JPH0270354A - Method for casting extremely low carbon titanium killed steel - Google Patents

Method for casting extremely low carbon titanium killed steel

Info

Publication number
JPH0270354A
JPH0270354A JP22412488A JP22412488A JPH0270354A JP H0270354 A JPH0270354 A JP H0270354A JP 22412488 A JP22412488 A JP 22412488A JP 22412488 A JP22412488 A JP 22412488A JP H0270354 A JPH0270354 A JP H0270354A
Authority
JP
Japan
Prior art keywords
molten steel
mold
casting
low carbon
extremely low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22412488A
Other languages
Japanese (ja)
Other versions
JP2545588B2 (en
Inventor
Kazu Noguchi
野口 計
Masanori Tawara
正憲 俵
Kazuhiro Sawamura
和廣 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63224124A priority Critical patent/JP2545588B2/en
Publication of JPH0270354A publication Critical patent/JPH0270354A/en
Application granted granted Critical
Publication of JP2545588B2 publication Critical patent/JP2545588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of bulging flaw caused by enclosing mold powder into molten steel by specifying molten steel flowing velocity at meniscus part in a mold. CONSTITUTION:The slower the molten steel flowing velocity of extremely low carbon titanium killed steel containing <=0.01wt.% C and >=0.01wt.% Ti is, the more the number of enclosed flaw caused by insufficient heat supply into the meniscus part is. In case the molten steel flowing velocity is less than 0.15m/sec, the enclosed flaw is drastically increased. Therefore, in the case of casting the extremely low carbon titanium killed steel, casting velocity is set at each cast slab width so that the molten steel flowing velocity at the meniscus part in the mold becomes 0.15 - 0.20m/sec. By this method, the enclosure of the mold powder is prevented and good cast slab surface is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は極低炭素チタンキルド鋼の鋳造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for casting ultra-low carbon titanium killed steel.

従来技術 近年、冷延鋼板、冷延メツキ鋼板における加工性向上の
要求が強まっており、この要求に応えるために極低炭素
チタンキルド綱に対する需要もますます増大している。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for improved workability in cold-rolled steel sheets and cold-rolled galvanized steel sheets, and in order to meet this demand, demand for ultra-low carbon killed titanium steel is also increasing.

冷延鋼板は一部に鋳片を熱間圧延したのち冷間圧延し、
ついで焼鈍する工程を経て製造されるが、焼鈍した鋼板
には***したフクレ疵の発生が見られることが多く、こ
うした欠陥は冷延鋼板製造工程の最終段階で発見される
ため原価上また工程上の被害が大きなものとなっていた
Cold-rolled steel sheets are made by partially hot-rolling cast slabs and then cold-rolling them.
The steel sheet is then manufactured through an annealing process, but the annealed steel sheet often has raised blistering defects, and these defects are discovered at the final stage of the cold rolled steel sheet manufacturing process, resulting in cost and process problems. The damage was severe.

発明が解決しようとする課題 本発明者らは上述のフクレ疵が生ずる原因について検討
を行ったところ、フクレ疵が発生する原因の一つに、主
として鋳型と鋳片間の潤滑を目的として使用されるモー
ルドパウダーが鋳型内の溶鋼流によって溶鋼中に巻込ま
れることによって生ずることが分かった。すなわち第1
図に示すように浸漬ノズルlから鋳型2内の溶鋼中に流
出した溶鋼は、凝固シェル3に向かったのちその一部が
上向きに反転して浸漬ノズルlに向かう流れ(−点鎖線
による矢印方向)を生ずるが、メニスカス部での流れに
よりモールドパウダー下層部の溶融スラグ4が削り取ら
れ、溶鋼中に巻込まれるようになる。巻込まれたスラグ
は製鋼段階においては鋼中に含まれる炭素含有量が低く
、チタン(Ti)が存在することから溶鋼の粘性が増大
するため分離浮上しにく\、そのま\鋼中にとV゛まり
がちとなる。こうした非金属介在物が鋼中に含まれるよ
うになると、冷間圧延において、炭素含有量が低くマト
リックスが軟いとこから軟いマトリックスと硬い非金属
介在物との間で伸びに差を生じ、両者間に空隙を生ずる
ようになる。こうした空隙を有する状態で焼鈍が行われ
ると、焼鈍ガスの雰囲気ガス中から鋼板中に水素が侵入
する。そして冷却時に水素の溶解度が低下することによ
り上記空隙内のH!分圧が上昇し、軟いマトリックスを
膨張させてフクレ疵を現出させるようになる。
Problems to be Solved by the Invention The present inventors investigated the causes of the above-mentioned blistering defects and found that one of the causes of blistering defects is that the mold is mainly used for the purpose of lubrication between the mold and the slab. It has been found that this is caused by the mold powder being drawn into the molten steel by the molten steel flow in the mold. That is, the first
As shown in the figure, the molten steel flowing out from the immersion nozzle l into the molten steel in the mold 2 flows toward the solidified shell 3, and then a part of it reverses upward and flows toward the immersion nozzle l (in the direction of the arrow indicated by the dashed dotted line). ), but the molten slag 4 in the lower layer of the mold powder is scraped off by the flow at the meniscus portion and becomes engulfed in the molten steel. During the steelmaking stage, the slag involved is difficult to separate and float because the carbon content in the steel is low and the presence of titanium (Ti) increases the viscosity of the molten steel. V tends to be too tight. When these non-metallic inclusions are included in steel, during cold rolling, a difference in elongation occurs between the soft matrix and the hard non-metallic inclusions, since the carbon content is low and the matrix is soft. A gap will be created between them. When annealing is performed in a state where such voids are present, hydrogen enters the steel sheet from the annealing gas atmosphere. During cooling, the solubility of hydrogen decreases, causing H! The partial pressure increases, causing the soft matrix to expand and cause blisters to appear.

本発明の目的はモールドパウダーが溶鋼中に巻込まれる
ことによって生ずるフクレ疵の発生を防止しようとする
ものである。
An object of the present invention is to prevent the occurrence of blistering defects caused by mold powder being caught in molten steel.

課題の解決手段 本発明はメニスカス部の流速を制限することによって上
記の目的を達成しようとするものである。
Means for Solving the Problems The present invention attempts to achieve the above object by limiting the flow rate in the meniscus section.

すなわち本発明は、C50,01重量%、Ti≧0.0
1重量%を含有する極低炭素チタンキルド鋼を鋳造する
方法において、鋳型内メニスカス部の溶鋼流速が0.1
5〜0.20s/secとなるように鋳片巾側に鋳造速
度を設定したことを特徴とするものである。
That is, in the present invention, C50.01% by weight, Ti≧0.0
In a method for casting ultra-low carbon titanium killed steel containing 1% by weight, the flow rate of molten steel in the meniscus part of the mold is 0.1% by weight.
It is characterized in that the casting speed is set on the slab width side so that it is 5 to 0.20 s/sec.

作用 本発明者らの研究によれば、極低炭素チタンキルド綱の
鋳型内メニスカス部の溶鋼流速(以下単に溶鋼流速とい
う)とモールドパウダー巻込み量とは第2図に示すよう
な関係にあり、このことからメニスカス部の溶鋼流速が
0.2 m7secを越えるとモールドパウダー巻込み
量が急激に増大し、溶w42ilL速は低い程望ましい
ことが分かったが、溶鋼流速と鋳片表面にスラグの巻込
みによって形成される巻込み疵の数(以下スカム個数と
いう)との関係を調べたところでは、第3図に示すよう
に、溶鋼流速が低い程メニスカス部への熱供給不足によ
りスカム個数が増加し、溶鋼流速が0.15s/sec
を下廻ると急激に増加することがわかった0以上のこと
から極低炭素チタンキルド鋼を鋳造する場合には、モー
ルドパウダーの巻込みを防ぎ、かつ良好な鋳片表面形状
を得るためには溶鋼流速は大き過ぎても小さ過ぎても好
ましくなく、0.15〜0.20s/secの範囲内で
制御する必要があることが判明した。
According to the research conducted by the present inventors, there is a relationship between the flow rate of molten steel at the meniscus in the mold of ultra-low carbon titanium killed steel (hereinafter simply referred to as molten steel flow rate) and the amount of mold powder entrained, as shown in Figure 2. From this, it was found that when the molten steel flow rate at the meniscus exceeds 0.2 m7sec, the amount of mold powder entrained increases rapidly, and the lower the molten steel velocity is, the more desirable it is. An investigation of the relationship between the number of entrainment flaws (hereinafter referred to as the number of scums) formed by molten steel and the number of scums (hereinafter referred to as the number of scums) found that as the molten steel flow rate decreases, the number of scums increases due to insufficient heat supply to the meniscus area, as shown in Figure 3. and the molten steel flow rate is 0.15s/sec
When casting ultra-low carbon titanium killed steel, it is necessary to prevent mold powder from being entrained and to obtain a good slab surface shape. It has been found that it is not preferable that the flow rate is too high or too low, and that it is necessary to control the flow rate within a range of 0.15 to 0.20 s/sec.

本発明者らがまた鋳型内の水モデル実験機を用いて鋳型
的流動の解析を行った結果、第4図に示すように溶鋼流
速と単位時間当たりの鋳造量とははり直線関係にあり、
単位時間当たりの鋳造量が一定の範囲(第4図でいえば
2.0〜2.3t/sinの範囲)となるように鋳片巾
側に鋳片速度を設定すれば溶鋼流速を一定にできること
が分かった。
The present inventors also analyzed mold-like flow using a water model experiment machine in the mold, and found that there is a linear relationship between the molten steel flow rate and the casting amount per unit time, as shown in Figure 4.
By setting the slab speed on the slab width side so that the casting amount per unit time is within a certain range (in the range of 2.0 to 2.3 t/sin in Figure 4), the molten steel flow velocity can be kept constant. I found out that it can be done.

更に本発明者らの研究によれば、ノズルの吐出口角度θ
(第1図参照)は下向きで10〜20’の範囲、ことに
15°でフクレ疵防止に最もよい結果が得られること、
鋳型的溶鋼のノズルの浸漬深さは160 u+以上で望
ましい結果が得られることを見出した。
Furthermore, according to the research of the present inventors, the nozzle outlet angle θ
(See Figure 1) that the best results for preventing blisters can be obtained with a downward angle of 10 to 20', especially 15 degrees;
It has been found that desirable results can be obtained when the immersion depth of the mold-like molten steel nozzle is 160 u+ or more.

実施例1 C50,01重量%、Ti≧o、oi重屋%を含有する
極低炭素チタンキルド鋼を製造する方法において、ノズ
ルの下向き角度を15°にした浸漬ノズルを用い、溶鋼
への浸漬深さを2001にしてメニスカス部での溶鋼流
速が0.15〜0.20s/secの範囲となるように
鋳片中800flに対し、鋳造速度を1.4m/+in
に設定した。なおこのとき実際の溶鋼流速は0.15s
/secであった。
Example 1 In a method for producing ultra-low carbon titanium killed steel containing C50.01% by weight, Ti≧o, oi Juya%, an immersion nozzle with a downward angle of 15° was used to reduce the immersion depth into molten steel. The casting speed was set to 1.4 m/+in for 800 fl in the slab so that the molten steel flow velocity at the meniscus was in the range of 0.15 to 0.20 s/sec.
It was set to At this time, the actual molten steel flow velocity is 0.15 s.
/sec.

得られた鋳片について熱間圧延−冷間圧延−焼鈍処理を
し、鋼板表面のフクレ疵の発生率を調べた。このときの
不良指数は0.4であった。
The obtained slabs were subjected to hot rolling, cold rolling, and annealing, and the incidence of blistering on the surface of the steel plate was investigated. The defect index at this time was 0.4.

実施例2 実施例1において、ノズルの浸漬深さを160 fiに
し、鋳片中10651に対し、鋳造速度を1.2 m/
a+inに設定した。このときの溶鋼流速は0.16s
/secであり、同様にして得られた鋼板表面のフクレ
疵の発生率を調べたところ不良指数は0.6であった。
Example 2 In Example 1, the immersion depth of the nozzle was set to 160 fi, and the casting speed was set to 1.2 m/min for 10651 in the slab.
It was set to a+in. The molten steel flow velocity at this time is 0.16 s
/sec, and when the incidence of blistering on the surface of the steel sheet obtained in the same manner was investigated, the defective index was 0.6.

実施例3 実施例1において、ノズルの浸漬深さを180 fiに
変え、鋳片中1325mに対し、鋳造速度を1.0s/
sinに設定した。このときの溶鋼流速は0.17m/
secであり、同様にして得られた鋼板表面のフクレ疵
の発生率を調べたところ不良指数は0.8であった。
Example 3 In Example 1, the immersion depth of the nozzle was changed to 180 fi, and the casting speed was changed to 1.0 s / 1,325 m in the slab.
It was set to sin. The molten steel flow velocity at this time was 0.17 m/
sec, and when the incidence of blistering on the surface of the steel sheet obtained in the same manner was investigated, the defective index was 0.8.

比較例1 実施例1において、ノズルの浸漬深さを1801にし、
鋳片中800龍に対し、鋳造速度を1.611/l1i
nに設定した。このときの溶鋼流速は0.23m/se
cであった。焼鈍後得られた鋼板表面のフクレ疵の発生
率を調べたところ不良指数は急増し、4.0であった。
Comparative Example 1 In Example 1, the immersion depth of the nozzle was set to 1801,
Casting speed is 1.611/l1i for 800 dragons in slab
It was set to n. The molten steel flow velocity at this time was 0.23 m/sec
It was c. When the incidence of blistering on the surface of the steel sheet obtained after annealing was investigated, the defect index rapidly increased to 4.0.

比較例2 実施例1において、ノズルの浸漬深さを200mにし、
鋳片中10651に対し、鋳造速度を1.5111/+
inに設定した。このときの溶鋼流速は0.26m/s
ecであり、同様にして得られた鋼板表面のフクレ疵の
発生率を調べたところ不良指数は4.3であった。
Comparative Example 2 In Example 1, the immersion depth of the nozzle was set to 200 m,
Casting speed is 1.5111/+ for 10651 in slab
It was set to in. The molten steel flow velocity at this time is 0.26 m/s
ec, and when the incidence of blistering on the surface of a steel plate obtained in the same manner was investigated, the defective index was 4.3.

比較例3 実施例1において、ノズルの浸漬深さを160 mにし
、鋳片中1325fiに対し、鋳造速度を14 m/m
tnに設定した。このときの溶鋼流速は0.30+w/
secであった。得られた鋼板について表面のフクレ疵
の発生率を調べたところ不良指数は4.5であった。
Comparative Example 3 In Example 1, the immersion depth of the nozzle was 160 m, and the casting speed was 14 m/m for 1325 fi in the slab.
It was set to tn. The molten steel flow rate at this time is 0.30+w/
It was sec. When the incidence of blistering on the surface of the obtained steel plate was examined, the defect index was 4.5.

以上の結果を次表に示す。The above results are shown in the table below.

発明の効果 本発明は以上のように構成され、次のような効果を奏す
る。
Effects of the Invention The present invention is configured as described above, and has the following effects.

請求項1の方法によれば、メニスカス部の溶鋼流速が0
.15〜0.20m/secの範囲となるように鋳片巾
別に鋳造速度を設定したことにより鋳片表面性状を損な
うことなくモールドパウダーの巻込みを減少させて、フ
クレ疵の発生率を減少させることができた。
According to the method of claim 1, the molten steel flow velocity in the meniscus portion is 0.
.. By setting the casting speed for each slab width within the range of 15 to 0.20 m/sec, mold powder entrainment is reduced without damaging the slab surface properties, and the incidence of blistering is reduced. I was able to do that.

請求項2の方法によれば、フクレ疵の発生率をより減少
させることができる。
According to the method of claim 2, the incidence of blisters can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連鋳鋳型内の模式断面図、第2図はメニスカス
部の溶鋼流速とモールドパウダー巻込み指数の関係、第
3図は溶鋼流速と鋳片表面スカム指数との関係、第4図
は溶鋼流速と単位時間鋳造量との関係をそれぞれ示すグ
ラフ図である。 1・・浸漬ノズル 4・・溶融スラグ 2・・鋳型
Figure 1 is a schematic cross-sectional view of the inside of the continuous casting mold, Figure 2 is the relationship between the molten steel flow rate at the meniscus and the mold powder entrainment index, Figure 3 is the relationship between the molten steel flow rate and the slab surface scum index, and Figure 4 FIG. 2 is a graph diagram showing the relationship between molten steel flow rate and unit hour casting amount. 1. Immersion nozzle 4. Molten slag 2. Mold

Claims (2)

【特許請求の範囲】[Claims] (1)C≦0.01重量%、Ti≧0.01重量%を含
有する極低炭素チタンキルド鋼を鋳造する方法において
、鋳型内メニスカス部の溶鋼流速が0.15〜0.20
m/secとなるように鋳片巾別に鋳造速度を設定した
ことを特徴とする方法
(1) In a method for casting ultra-low carbon titanium killed steel containing C≦0.01% by weight and Ti≧0.01% by weight, the flow rate of molten steel at the meniscus in the mold is 0.15 to 0.20.
A method characterized in that the casting speed is set for each slab width so that it is m/sec.
(2)鋳型の鋳片プール内に浸漬されるノズルの吐出口
角度は下向きに10〜20°である請求項1記載の方法
(2) The method according to claim 1, wherein the outlet angle of the nozzle immersed in the slab pool of the mold is 10 to 20 degrees downward.
JP63224124A 1988-09-06 1988-09-06 Casting method for ultra low carbon titanium killed steel Expired - Lifetime JP2545588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224124A JP2545588B2 (en) 1988-09-06 1988-09-06 Casting method for ultra low carbon titanium killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224124A JP2545588B2 (en) 1988-09-06 1988-09-06 Casting method for ultra low carbon titanium killed steel

Publications (2)

Publication Number Publication Date
JPH0270354A true JPH0270354A (en) 1990-03-09
JP2545588B2 JP2545588B2 (en) 1996-10-23

Family

ID=16808920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224124A Expired - Lifetime JP2545588B2 (en) 1988-09-06 1988-09-06 Casting method for ultra low carbon titanium killed steel

Country Status (1)

Country Link
JP (1) JP2545588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329596A (en) * 1992-05-27 1993-12-14 Nippon Steel Corp Method for controlling molten steel flow in continuous casting mold
JP2002079355A (en) * 2000-09-08 2002-03-19 Kawasaki Steel Corp Method for continuously casting steel
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417329A (en) * 1977-07-09 1979-02-08 Sumitomo Metal Ind Continuous casting method
JPS55158860A (en) * 1979-05-28 1980-12-10 Nippon Steel Corp Continuous casting method of steel slab

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417329A (en) * 1977-07-09 1979-02-08 Sumitomo Metal Ind Continuous casting method
JPS55158860A (en) * 1979-05-28 1980-12-10 Nippon Steel Corp Continuous casting method of steel slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329596A (en) * 1992-05-27 1993-12-14 Nippon Steel Corp Method for controlling molten steel flow in continuous casting mold
JP2002079355A (en) * 2000-09-08 2002-03-19 Kawasaki Steel Corp Method for continuously casting steel
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings

Also Published As

Publication number Publication date
JP2545588B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
JPWO2018051483A1 (en) Continuous casting method
WO2018173888A1 (en) Method for producing austenite stainless steel slab
JPH0270354A (en) Method for casting extremely low carbon titanium killed steel
JP2010029936A (en) Casting mold for continuous casting, and continuous casting method for steel
JP2001062550A (en) Casting piece cooling method in continuous casting
JP3526705B2 (en) Continuous casting method for high carbon steel
JPH0375256B2 (en)
JP3125664B2 (en) Continuous casting method of ultra low carbon steel slab
JP2000015412A (en) Method for continuously casting steel
JP2961332B2 (en) Manufacturing method of unmaintained continuous cast slab of Ti-containing steel
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3375862B2 (en) Method for producing ultra-low carbon steel without blowholes
JP4932985B2 (en) Steel continuous casting method
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JP4409167B2 (en) Continuous casting method
JP3055462B2 (en) Continuous casting method
JP2000117405A (en) Method for continuously casting billet and apparatus therefor
JP2001179413A (en) Method for continuously casting steel
JP3342774B2 (en) Mold powder for continuous casting
KR840001144B1 (en) Process for continuous casting of a slightly deoxidized steel slab
JP2006136901A (en) Continuous casting method
CN117920958A (en) Control method for bubble slag inclusion defect of casting blank