JPH0269695A - Flow rate adjusting mechanism for failed fuel detecting device of fast neutron reactor - Google Patents

Flow rate adjusting mechanism for failed fuel detecting device of fast neutron reactor

Info

Publication number
JPH0269695A
JPH0269695A JP63220418A JP22041888A JPH0269695A JP H0269695 A JPH0269695 A JP H0269695A JP 63220418 A JP63220418 A JP 63220418A JP 22041888 A JP22041888 A JP 22041888A JP H0269695 A JPH0269695 A JP H0269695A
Authority
JP
Japan
Prior art keywords
cylindrical body
coolant
housing
cylinder
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63220418A
Other languages
Japanese (ja)
Other versions
JPH0782108B2 (en
Inventor
Yoshiyuki Kasahara
芳幸 笠原
Yasuhiro Sato
佐藤 保廣
Masatoshi Soroe
政敏 揃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Mitsubishi Atomic Power Industries Inc
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc, Power Reactor and Nuclear Fuel Development Corp filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP63220418A priority Critical patent/JPH0782108B2/en
Publication of JPH0269695A publication Critical patent/JPH0269695A/en
Publication of JPH0782108B2 publication Critical patent/JPH0782108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent leakage of a coolant to the upper section of a reactor with a simple constitution by constituting a porous throttle valve of a cylindrical body, which incorporates an apparatus for failed fuel detection, forms a coolant path, and moves in the vertical direction, and a housing section on the surface of which the cylindrical body slides. CONSTITUTION:In a failed fuel detecting device 30 of a cylindrical housing 3 which is provided through the reactor-top mechanism 2 of a reactor vessel and vertically extended downward toward a reactor core, a orifice type porous port is formed of the opening 40 of the projecting section 39 of a vertically movable cylindrical body 5, which incorporates apparatuses for failed fuel, forms a coolant path, moves in the vertical direction, and has a multi-pipe structure, and the inner surface of the cylindrical body 5 on which the outer surface of the projecting section 39 of the housing 3 slides and the cylindrical body 5 is provided so that a coolant cannot leak to the mechanism 2. Moreover, the flow rate of the coolant is controlled with high accuracy corresponding to the vertical movement of the cylindrical body 5. In addition, an overflow hole 55 and O-ring 43 at the upper section of the cylindrical body 5 also prevent the leakage to the mechanism 2.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、原子力発電プラントにおける液体金属冷却高
速炉で用いられる破損燃料検出装置に関し、特に、装置
内を流れる冷却材の流量を調節するための流量調節機構
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a damaged fuel detection device used in a liquid metal cooled fast reactor in a nuclear power plant, and particularly to a device for detecting damaged fuel used in a liquid metal cooled fast reactor in a nuclear power plant, and in particular for adjusting the flow rate of coolant flowing through the device. The present invention relates to a flow rate adjustment mechanism.

[従来の技術] 燃料集合体の破損を検出するために用いられる高速炉用
の破損燃料検出装置としては、例えば第6図に示すよう
な型式のものが提案されている。
[Prior Art] As a damaged fuel detection device for a fast reactor used to detect damage to a fuel assembly, a type as shown in FIG. 6, for example, has been proposed.

図示の破損燃料検出装置1は、原子炉容器の炉上部機構
2から下方に延びる円筒形のハウジング3を備え、この
ハウジング3内に破損燃料検出機構4が配備されている
。破損燃料検出機構4は、内部に種々の破損燃料検出機
器類を有し且つ冷却材Fの流通路を構成する筒体5.6
を備えており、上下に分割されている。下部破損燃料検
出機構(以下、「下部検出機構」と称する)7の筒体5
内には腐食生成物吸着材8及び破損燃料物質捕獲用粒子
トラップ9が取り付けられている。また、上部破損燃料
検出機構(以下、「上部検出機構」と称する)10の筒
体6は三重管構造となっており、最も内側の簡11内に
流旦計12、遮蔽材13及び遅発中性子検出器14が取
り付けられている。ハウジング3の下端部には燃料集合
体15のハンドリングヘッド16の頂部開口17に嵌合
するインターフェイス機1118が設けられており、燃
料集合体15内からの冷却材Fが、このインターフェイ
ス機構18を通って破損燃料検出機構4の筒体5.6内
に導かれるようになっている。
The illustrated damaged fuel detection device 1 includes a cylindrical housing 3 extending downward from an upper reactor mechanism 2 of a nuclear reactor vessel, and a damaged fuel detection mechanism 4 is disposed within this housing 3. The damaged fuel detection mechanism 4 includes a cylindrical body 5.6 which has various types of damaged fuel detection equipment inside and constitutes a flow path for the coolant F.
It is divided into upper and lower parts. Cylindrical body 5 of the lower damaged fuel detection mechanism (hereinafter referred to as "lower detection mechanism") 7
A corrosion product adsorbent 8 and a particle trap 9 for capturing damaged fuel materials are installed inside. Moreover, the cylinder body 6 of the upper part damaged fuel detection mechanism (hereinafter referred to as "upper part detection mechanism") 10 has a triple-pipe structure, and inside the innermost pipe 11 there is a flow meter 12, a shielding material 13, and a delayed firing A neutron detector 14 is attached. An interface mechanism 1118 that fits into the top opening 17 of the handling head 16 of the fuel assembly 15 is provided at the lower end of the housing 3, and the coolant F from within the fuel assembly 15 passes through this interface mechanism 1118. The damaged fuel is guided into the cylindrical body 5.6 of the damaged fuel detection mechanism 4.

このような破損燃料検出装置1においては、炉出力を一
定とした状態で、照射リグ(一種の燃料集合体)に過負
荷状態を与えて破損燃料照射挙動測定を模擬的に行うと
共に、遅発中性子検出器計数率の到達時間依存性評価を
得ることを目的として、破損燃料検出機構4を流れる冷
却材Fの流量を調節するための流量調節機構が設けられ
ている。
In such a damaged fuel detection device 1, while the reactor output is kept constant, the irradiation rig (a type of fuel assembly) is overloaded to simulate the damaged fuel irradiation behavior measurement. A flow rate adjustment mechanism is provided for adjusting the flow rate of the coolant F flowing through the damaged fuel detection mechanism 4 for the purpose of obtaining an arrival time dependence evaluation of the neutron detector count rate.

図示の破損燃料検出装置1における流旦調節ll!横は
上部検出機構10に組み込まれており、中間筒19の閉
鎖端板の中央開口20と、内筒11の閉鎖端板の下面に
形成された弁体21とから成る流量調節部、及び、該弁
体21を上下動させるための駆動部から構成されている
。内筒11の中間部は薄肉の金属ベローズ22により構
成されているので、弁体21は上下動自在となっている
。駆動部は蓋板23に固定された駆動モータ24を備え
、遠隔操作により駆動軸25を介して弁体21を上下動
させることができる。
Flow rate adjustment in the illustrated damaged fuel detection device 1! The side part is incorporated in the upper detection mechanism 10, and includes a flow rate adjustment section consisting of a central opening 20 of the closed end plate of the intermediate cylinder 19 and a valve body 21 formed on the lower surface of the closed end plate of the inner cylinder 11; It is composed of a drive section for moving the valve body 21 up and down. Since the middle portion of the inner cylinder 11 is constituted by a thin metal bellows 22, the valve body 21 is vertically movable. The drive unit includes a drive motor 24 fixed to the cover plate 23, and can move the valve body 21 up and down via a drive shaft 25 by remote control.

これによって、中央開口20への弁体21の挿入深度を
変え、流量調節を行うのである。
This changes the insertion depth of the valve body 21 into the central opening 20 and adjusts the flow rate.

[発明が解決しようとする課題] 上述したような従来の流量調節機構では、1つの開口に
弁体を挿入し、その挿入深度で流量を変える方式を採用
しているが、この方式は冷却材流入側と冷却材流出側と
の圧力差による影響等を受けやすいので、正確な流量制
御は困難であるという問題がある。
[Problems to be Solved by the Invention] The conventional flow rate adjustment mechanism described above employs a method in which a valve body is inserted into one opening and the flow rate is varied depending on the insertion depth. There is a problem in that it is difficult to accurately control the flow rate because it is easily affected by the pressure difference between the inflow side and the coolant outflow side.

また、−次冷却材バウンダリーを構成する内筒には薄肉
の金属ベローズが介在されているので、繰返し作動によ
って該金属ベローズに金属疲労やすI・リウム腐食(酸
化又は浸炭等)が発生する恐れがあり、また、高温構造
強度等にも問題がある。
In addition, since a thin metal bellows is interposed in the inner cylinder that constitutes the secondary coolant boundary, there is a risk that metal fatigue or I/Rium corrosion (oxidation or carburization, etc.) will occur in the metal bellows due to repeated operation. However, there are also problems with high-temperature structural strength.

このように、従来の流量調節機構には種々の解決すべき
課題がある。
As described above, conventional flow rate adjustment mechanisms have various problems to be solved.

[課題を解決するための手段コ そこで、上記課題を解決すべく、本発明による流旦調節
fi楕は、原子炉容器の炉上部機構に貫設され炉心に向
かって垂直下方に延びる円筒形のハウジングと、該ハウ
ジング内に上下動可能に配置され、破損燃料検出機器類
を内蔵すると共に冷却材の流通路を形成している多重管
構造の筒体とを具備する高速炉用破損燃料検出装置にお
いて、前記筒体を前記ハウジングに対して所定範囲内で
上下動させるための駆動8!l構と、前記筒体内を流通
する冷却材を該筒体から排出するために、該筒体の外面
の所定高さに設けられた複数の開口と、前記筒体の外面
と摺動可能に接触し、且つ該筒体を下限位置に配置した
場合には前記開口を開放し、上限位置に配置した場合に
は前記開口を閉じるようになっている、前記ハウジング
の内面に形成された摺動面と、前記ハウジング及び前記
筒体の間を通る冷却材の外部(炉上部)への漏洩を防止
する冷却材漏洩防止手段とを具備することを特徴として
いる。
[Means for Solving the Problems] Therefore, in order to solve the above problems, the flow control device according to the present invention has a cylindrical shape that is installed through the upper reactor mechanism of the reactor vessel and extends vertically downward toward the reactor core. A damaged fuel detection device for a fast reactor, comprising a housing, and a cylindrical body having a multi-tube structure, which is arranged to be movable up and down in the housing, houses damaged fuel detection equipment, and forms a flow path for coolant. In the drive 8!, the cylindrical body is moved up and down within a predetermined range with respect to the housing. l structure, a plurality of openings provided at a predetermined height on the outer surface of the cylindrical body in order to discharge the coolant flowing in the cylindrical body from the cylindrical body, and a plurality of openings slidable on the outer surface of the cylindrical body. a sliding member formed on the inner surface of the housing that contacts and opens the opening when the cylinder is placed at the lower limit position and closes the opening when the cylinder is placed at the upper limit position; It is characterized by comprising a surface and a coolant leak prevention means for preventing leakage of the coolant passing between the housing and the cylinder to the outside (upper part of the furnace).

[作用] 上述したような構成においては、破損燃料検出機構の筒
体外面の開口とハウジングの摺動面とがすべり弁を構成
し、筒体自体を上下動させることにより開口の開度を調
節することができるようになっている。
[Operation] In the configuration described above, the opening on the outer surface of the cylinder of the damaged fuel detection mechanism and the sliding surface of the housing constitute a slide valve, and the degree of opening of the opening is adjusted by moving the cylinder itself up and down. It is now possible to do so.

[実施例] 以下、図面と共に本発明の好適な実施例について詳細に
説明するが、図中、同−又は相当部分は同一符号を用い
ることとする。
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference numerals.

第1図は本発明が適用された破損燃料検出装置30を高
速炉の原子炉容器に取り付けた状態を示す断面図である
。この破損燃料検出袋W30は、先に説明した従来構成
と同様に、原子炉容器の炉上部機構23貫通して取り付
けられ、炉心に向かって垂直下方に延びている。破損燃
料検出袋T130のハウジング3は細長い円筒形状を呈
し、その内部に、下部破損燃料検出機yI(下部検出8
!構)7と上部破損燃料検出機構(上部検出機構)31
とが同軸に配置されている。ハウジング3の下部には、
燃料集合体15のハンドリングヘッド16に連結される
インターフェイス8!横18が設けられている。下部検
出機構7は、円筒形の筒体5と、その内部に取り付けら
れた腐食生成物吸着材8及び破損燃料物質捕獲用粒子ト
ラップ9とから構成されている。
FIG. 1 is a sectional view showing a state in which a damaged fuel detection device 30 to which the present invention is applied is attached to a reactor vessel of a fast reactor. This damaged fuel detection bag W30 is attached to penetrate the upper reactor mechanism 23 of the reactor vessel, and extends vertically downward toward the reactor core, similarly to the conventional configuration described above. The housing 3 of the broken fuel detection bag T130 has an elongated cylindrical shape, and a lower broken fuel detector yI (lower detection 8
! structure) 7 and upper damaged fuel detection mechanism (upper detection mechanism) 31
are arranged coaxially. At the bottom of housing 3,
An interface 8 connected to the handling head 16 of the fuel assembly 15! 18 sides are provided. The lower detection mechanism 7 is composed of a cylindrical body 5, a corrosion product adsorbent 8 and a particle trap 9 for capturing damaged fuel substances attached to the inside thereof.

上部検出1楕31の筒体32は、内筒33、中間筒34
及び外筒35の三重管構造となっている。内筒33は一
次冷却材バウンダリーを構成しており、その内部には下
方から、流量計12、遮蔽材13、遅発中性子検出器1
4が配備されている。上部検出ti横31の下端には、
下部検出機構7の頂部開口36と嵌合するインターフェ
イスv1楕37が設けられている。外筒35と中間筒3
4とはその下部において一体化されており、内筒33と
外筒35とは上部で一体化されている。また、中間筒3
4の上端から僅かな間隔を置いて、内筒33と外筒35
との間に環状の仕切り板38が一体的に設けられている
The cylinder body 32 of the upper detection 1 ellipse 31 includes an inner cylinder 33 and an intermediate cylinder 34.
It has a triple tube structure including an outer cylinder 35 and an outer cylinder 35. The inner cylinder 33 constitutes a primary coolant boundary, and inside it, from below, a flow meter 12, a shielding material 13, and a delayed neutron detector 1 are installed.
4 are deployed. At the lower end of the upper detection ti side 31,
An interface v1 ellipse 37 is provided which fits into the top opening 36 of the lower detection mechanism 7. Outer cylinder 35 and intermediate cylinder 3
4 is integrated at its lower part, and the inner cylinder 33 and outer cylinder 35 are integrated at their upper part. Also, the intermediate cylinder 3
An inner cylinder 33 and an outer cylinder 35 are placed at a slight distance from the upper end of 4.
An annular partition plate 38 is integrally provided between the two.

第1図のA部の拡大図である第2図に明示するように、
外筒35の下部には放射方向外方に突出する***部(「
下部***部」とも称する)39が全周に亘り形成され、
該***部39の外面に、外筒35と中間筒34との間の
環状空間と連通ずる複数の開口(本実施例では3つ)4
0が周方向等間隔に形成されている。これによって、燃
料集合体15内からインターフェイス81楕18、下部
検出機構7を経て送られてくる冷却材Fは、上部検出機
構31のインターフェイス機構37を通って内部に流入
し、内筒33と中間筒34との間を上昇して仕切り板3
8の下面にて流れの向きを変え、中間筒34と外筒35
との間を下降し、***部39の開口40から流出するこ
ととなる。
As clearly shown in Figure 2, which is an enlarged view of part A in Figure 1,
The lower part of the outer cylinder 35 has a raised part ("
39 (also referred to as "lower raised part") is formed over the entire circumference,
A plurality of openings (three in this embodiment) 4 are provided on the outer surface of the raised portion 39 and communicate with the annular space between the outer cylinder 35 and the intermediate cylinder 34.
0 are formed at equal intervals in the circumferential direction. As a result, the coolant F sent from inside the fuel assembly 15 via the interface 81 ellipse 18 and the lower detection mechanism 7 flows into the interior through the interface mechanism 37 of the upper detection mechanism 31, and flows into the inner cylinder 33 and the intermediate The partition plate 3 rises between the tube 34 and the partition plate 3.
The direction of the flow is changed at the lower surface of 8, and the intermediate cylinder 34 and the outer cylinder 35
and flows out through the opening 40 of the raised portion 39.

ハウジング3の上半分、より詳細には下部検出機構31
と対向する位置の部分は二重構造となっており、下部検
出機構31の筒体32の下部***部39が、ハウジング
3の内壁41の内面に接して上下に摺動できるようにな
っている。また、筒体32を安定した状態で上下動させ
るために、その上部に下部***部39と同径の上部***
部42が形成されている。
The upper half of the housing 3, more specifically the lower detection mechanism 31
The portion facing the lower detecting mechanism 31 has a double structure so that the lower protruding portion 39 of the cylindrical body 32 of the lower detecting mechanism 31 can slide up and down in contact with the inner surface of the inner wall 41 of the housing 3. . Further, in order to move the cylindrical body 32 up and down in a stable state, an upper raised part 42 having the same diameter as the lower raised part 39 is formed on the upper part thereof.

この上部***部42には、ハウジング3と上部検出機構
31との間を上昇する冷却材の漏洩を防止するために、
ラビリンスシール又はメタル0リング43が設けられて
いる。ハウジング3の内壁41の下部は薄肉にされてい
る。この薄肉部分44と筒体32の下部***1部39と
の位置関係は、第2図及び第3図から理解されるように
、下部検出機構31のインターフェイス機構37を下部
検出機構7に嵌合すべく最も下げた場合には、開口40
が薄肉部分44に対向して開放され、下部検出機構31
を上方に摺動させた場合には、開口40がハウジング3
の内壁41に形成された摺動面45により閉じられるよ
う、定められている。このように、開口40とハウジン
グ3の摺動面45とで流Ji調節機構の流量調節部が構
成される。
This upper raised portion 42 includes a
A labyrinth seal or metal O-ring 43 is provided. The lower part of the inner wall 41 of the housing 3 is made thin. As can be understood from FIGS. 2 and 3, the positional relationship between the thin portion 44 and the lower protrusion 1 39 of the cylinder body 32 is such that the interface mechanism 37 of the lower detection mechanism 31 is fitted into the lower detection mechanism 7. When lowered to the lowest possible position, the opening 40
is opened facing the thin wall portion 44, and the lower detection mechanism 31
When the housing 3 is slid upward, the opening 40
It is determined to be closed by a sliding surface 45 formed on an inner wall 41 of. In this way, the opening 40 and the sliding surface 45 of the housing 3 constitute a flow rate adjusting section of the flow Ji adjusting mechanism.

また、下部検出機構31の上部とハウジング3との間に
は、いわゆるポールナツトスクリュ一方式の駆動機構が
設けられている。即ち、下部検出機構31の筒体32の
上端には、垂直上方に延びる円柱形の延長部46が同軸
に設けられている。この延長部46の上部外面にはねじ
が切られており、該ねじ部と螺合する回転体47が、ハ
ウジング3の上部フランジ4日に固定された支持ブロッ
ク49により、回転可能に支承されている0回転体47
の外面には歯車50が形成され、この歯車50は支持ブ
ロック49に据え付けられた駆動モータ51の平歯車5
2と噛合している。
Moreover, a so-called pole nut screw one-type drive mechanism is provided between the upper part of the lower detection mechanism 31 and the housing 3. That is, at the upper end of the cylindrical body 32 of the lower detection mechanism 31, a cylindrical extension part 46 extending vertically upward is coaxially provided. The upper outer surface of this extension 46 is threaded, and a rotating body 47 that is threadedly engaged with the threaded portion is rotatably supported by a support block 49 fixed to the upper flange 4 of the housing 3. Zero rotating body 47
A gear 50 is formed on the outer surface of the support block 49, and this gear 50 is a spur gear 5 of a drive motor 51 mounted on the support block 49.
It meshes with 2.

このような構成において、駆動モータ51を遠隔操作す
ると、駆動モータ51により回転体47が回転され、こ
れと螺合している筒体32の延長部46がその軸線に゛
沿って上方若しくは下方に移動する。この結果、ハウジ
ング3の摺動面45に対する筒体の開口40の位置が調
節され、開口40の開度が調節される。即ち、筒体32
を最も下げた状態では、第2図に示す如く開口40は完
全に開放され、上部検出機構31内を流通する冷却材F
は該開口40を通って流出する。また、筒体32を上方
に移動させると、開口40はハウジング3の摺動面45
により徐々に覆われて開度が小さくなり、上部検出機f
i31内の流量が減少する。そして、上限位置まで上げ
た場合には、第3図に示すように開口40はハウジング
3の摺動面45により閉じられ、上部検出機構31内で
の冷却材Fの流通が阻止される。
In such a configuration, when the drive motor 51 is remotely operated, the rotary body 47 is rotated by the drive motor 51, and the extension part 46 of the cylindrical body 32 that is threaded therewith is moved upward or downward along its axis. Moving. As a result, the position of the opening 40 of the cylinder relative to the sliding surface 45 of the housing 3 is adjusted, and the degree of opening of the opening 40 is adjusted. That is, the cylindrical body 32
In the lowest position, the opening 40 is completely opened as shown in FIG. 2, and the coolant F flowing through the upper detection mechanism 31 is
flows out through the opening 40. Furthermore, when the cylinder body 32 is moved upward, the opening 40 opens onto the sliding surface 45 of the housing 3.
The upper detector f is gradually covered and the opening becomes smaller.
The flow rate in i31 decreases. When the upper limit position is reached, the opening 40 is closed by the sliding surface 45 of the housing 3, as shown in FIG. 3, and the coolant F is prevented from flowing within the upper detection mechanism 31.

上部***部42に設けられたラビリンスシール若しくは
0リング43は、ハウジング3と上部検出機[31との
間を上昇する冷却材の漏洩を防止するものであるが、漏
洩防止性能を更に向上させるために、第4.5図に示す
ように、ハウジング3に、筒体32の下部***部39よ
りも上方であって炉上部Ia横2の上面よりも下方の適
宜位置に、複数のオーバーフロー孔55を設けると好適
である。オーバーフロー孔55の位置は、流量調節機構
の圧力損失を踏まえ、摩擦損失、曲がり損失、拡流損失
等の形状損失を考慮して決定しなければならない、この
オーバーフロー孔55を設けることによって、開口40
からハウジング3と筒体32の間を通って上昇する冷却
材fは、上部のラビリンスシール又は○リング43に至
る前に炉内に戻される。
The labyrinth seal or O-ring 43 provided on the upper raised portion 42 prevents leakage of the coolant rising between the housing 3 and the upper detector [31], but in order to further improve the leakage prevention performance. As shown in FIG. 4.5, a plurality of overflow holes 55 are provided in the housing 3 at appropriate positions above the lower raised portion 39 of the cylindrical body 32 and below the upper surface of the lateral 2 of the upper furnace Ia. It is preferable to provide the following. The position of the overflow hole 55 must be determined in consideration of the pressure loss of the flow rate adjustment mechanism and shape losses such as friction loss, bending loss, and flow expansion loss.By providing this overflow hole 55, the opening 40
The coolant f rising through the space between the housing 3 and the cylindrical body 32 is returned to the furnace before reaching the upper labyrinth seal or circle ring 43.

また、ハウジング3と筒体32の***部39との摺動部
は高温融着又は摩耗劣化を起こす恐れがあるので、第5
図に明示する如く、***部39の外面に、冷却材の微細
な漏洩を許容する垂直方向に延びる71956を複数本
、周方向適宜間隔で形成しておくと良い、このような溝
56を形成することにより上方に流れる冷却材fも増加
することとなるが、前記オーバーフロー孔55をハウジ
ング3に設けておくことで、外部への冷却材漏洩は防止
することができる。
Furthermore, since the sliding portion between the housing 3 and the raised portion 39 of the cylindrical body 32 may cause high-temperature fusion or abrasion deterioration, the fifth
As clearly shown in the figure, it is preferable to form a plurality of vertically extending grooves 71956 at appropriate intervals in the circumferential direction on the outer surface of the raised portion 39 to allow minute leakage of the coolant. This increases the amount of coolant f flowing upward, but by providing the overflow hole 55 in the housing 3, leakage of the coolant to the outside can be prevented.

[発明の効果コ 以上のように、本発明による流量調節8!構はオリフィ
ス形の多孔式絞り弁を構成しているので、安定した高精
度の流量調節が可能となり、製作も容易である。
[Effects of the Invention] As described above, the flow rate adjustment according to the present invention 8! Since the structure is an orifice-type multi-hole throttle valve, stable and highly accurate flow rate adjustment is possible, and manufacturing is easy.

また、本発明による流量調節機構には金属ベローズが用
いられていないので、構造健全性及び安全性の面で極め
て優れており、また製作も容易で、コストの低減化を図
ることができる。
Further, since the flow rate regulating mechanism according to the present invention does not use metal bellows, it is extremely superior in terms of structural soundness and safety, and is easy to manufacture, allowing cost reduction.

更に、冷却材漏洩防止手段として、ラビリンスシールや
0リングの他にオーバーフロー孔をハウジングに設ける
ことで、冷却材が外部に漏れるのを完全に防止できる。
Furthermore, by providing an overflow hole in the housing in addition to a labyrinth seal and an O-ring as a coolant leakage prevention means, leakage of coolant to the outside can be completely prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流量調節機構を備えている高速炉用破
損燃料検出装置を示す縦断面図、第2図及び第3図は第
1図のA部拡大図であり、第2図は流量調節機構の開口
が開いている状態、第3図は開口が閉じている状態を示
す図、第4図はオーバーフロー孔が設けられた破損燃料
検出装置を示す拡大縦断面部分図、第5図は第4図のB
−B線に沿っての断面図、第6図は従来の破損燃料検出
装置を示す縦断面図である0図中、 1.30・・・破損燃料検出装置 2・・・炉上部Rm    3・・・ハウジング5.6
.32・・・筒体 7・・・下部検出機構(下部破損燃料検出R楕)10.
31・・・上部検出機構(上部破損燃料検出機構)39
・・・***部     40・・・開口41・・・内壁
      43・・・0リング45・・・摺動面  
   51・・・駆動モータ55・・・オーバーフロー
孔 56・・・渭
FIG. 1 is a longitudinal sectional view showing a damaged fuel detection device for a fast reactor equipped with the flow rate adjustment mechanism of the present invention, FIGS. 2 and 3 are enlarged views of section A in FIG. 1, and FIG. FIG. 3 is a diagram showing a state in which the opening of the flow rate adjustment mechanism is open, FIG. 3 is a diagram showing a state in which the opening is closed, FIG. is B in Figure 4.
- A sectional view taken along line B, and FIG. 6 is a longitudinal sectional view showing a conventional damaged fuel detection device.・Housing 5.6
.. 32...Cylinder 7...Lower detection mechanism (lower damaged fuel detection R oval)10.
31... Upper detection mechanism (upper damaged fuel detection mechanism) 39
... Raised portion 40 ... Opening 41 ... Inner wall 43 ... O-ring 45 ... Sliding surface
51... Drive motor 55... Overflow hole 56... Wei

Claims (1)

【特許請求の範囲】 原子炉容器の炉上部機構に貫設され炉心に向かって垂直
下方に延びる円筒形のハウジングと、該ハウジング内に
上下動可能に配置され、破損燃料検出機器類を内蔵する
と共に冷却材の流通路を形成している多重管構造の筒体
とを具備する高速炉用破損燃料検出装置において、 前記筒体を前記ハウジングに対して所定範囲内で上下動
させるための駆動機構と、 前記筒体内を流通する冷却材を該筒体から排出するため
に、該筒体の外面の所定高さに設けられた複数の開口と
、 前記筒体の外面と摺動可能に接触し、且つ該筒体を下限
位置に配置した場合には前記開口を開放し、上限位置に
配置した場合には前記開口を閉じるようになっている、
前記ハウジングの内面に形成された摺動面と、 前記ハウジング及び前記筒体の間を通る冷却材の外部へ
の漏洩を防止する冷却材漏洩防止手段と、を具備してい
る高速炉用破損燃料検出装置の流量調節機構。
[Scope of Claims] A cylindrical housing that penetrates the upper reactor mechanism of the reactor vessel and extends vertically downward toward the reactor core, and is disposed within the housing so as to be movable up and down, and includes built-in equipment for detecting damaged fuel. A damaged fuel detection device for a fast reactor, comprising: a cylindrical body having a multi-tubular structure and a cylindrical body forming a coolant flow path; and a plurality of openings provided at a predetermined height on the outer surface of the cylinder for discharging the coolant flowing within the cylinder from the cylinder, and slidably contacting the outer surface of the cylinder. , and when the cylinder body is placed at the lower limit position, the opening is opened, and when the cylinder body is placed at the upper limit position, the opening is closed.
A damaged fuel for a fast reactor, comprising: a sliding surface formed on an inner surface of the housing; and a coolant leak prevention means for preventing coolant from leaking to the outside between the housing and the cylinder. Flow rate adjustment mechanism of the detection device.
JP63220418A 1988-09-05 1988-09-05 Flow rate adjustment mechanism for damaged fuel detector for fast reactor Expired - Fee Related JPH0782108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220418A JPH0782108B2 (en) 1988-09-05 1988-09-05 Flow rate adjustment mechanism for damaged fuel detector for fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220418A JPH0782108B2 (en) 1988-09-05 1988-09-05 Flow rate adjustment mechanism for damaged fuel detector for fast reactor

Publications (2)

Publication Number Publication Date
JPH0269695A true JPH0269695A (en) 1990-03-08
JPH0782108B2 JPH0782108B2 (en) 1995-09-06

Family

ID=16750797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220418A Expired - Fee Related JPH0782108B2 (en) 1988-09-05 1988-09-05 Flow rate adjustment mechanism for damaged fuel detector for fast reactor

Country Status (1)

Country Link
JP (1) JPH0782108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456291B2 (en) 2013-12-20 2019-10-29 The Procter & Gamble Company Method of profile heatsealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456291B2 (en) 2013-12-20 2019-10-29 The Procter & Gamble Company Method of profile heatsealing

Also Published As

Publication number Publication date
JPH0782108B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US4070239A (en) Ball check valve
US7121296B2 (en) Variable orifice valve for air stream containing particulate coal
JPH0310894B2 (en)
KR102067975B1 (en) Valve system
CN210318539U (en) Straight stroke opening and closing butterfly valve
US4082607A (en) Fuel subassembly leak test chamber for a nuclear reactor
JPH0269695A (en) Flow rate adjusting mechanism for failed fuel detecting device of fast neutron reactor
JPS62501657A (en) two-way flow control valve
CN110657268A (en) Control valve
CN203757116U (en) Proportional valve
CN207906557U (en) Using the high temperature No leakage diaphragm valve of movable loop structure
US3593575A (en) Combination flow meter and control valve
US4313794A (en) Self-actuating and locking control for nuclear reactor
CN204854967U (en) A infrared temperature measurement device for high temperature alloy temperature measurement
CN109139931B (en) Gate valve with steady voltage structure
CN111795816A (en) Flow characteristic measuring device and method for control valve sleeve
KR102638875B1 (en) Control valve flow rate measuring device and measuring method
CN206072485U (en) A kind of magnetic induction switch tap
JP4405042B2 (en) Governor equipment
JP2001027344A (en) Pressure regulating valve
CN219935064U (en) Water level monitoring device
JPS6113827Y2 (en)
US5112567A (en) Device for shutting off a vertical conduit for supporting and guiding an element of elongate shape
JPS585702Y2 (en) Float type surface water intake device
GB1577167A (en) Hydropneumatic accumulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees