languages
Japanese (ja)
Inventor
Shoki Eguchi
江口 昭喜
Masao Takagi
正雄 高木
Hisao Inage
久夫 稲毛
Norio Yatsuda
則夫 谷津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22232788A priority Critical patent/JPH0270406A/en
Publication of JPH0270406A publication Critical patent/JPH0270406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To stabilize the dimension of a molded product and increase molding yield by controlling a heater installed in a feeding line of heat mediums from a die temperature controller to respective cavities and flow control valves installed in reverse return lines by means of sensors and measuring the temperature of heat mediums installed in an inlet and an outlet of heat medium flow channels of die. CONSTITUTION:The temperature of heat mediums flowing into heat medium channels 16 and 17 of respective cavities 14 and 15 is sensed by temperature sensors 20 and 21 and the temperature medium flowing out is measured by temperature sensors 22 and 23 for the purpose of controlling the flow of heat mediums, and flow control valves 24 and 25 are operated and controlled by the temperature difference of inflow and outflow. In the heating process, the flow control valve 25 of the cavity 15 is microadjusted based on a cavity 14 with small absolute value of heat medium temperature difference as reference as reference in the direction in which the flow gets smaller and the heat medium temperature difference is so controlled as to conform with that of the reference cavity. In the retaining process, the flow control valve 25 of the cavity 15 is micro-adjusted based on the cavity 14 with large absolute value of heat medium temperature difference in the direction in which the flow gets larger and the heat medium temperature difference is so controlled as to conform with that of the reference cavity. Also, control is carried out in the controlling process in a manner same as the heating process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック成形用の複数のキャビティを有
する金をの加熱冷却温度制御装置に係り、特に金型内の
温度を精密に制御し、各キャビティ間での温度差を小さ
くするのに好適な金型加熱冷却温度制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heating and cooling temperature control device for gold having a plurality of cavities for plastic molding. The present invention relates to a mold heating/cooling temperature control device suitable for reducing temperature differences between cavities.

〔従来の技術〕[Conventional technology]

生産性の向上を目的とした多数個取りの金型成形におい
ては、キャビティ間の金型温度を均一化することが、成
形品バラツキの低減には必須の条件である。
In multi-cavity mold molding aimed at improving productivity, uniform mold temperature between cavities is an essential condition for reducing molded product variations.

また、プラスチック成形品、例えばプラスチックレンズ
は、厚肉部と薄肉部との肉厚比が太きくしかも高精度及
び低内部歪が要求される。
Furthermore, plastic molded products, such as plastic lenses, have a large thickness ratio between thick and thin parts, and are also required to have high precision and low internal distortion.

このため、樹脂の充填工程においては、金型温度を高温
に保持し、溶融樹脂の流動抵抗を低減することにより、
配向歪の発生を防止する必要がある。
Therefore, in the resin filling process, the mold temperature is maintained at a high temperature to reduce the flow resistance of the molten resin.
It is necessary to prevent the occurrence of orientation strain.

さらに、賦形工程においては、金型温度を徐冷し、冷却
固化の均一化を図り、成形歪の発生を防止することが必
要である。
Furthermore, in the shaping process, it is necessary to slowly cool the mold temperature to ensure uniform cooling and solidification and to prevent molding distortion.

従来の加熱冷却に用いる金型温度制御装置は、例えば特
開昭58−215509号公報に記載されているように
、高温媒体タンクと低温媒体タンクと。
A conventional mold temperature control device used for heating and cooling includes a high-temperature medium tank and a low-temperature medium tank, as described in, for example, Japanese Unexamined Patent Publication No. 58-215509.

各々の圧送ポンプ及び上記熱媒体を選択するための開閉
弁とで構成されており、熱媒体を選択することにより、
金型内の加熱冷却の制御を行っている。
It is composed of each pressure pump and an on-off valve for selecting the heat medium, and by selecting the heat medium,
Controls heating and cooling inside the mold.

また、多数個取り成形において、各キャビティの温度を
均一化する金型構造として、例えば特開昭59−395
10号公報に記載されているように、熱媒体流路を連通
して、梯子状通路としたものがある。
In addition, in multi-cavity molding, as a mold structure that equalizes the temperature of each cavity, for example, Japanese Patent Application Laid-Open No. 59-395
As described in Japanese Patent No. 10, there is a device in which the heat medium flow path is connected to form a ladder-like path.

第7図は従来の金型加熱冷却温度制御装置の説明図であ
って、(α)は系統図であり、1は高温タンク、2は低
温タンクで、高温タンク1には温度調節手段としてのヒ
ータ3及び温度センサ4、圧送ポンプ5、供給側開閉弁
6、帰還側開閉弁7を設け、低温タンク2には温度調節
手段としての冷却器8及び温度センサ9、圧送ポンプ1
0、供給側開閉弁11、帰還側開閉弁12を設けである
FIG. 7 is an explanatory diagram of a conventional mold heating/cooling temperature control device, in which (α) is a system diagram, 1 is a high temperature tank, 2 is a low temperature tank, and the high temperature tank 1 has a temperature control means. A heater 3, a temperature sensor 4, a pressure pump 5, a supply side on-off valve 6, and a return side on-off valve 7 are provided.
0, a supply side on-off valve 11 and a return side on-off valve 12 are provided.

金型13内には、2つのキャビティ14.15があり、
各々熱媒体流路16.17が配しである。
Inside the mold 13 there are two cavities 14.15,
Heat medium flow paths 16 and 17 are arranged in each case.

また、29.!10は熱媒体の供給圧力を一定とするた
めのIJ IJ−7弁、31,32,55.34は流動
方向を制御するための逆上弁である。
Also, 29. ! 10 is an IJ IJ-7 valve for keeping the supply pressure of the heat medium constant; 31, 32, 55, and 34 are reverse valves for controlling the flow direction.

同図(h)は制御概念図であって、26は制御装置であ
り、温度センサ4,9の出力によりヒータ3、冷却器8
を制御することで、高温タンク1及び低温タンク2内の
熱媒体を所定の温度に制御し、成形機27の動作と同期
して開閉弁6,7,11.12及び流量制御弁24.2
5を制御している。
FIG. 6(h) is a conceptual control diagram, in which 26 is a control device, and the heater 3 and cooler 8 are controlled by the outputs of the temperature sensors 4 and 9.
By controlling the heat medium in the high temperature tank 1 and the low temperature tank 2 to a predetermined temperature, the on-off valves 6, 7, 11.12 and the flow rate control valve 24.2 are activated in synchronization with the operation of the molding machine 27.
5 is controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、金型の加熱冷却におけるキャ
ビティ間での温度差の点については配慮されておらず、
キャビティ間の成形品寸法バラツキを生じ、成形品歩留
りが大幅に低下した。
The above conventional technology does not take into consideration the temperature difference between cavities during heating and cooling of the mold.
The molded product dimensions varied between cavities, and the yield of molded products decreased significantly.

上記キャビティ間の温度差を防止するためにはキャビテ
イ毎に配設された通路を流れる熱媒体の流量と温度を測
定制御することが有効である。
In order to prevent the temperature difference between the cavities, it is effective to measure and control the flow rate and temperature of the heat medium flowing through the passages provided in each cavity.

しかし、高温、例えば200℃以上の熱媒体の流量を測
定する装置は非常に高価であり、多くのキャビティの流
量を測定制御することができない。
However, a device for measuring the flow rate of a heat medium at a high temperature, for example, 200° C. or higher, is very expensive and cannot measure and control the flow rate of many cavities.

本発明は、光学性能の優れたプラスチックレンズを多数
個取りにより、高能率、安価で成形できるプラスチック
成形用の金型加熱冷却温度制御装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a mold heating/cooling temperature control device for plastic molding which can be molded with high efficiency and at low cost by molding a large number of plastic lenses with excellent optical performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、金型温度調節機から各キャビティへの熱媒
体の供給路又は各キャビティから金型温度調節機への帰
還路に設けた流量制御弁及び供給路に設けたヒータを、
金型の熱媒体流路の入口及び出口に設けた熱媒体の温度
を測定するセンサにより制御することにより達成される
The above purpose is to control the flow rate control valve provided in the supply path of the heat medium from the mold temperature controller to each cavity or the return path from each cavity to the mold temperature controller, and the heater provided in the supply path.
This is achieved by controlling the temperature of the heat medium provided at the inlet and outlet of the heat medium flow path of the mold using sensors that measure the temperature of the heat medium.

〔作用〕[Effect]

本発明は、金型の各キャビティに流入する熱媒体の温度
と流量に着眼したものであり、特に各キャビティを流れ
る熱媒体の流量と各キャビティの入口と出口側とにおけ
る熱媒体の温度差に着眼したものである。
The present invention focuses on the temperature and flow rate of the heat medium flowing into each cavity of a mold, and particularly the flow rate of the heat medium flowing through each cavity and the temperature difference between the inlet and outlet sides of each cavity. This is what I focused on.

各キャビティの熱媒体流路の入口側の微調ヒータは、上
記入口側の温度センサの出力で制御され流入する熱媒体
の温度を一致させるように駆動される。
The fine adjustment heater on the inlet side of the heat medium flow path of each cavity is controlled by the output of the temperature sensor on the inlet side and is driven to match the temperature of the heat medium flowing into the cavity.

また、各キャビテイ毎に設けた流量制御弁は、各キャビ
ティの熱媒体流路の出口側の温度センサの出力で制御さ
れ、入口側と出口側とのセンサの出力の差又は出口側の
センサの出力を一致させるように駆動される。
In addition, the flow rate control valve provided for each cavity is controlled by the output of the temperature sensor on the outlet side of the heat medium flow path of each cavity, and is controlled by the output of the temperature sensor on the outlet side of the inlet side and the outlet side. Driven to match outputs.

以上の結果、各キャビティの熱媒体流路に流入する熱媒
体の温度と流量を一致させることができる。
As a result of the above, it is possible to match the temperature and flow rate of the heat medium flowing into the heat medium flow path of each cavity.

それにより、各キャビティの温度が一致し、中ヤビティ
間の成形品寸法のバラツキを防止し、成形品歩留りの向
上を図ることができる。
Thereby, the temperature of each cavity becomes the same, it is possible to prevent variations in the dimensions of the molded product between the cavities, and to improve the yield of the molded product.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による金型加熱冷却温度制御装置の一実
施例の説明図であって、第7図と同じ符号は同じものを
示す。
FIG. 1 is an explanatory diagram of an embodiment of the mold heating/cooling temperature control device according to the present invention, and the same reference numerals as in FIG. 7 indicate the same parts.

同図(α)は系統図であり、各々の熱媒体流路16゜1
7には、入口側に微調ヒータ1B、19 、温度センサ
20.21 、出口側に温度センサ22,23を設けで
ある。
Figure (α) is a system diagram, in which each heat medium flow path 16°1
7 is provided with fine adjustment heaters 1B, 19 and temperature sensors 20, 21 on the inlet side, and temperature sensors 22, 23 on the outlet side.

同図(b)は制御概念図であって、26は制御装置であ
り、温度センサ4,9の出力によりヒータ3、冷却器8
を制御することで、高温タンク1及び低温タンク2内の
熱媒体を所定の温度に制御し、温度センサ20 、21
の出力によりヒータ18.19を制御し温度センサ22
 、23の出力により流量制御弁24.25を制御し、
成形機27の動作と同期して開閉弁6,7゜11.12
及び流量制御弁24 、25を制御している。
FIG. 2(b) is a conceptual control diagram, in which 26 is a control device, and the heater 3 and cooler 8 are controlled by the outputs of the temperature sensors 4 and 9.
The heat medium in the high temperature tank 1 and the low temperature tank 2 is controlled to a predetermined temperature by controlling the temperature sensors 20 and 21.
The heaters 18 and 19 are controlled by the output of the temperature sensor 22.
, 23 controls the flow rate control valves 24, 25,
In synchronization with the operation of the molding machine 27, the on-off valves 6, 7°11.12
and controls the flow rate control valves 24 and 25.

ここで、第2図に示したような金型温度パターンを得る
ための第1図の動作を以下に示す。
Here, the operation shown in FIG. 1 to obtain the mold temperature pattern as shown in FIG. 2 will be described below.

第2図は時間に対する金型温度変化パターンと各開閉弁
及び流量制御弁の動作の説明図であって、28は例えば
キャビティ14の金凰温度である。
FIG. 2 is an explanatory diagram of the mold temperature change pattern with respect to time and the operation of each on-off valve and flow rate control valve, and 28 is, for example, the temperature of the cavity 14.

金型温度パターンは時間間隔αの間、温度T、からrt
 tで加熱し、時間間隔すの間、温度T!に保持し、次
に時間間隔Cの間、温度T、からT、まで冷却し、時間
間隔dの間、温度T、に保持する設定となっている。
The mold temperature pattern is during the time interval α, from temperature T to rt
t, and during a time interval, the temperature T! It is then set to be cooled from temperature T to T during a time interval C, and then held at temperature T during a time interval d.

そこで、高温タンク1内の熱媒体温度をT!と比較して
充分高い温度に、低温タンク2内の熱媒体温度をT、と
比較して充分低い温度に制御装置26により設定制御す
る。
Therefore, the temperature of the heat medium in the high temperature tank 1 is set to T! The temperature of the heat medium in the low temperature tank 2 is set and controlled by the control device 26 to a temperature that is sufficiently high compared to T, and the temperature of the heat medium in the low temperature tank 2 is set to a temperature that is sufficiently low compared to T.

ここで、時間間隔αの閣は、開閉弁6.7を開、開閉弁
11.12を閉、流量制御弁24.25を大流量とし、
高温タンク内の熱媒体を大量に熱媒体流路16゜17に
流し、キャビティ14.15を加熱する。
Here, for the time interval α, the on-off valve 6.7 is opened, the on-off valve 11.12 is closed, the flow rate control valve 24.25 is set to a large flow rate,
A large amount of the heat medium in the high temperature tank is flowed into the heat medium flow paths 16 and 17 to heat the cavities 14 and 15.

次に、時間間隔にの間は、開閉弁6,7,11.12は
時間間隔αと同様とし、流量制御弁24.25を小流量
とすることにより、キャビティ14.15を温度T。
Next, during the time interval, the on-off valves 6, 7, 11.12 are the same as in the time interval α, and the flow rate control valve 24.25 is set to a small flow rate, so that the temperature of the cavity 14.15 is maintained at T.

に保持する。次に、時間間隔Cの間は、開閉弁6゜7を
閉、開閉弁11.12開、流量制御弁24.25を大流
量とし、低温タンク2内の熱媒体を大量に熱媒体流路1
6g17に流し、キャビティ14.15を冷却する。
to hold. Next, during the time interval C, the on-off valves 6. 1
6g 17 and cool the cavity 14.15.

次に、本発明の目的であるキャビティ間の温度バラツキ
低減のための微調ヒータ18,19 、流量制御弁24
,25 、温度センサ20.21.22.25の動作を
説明する。
Next, the fine adjustment heaters 18, 19 and the flow control valve 24 are used to reduce temperature variations between cavities, which is an object of the present invention.
, 25, the operation of the temperature sensor 20.21.22.25 will be explained.

ここで、第7図に示したような従来の金型熱冷却温度制
御装置により温調を行った場合には、第3図に示すよう
な加熱又は冷却速度の差δ1又はδ、′や金型温度の差
δ、が発生する。ここで、28゜28′は例えばキャビ
ティ14.15の温度である。これらの差が発生する原
因は、キャビティ14.15の熱媒体流路1(S、17
に流入する熱媒体の温度と流量の差である。
Here, when the temperature is controlled by a conventional mold thermal cooling temperature control device as shown in FIG. A difference δ in mold temperature occurs. Here, 28°28' is, for example, the temperature of the cavity 14.15. The cause of these differences is the heating medium flow path 1 (S, 17
It is the difference between the temperature and flow rate of the heat medium flowing into the

ここで、流入する熱媒体の温度を制御するため各キャビ
ティ14.15の熱媒体流路1(S、17に流入する熱
媒体の温度を温度センサ20 、21で測定し、微調ヒ
ータ18,19を駆動制御する構造とした。
Here, in order to control the temperature of the heat medium flowing in, the temperature of the heat medium flowing into the heat medium flow path 1 (S, 17) of each cavity 14, 15 is measured by the temperature sensors 20, 21, and the fine adjustment heaters 18, 19 The structure was designed to drive and control the

本実施例では、加熱、保持、冷却の各工程において、流
入熱媒体温度の低い方を、例えば温度センサ20の出力
を基準温度として決め、この基準温度側のキャビティ、
例えば14側の微調ヒータ18の出力な零、他のキャビ
ティ、例えば15側の微調ヒータ19の出力を基準温度
からの流入熱媒体温度、例えば温度センサ21の出力の
差に比例させて制御した。
In this embodiment, in each of the heating, holding, and cooling steps, the lower inflow heat medium temperature, for example, the output of the temperature sensor 20, is determined as the reference temperature, and the cavity on the reference temperature side,
For example, the output of the fine adjustment heater 18 on the 14th side is zero, and the output of other cavities, such as the fine adjustment heater 19 on the 15th side, is controlled in proportion to the difference in inflow heat medium temperature from the reference temperature, such as the output of the temperature sensor 21.

この基準温度からの温度差と微調ヒータ出力を第4図に
示す。なお、他の制御方法として、第4図にカッコ内数
値として示したように、基準温度となるキャビティを一
定とし、このキャビティの微調ヒータの出力を定格出力
の50%とし、他のキャビティの微調ヒータの出力をこ
の基準温度からの差に比例させる方法がある。
FIG. 4 shows the temperature difference from this reference temperature and the fine adjustment heater output. As another control method, as shown in the figures in parentheses in Figure 4, the cavity serving as the reference temperature is kept constant, the output of the fine adjustment heater of this cavity is set to 50% of the rated output, and the fine adjustment of other cavities is set to 50% of the rated output. There is a method of making the output of the heater proportional to the difference from this reference temperature.

次に、熱媒体の流量を制御するために各キャビティ14
.15の熱媒体流路16.17に流入する熱媒体の温度
を温度センサ20,21 、流出する熱媒体の温度を温
度センサ22,23で測定し、流入と流出とでの温度差
により流量制御弁24.25を駆動制御する構造とした
Next, each cavity 14 is used to control the flow rate of the heating medium.
.. The temperature of the heat medium flowing into the heat medium flow paths 16 and 15 of No. 15 is measured by temperature sensors 20 and 21, and the temperature of the heat medium flowing out is measured by temperature sensors 22 and 23, and the flow rate is controlled based on the temperature difference between the inflow and outflow. The structure is such that the valves 24 and 25 are driven and controlled.

ここで、第5図に入口と出口との熱媒体の温度差と熱媒
体流量の関係を示す。温度差は入口側熱媒体を基準とし
た場合で、57は冷却器、38は加熱及び保持時である
Here, FIG. 5 shows the relationship between the temperature difference of the heat medium between the inlet and the outlet and the flow rate of the heat medium. The temperature difference is based on the inlet side heat medium, 57 is the cooler, and 38 is during heating and holding.

そこで、加熱工程においては、熱媒体温度差の絶対値の
小さなキャビティ、例えば14を基準とし他のキャビテ
ィ、例えば15の流量制御弁25を流量の小さくなる方
向に微調し、熱媒体温度差を基準キャビティと一致する
ように制御する。
Therefore, in the heating process, the flow rate control valve 25 of other cavities, such as 15, is finely adjusted in the direction of decreasing the flow rate, using the cavity with a small absolute value of the heat medium temperature difference, for example, 14, as a reference, and Control to match the cavity.

保持工程においては、熱媒体温度差の絶対値の大きなキ
ャビティ、例えば14を基準とし、他のキャビティ、例
えば15の流量制御弁25を流量の大きくなる方向に微
調し、熱媒体温度を基準キャビティと一致するように制
御する。
In the holding step, the cavity with a large absolute value of the heat medium temperature difference, for example 14, is used as a reference, and the flow rate control valve 25 of other cavities, for example 15, is finely adjusted in the direction of increasing the flow rate, so that the heat medium temperature is set to the reference cavity. Control to match.

また、冷却工程においては、熱媒体温度差の絶対値の小
さなキャビティ、例えば14を基準とし、他のキャビテ
ィ、例えば15の流量制御弁25を流量の小さくなる方
向に微調し、熱媒体温度差を基準キャビティと一致する
ように制御する。
In addition, in the cooling process, the cavity with a small absolute value of the heat medium temperature difference, for example 14, is used as a reference, and the flow rate control valve 25 of the other cavities, for example 15, is finely adjusted in the direction of decreasing the flow rate to reduce the heat medium temperature difference. Control to match the reference cavity.

以上の例では、加熱及び冷却においては流量大側、保持
工程では流量小側であり、流量制御弁の制御範囲の両端
で行った場合である。
In the above example, the heating and cooling processes are performed on the high flow rate side, and the holding process is performed on the low flow rate side, at both ends of the control range of the flow rate control valve.

しかし、流量制御弁の制御範囲に充分余裕がある場合に
は、あるキャビティの熱媒体温度差の絶対値を基準とし
、他のキャビティの熱媒体温度差の絶対値が基準より大
きい場合には流量を小さく小さい場合には流量を大きく
し、熱媒体温度差を基準キャビティと一致するように制
御すればよい。
However, if there is sufficient margin in the control range of the flow control valve, the absolute value of the heat medium temperature difference in a certain cavity is used as the standard, and if the absolute value of the heat medium temperature difference in other cavities is larger than the standard, the flow rate is If it is small, the flow rate may be increased and the heat medium temperature difference may be controlled to match that of the reference cavity.

なお、前記微調ヒータ18,19の制御により流入する
熱媒体の温度が各キャビティ14.15間で一致してい
れば、流量制御弁24 、25を微調するために、入口
出口の熱媒体温度差の代わりに出口側熱媒体温度を用い
てもよい。
In addition, if the temperature of the heat medium flowing into each cavity 14, 15 is the same by controlling the fine adjustment heaters 18, 19, in order to finely adjust the flow rate control valves 24, 25, the temperature difference of the heat medium at the inlet and outlet is adjusted. The outlet side heat medium temperature may be used instead of .

本実施例において、高温タンク及び低温タンクの温度を
各々195℃、50°C1各キヤビテイでの最大流量2
j/分、余塵最高温度170°C1最低温度80℃とし
たとき、従来は加熱速度δ1#2°C/分、金型温度δ
β1.5℃発生していたものを、本発明による金型加熱
冷却温度制御装置を用いることにより、δ、#0.5℃
、δ! #CL 5℃とすることができた。その結果、
従来のキャビティ間成形品寸法バラツキ10μmを3μ
隅以下とすることができ、成形歩留りの向上を図ること
ができた。
In this example, the temperature of the high-temperature tank and the low-temperature tank was set to 195°C and 50°C, respectively.1 The maximum flow rate in each cavity was 2.
j/min, maximum residual dust temperature 170°C, minimum temperature 80°C, conventional heating rate δ1#2°C/min, mold temperature δ
By using the mold heating/cooling temperature control device according to the present invention, the temperature that had been generated at β1.5°C was changed to δ, #0.5°C.
, δ! #CL The temperature could be set at 5°C. the result,
The conventional molded product size variation between cavities of 10μm has been reduced to 3μm.
It was possible to reduce the thickness to less than the corner, thereby improving the molding yield.

第6図は本発明による金型加熱冷却温度制御装置の他の
実施例の説明図であって、(α)は系統図、(h)は制
御概念図であり、第1図と同じ符号は同じ機能を有し、
同図(、)の35は記憶部であり、ある特定のキャビテ
ィ、例えば14の温度センサ20 、22の出力、又は
キャビティ間での出力の平均値を1サイクル間記憶し、
かつこれをサイクルと同期して出力できる構造となって
いる。
FIG. 6 is an explanatory diagram of another embodiment of the mold heating/cooling temperature control device according to the present invention, (α) is a system diagram, (h) is a control conceptual diagram, and the same symbols as in FIG. 1 are have the same functionality,
Reference numeral 35 in the same figure ( ) is a storage unit, which stores the outputs of a certain specific cavity, for example, the 14 temperature sensors 20 and 22, or the average value of the outputs among the cavities for one cycle;
And it has a structure that can output this in synchronization with the cycle.

同図(α)において、初期においては、前記第1の実施
例と同様に、温度センサ20,21,22.23により
微調ヒータ18,19及び流量制御弁24.25を制御
し各キャビティ間での流入温度の差及び流出温度の差を
小さくするよう制御を行う。
In the same figure (α), in the initial stage, the fine adjustment heaters 18, 19 and the flow rate control valves 24, 25 are controlled by the temperature sensors 20, 21, 22, 23 between each cavity, as in the first embodiment. Control is performed to reduce the difference in inflow temperature and the difference in outflow temperature.

そこで、所望の余塵温度パターンが得られ、かつキャビ
ティ間の温度差が充分小さくなったときに、外部からの
信号を入力し、1サイクル間の特定のキャビティ、例え
ば14の温度センサ20,22の出力、又はキャビティ
間の出力の平均値、即ち温度センサ20 、21の出力
の平均と温度センサ22.23の出力の平均を同図(b
)の記憶装置35により記憶する。
Therefore, when the desired residual dust temperature pattern is obtained and the temperature difference between the cavities is sufficiently small, an external signal is input and a specific cavity for one cycle, for example, 14 temperature sensors 20, 22 , or the average value of the outputs between the cavities, that is, the average of the outputs of temperature sensors 20 and 21 and the average of the outputs of temperature sensors 22 and 23.
) is stored in the storage device 35.

次回からのサイクルは、前記記憶装置35に記憶した温
度センサの出力をサイクルと同期して再度出力し、これ
を温度センサ20,21,22.23の基準値として、
微調ヒータ18,19及び流量制御弁24.25を駆動
制御する。その結果、キャビティ間の温度のバラツキを
小さくし、かつブイタル間の温度のバラツキを小さくす
ることができ、成形品寸法バラツキを小さくし、成形歩
留りを向上することができる。
In the next cycle, the output of the temperature sensor stored in the storage device 35 is outputted again in synchronization with the cycle, and this is used as the reference value of the temperature sensors 20, 21, 22, and 23.
Drive control of fine adjustment heaters 18, 19 and flow rate control valves 24,25. As a result, it is possible to reduce variations in temperature between cavities and between cavities, reduce variations in temperature between cavities, reduce variations in molded product dimensions, and improve molding yield.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、多数のキャビテ
ィ間の加熱冷却速度及び金墓温度の差を高価な流量計等
の装置を必要とせず、小さくすることができ、各キャビ
ティの成形品寸法の安定性が増し、成形歩留りの向上が
図られ、上記従来技術の欠点を除いて優れた機能の金型
加熱冷却温度制御装置を提供することができる。
As explained above, according to the present invention, it is possible to reduce the difference in heating/cooling rate and gold grave temperature between a large number of cavities without the need for equipment such as an expensive flow meter, and the molded product in each cavity can be reduced. Dimensional stability is increased, molding yield is improved, and it is possible to provide a mold heating/cooling temperature control device with excellent functions while eliminating the drawbacks of the above-mentioned prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による金型加熱冷却温度制御装置の一実
施例の説明図、第2図は時間に対する金型温度変化パタ
ーンと各開閉弁及び流量制御弁の動作の説明図、第5図
は金型温度パターンの説明図、第4図は基準温度からの
温度差と微調ヒータ出力の関係の説明図、第5図は入口
と出口の熱媒体温度差と熱媒体流量の関係の説明図、第
6図は本発明による金型加熱冷却温度制御装置の他の実
施例の説明図、第7図は従来の金型加熱冷却温度制御装
置の説明図である。 1・・・・・・・・・・・・・・・・・・・・・・・・
・・・高温タンク2・・・・・・・・・・・・・・・・
・・・・・・・・・・・低温タンク6.7.11.12
・・・・・・開閉弁13・・・・・・・・・・・・・・
・・・・・・・・・・金型14.15 ・・・・・・・
・・・・・・・・キャビティ16.17・・・・・・・
・・・・・・・・熱媒体流路18.19 ・・・・・・
・・・・・・・・・微調ヒータ20.21.22.23
・・・温度センサ24.25・・・・・・・・・・・・
・・・流量制御弁35・・・・・・・・・・・・・・・
・・・・・・・・・記憶部1 高jユタシク 1415
  午ヤごティ2021  ガー度でンサ 1つ金型 1613  精文を周ヒータ 2425  流量帝J#p弁 〒1図 〒2図 〒5図 〒4図 (O) 考I7温度りへらの温度差A’C) (+1) 罰5図 八日と出口との?久奴4本温度差(・C)千6図 Cb)
Fig. 1 is an explanatory diagram of an embodiment of the mold heating/cooling temperature control device according to the present invention, Fig. 2 is an explanatory diagram of the mold temperature change pattern with respect to time and the operation of each on-off valve and flow rate control valve, and Fig. 5 is an explanatory diagram of the mold temperature pattern, Fig. 4 is an explanatory diagram of the relationship between the temperature difference from the reference temperature and the fine adjustment heater output, and Fig. 5 is an explanatory diagram of the relationship between the heat medium temperature difference between the inlet and outlet and the heat medium flow rate. , FIG. 6 is an explanatory diagram of another embodiment of the mold heating/cooling temperature control device according to the present invention, and FIG. 7 is an explanatory diagram of a conventional mold heating/cooling temperature control device. 1・・・・・・・・・・・・・・・・・・・・・・・・
・・・High temperature tank 2・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Cold tank 6.7.11.12
・・・・・・Opening/closing valve 13・・・・・・・・・・・・・・・
・・・・・・・・・Mold 14.15 ・・・・・・・・・
・・・・・・Cavity 16.17・・・・・・
...Heat medium flow path 18.19 ......
......Fine adjustment heater 20.21.22.23
・・・Temperature sensor 24.25・・・・・・・・・・・・
・・・Flow rate control valve 35・・・・・・・・・・・・・・・
・・・・・・・・・Memory part 1 Takaj Utashiku 1415
Goyagoti 2021 Temperature difference in temperature 1613 Mold 1613 Heater 2425 Flow rate measurement J#p valve 1 Figure 2 Figure 5 Figure 4 (O) Consideration I7 Temperature difference A' C) (+1) Punishment 5 figure 8th and exit? Temperature difference between 4 Kunu (C) 1,600 figures Cb)

Claims (1)

【特許請求の範囲】 1、複数の温度に設定された熱媒体を成形用金型に選択
的に供給するための複数の熱媒体タンクと、熱媒体の温
度調節手段と圧送ポンプと熱媒体を選択的に供給する開
閉弁とからなる金型加熱冷却温度制御装置において、複
数のキャビティに独立の熱媒体流路を配し、上記熱媒体
流路の入口側に微調ヒータと温度センサを、出口側に温
度センサを、入口側又は出口側に流量制御弁をそれぞれ
設け、各キャビティ間で入口側センサの出口及び出口側
センサの出力、又は出口側と入口側のセンサの出力との
差が同一となるように、上記微調ヒータ及び流量制御弁
を駆動する制御装置を設けたことを特徴とする金型加熱
冷却温度制御装置。 2、請求項1において、入口側センサの出力及び出口側
センサの出力、又は出口側と入口側のセンサの出力との
差を設定値と一致させるように上記微調ヒータ及び流量
制御弁を駆動する制御装置を設けたことを特徴とする金
型加熱冷却温度制御装置。 3、請求項1において、入口側センサ及び出口側センサ
の1サイクルの間の出力を記憶し、この出力値を設定値
として、以降のサイクルにおいて、入口側センサの出力
及び出口側センサの出力、又は出口側と入口側のセンサ
の出力との差を上記設定値と一致させるように、上記微
調ヒータ及び流量制御弁を駆動する制御装置を設けたこ
とを特徴とする金型加熱冷却温度制御装置。 4、請求項1、2又は3において、上記開閉弁の動作と
成形機の動作を同期させるための制御装置を設けたこと
を特徴とする金型加熱冷却温度制御装置。
[Claims] 1. A plurality of heat medium tanks for selectively supplying heat medium set at a plurality of temperatures to a molding die, a heat medium temperature adjustment means, a pressure pump, and a heat medium. In a mold heating/cooling temperature control device consisting of a selective supply on/off valve, independent heat medium flow paths are arranged in multiple cavities, and a fine adjustment heater and a temperature sensor are installed on the inlet side of the heat medium flow path, and on the outlet side of the heat medium flow path. A temperature sensor is installed on the side, and a flow control valve is installed on the inlet side or the outlet side, and the difference between the output of the inlet side sensor and the output of the outlet side sensor, or the difference between the output of the outlet side and the inlet side sensor is the same between each cavity. A mold heating/cooling temperature control device comprising a control device for driving the fine adjustment heater and the flow rate control valve. 2. In claim 1, the fine adjustment heater and the flow rate control valve are driven so that the difference between the output of the inlet side sensor and the output of the outlet side sensor, or the output of the outlet side and inlet side sensor, matches a set value. A mold heating/cooling temperature control device comprising a control device. 3. In claim 1, the output of the inlet side sensor and the outlet side sensor during one cycle is stored, and this output value is used as a set value, and in subsequent cycles, the output of the inlet side sensor and the output of the outlet side sensor, Or a mold heating and cooling temperature control device, comprising a control device that drives the fine adjustment heater and the flow rate control valve so that the difference between the outputs of the sensors on the outlet side and the inlet side matches the set value. . 4. The mold heating/cooling temperature control device according to claim 1, 2 or 3, further comprising a control device for synchronizing the operation of the on-off valve and the operation of the molding machine.
JP22232788A 1988-09-07 1988-09-07 Die heating and cooling temperature control device Pending JPH0270406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22232788A JPH0270406A (en) 1988-09-07 1988-09-07 Die heating and cooling temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22232788A JPH0270406A (en) 1988-09-07 1988-09-07 Die heating and cooling temperature control device

Publications (1)

Publication Number Publication Date
JPH0270406A true JPH0270406A (en) 1990-03-09

Family

ID=16780615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22232788A Pending JPH0270406A (en) 1988-09-07 1988-09-07 Die heating and cooling temperature control device

Country Status (1)

Country Link
JP (1) JPH0270406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061955A1 (en) * 2002-01-22 2003-07-31 J.M. Huber Corporation A Corporation Of The State Of New Jersey Modified high-temperature pressing apparatus
US9575306B2 (en) 2013-05-06 2017-02-21 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Stereoscopic microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061955A1 (en) * 2002-01-22 2003-07-31 J.M. Huber Corporation A Corporation Of The State Of New Jersey Modified high-temperature pressing apparatus
US6983684B2 (en) * 2002-01-22 2006-01-10 Huber Engineered Woods Llc Modified high-temperature pressing apparatus
US9575306B2 (en) 2013-05-06 2017-02-21 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Stereoscopic microscope

Similar Documents

Publication Publication Date Title
US20060246166A1 (en) Injection molding system and method for using the same
CN110997274A (en) Method and device for variable mold temperature tempering of injection molding molds
TWI406751B (en) Optical part manufacturing apparatus and manufacturing method thereof
JP2006159643A (en) Heating/cooling system for mold for hot press and heating/cooling method
JPH0270406A (en) Die heating and cooling temperature control device
JPS62208918A (en) Device for adjusting mold temperature
JPH1015944A (en) Apparatus for heating and cooing mold
CN114212979B (en) Glass hot bending die and glass hot bending method
JPH01291906A (en) Mold temperature adjustment device
JPH05200519A (en) Method for controlling temperature of die
JP4474755B2 (en) Optical element manufacturing method
JPS60217114A (en) Mold
JPH07144353A (en) Temperature control structure of mold
JPH04301425A (en) Mold temperature regulator
JP3109224U (en) Heating and cooling system for molds for heat press
JPH0788611A (en) Mold temperature control
JPH0243009A (en) Plastic molding mold
JP2828161B2 (en) Plastic molding equipment
JPH01237070A (en) Temperature control method for casting die
JP4493360B2 (en) Mold structure for injection molding
JP2000225637A (en) Apparatus for adjusting mold temperature for injection molding machine
JP2004249640A (en) Cooling device of mold for high-precision plastic optical component
JPS62173219A (en) Temperature adjusting device for plastic mold
JP4489507B2 (en) Glass forming equipment
JPH01196310A (en) Heat medium flow rate control device for mold temperature controller