JPH0269594A - Method for forming heavy hydrocarbon into more volatile component - Google Patents

Method for forming heavy hydrocarbon into more volatile component

Info

Publication number
JPH0269594A
JPH0269594A JP22079688A JP22079688A JPH0269594A JP H0269594 A JPH0269594 A JP H0269594A JP 22079688 A JP22079688 A JP 22079688A JP 22079688 A JP22079688 A JP 22079688A JP H0269594 A JPH0269594 A JP H0269594A
Authority
JP
Japan
Prior art keywords
oil
hydrogenation
treatment
subjected
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22079688A
Other languages
Japanese (ja)
Other versions
JPH0587111B2 (en
Inventor
Toshio Sato
利夫 佐藤
Akio Nishijima
西嶋 昭生
Yuji Yoshimura
雄二 葭村
Hiromichi Shimada
島田 広道
Nobuyuki Matsubayashi
信行 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22079688A priority Critical patent/JPH0269594A/en
Publication of JPH0269594A publication Critical patent/JPH0269594A/en
Publication of JPH0587111B2 publication Critical patent/JPH0587111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To efficiently produce light hydrocarbons having high added value such as a hydrocarbon with an hydrogenated aromatic ring and naphtha by hydrogenating heavy hydrocarbons subjected to dehetero compound treatment in advance. CONSTITUTION:A heavy oil containing many aromatic rings produced from coal, oil shale, oil sand, etc., is subjected to acid- and base-washing to remove hetero compounds and subsequently to hydrogenation treatment using a catalyst composed of Ni and Mo or Co and Mo supported on an alumina carrier at 350-400 deg.C under 15-20MPa hydrogen for 1-2hr. The resultant treated oil is then subjected to hydrogenation decomposition in the presence of a solid acid catalyst supporting a hydrogenation active metal at 300-440 deg.C under 3-20MPa for 20-240min and formed into more volatile components.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1石炭液化油などの重質炭化水素を原料として
水素化処理を行ない、より軽質なナフサなど軽質留分を
効率よく得る方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for efficiently obtaining lighter fractions such as naphtha by hydrotreating heavy hydrocarbons such as coal liquefied oil as a raw material. It is.

[従来技術及びその問題点〕 近年、エネルギー問題、特に化石燃料の枯渇化にともな
って重中質油などの炭化水素を原料とする水素化精製反
応に関する研究が精力的に行なわれている。特に、石炭
、オイルシェール、オイルサンドなどから得られる芳香
族環を多く含有する、重質油を効率よく軽質化すること
については、新燃料の用途拡大という見地からも、新し
い技術開発が強く望まれている。
[Prior Art and its Problems] In recent years, with energy issues, especially with the depletion of fossil fuels, research has been actively conducted on hydrorefining reactions using hydrocarbons such as heavy and medium oil as raw materials. In particular, there is a strong need for the development of new technologies to efficiently lighten heavy oil, which contains many aromatic rings obtained from coal, oil shale, oil sands, etc., from the perspective of expanding the use of new fuels. It is rare.

このような軽質化技術としては、従来、水素化分解や、
接触分解(F(:C)が知られているが、芳香族留分が
多い重質炭化水素の軽質化反応は困難であることが知ら
れている。
Conventionally, such lightening technologies include hydrocracking,
Although catalytic cracking (F(:C)) is known, it is known that it is difficult to lighten heavy hydrocarbons containing a large amount of aromatic fraction.

石炭液化プロセスなどで得られる芳香族成分が多い軽油
及び灯油留分は、セタン価あるいは煙点が低いため、そ
の用途開発にあたっては、芳香環の水素化を行なうこと
、あるいはこれを軽質化し、ガソリン留分を得ることが
好ましいと考えられる。
Gas oil and kerosene fractions, which are rich in aromatic components and are obtained through coal liquefaction processes, have low cetane numbers or smoke points, so when developing their uses, it is necessary to hydrogenate the aromatic rings or to lighten them to make gasoline. It is considered preferable to obtain a fraction.

これらの留分の改質、精製反応を行い、芳香環の水素化
反応を行なったり、芳香環の開裂を伴う分解反応を行い
、ガソリンなどの軽質留分を得るためには水素化処理反
応を用いることが必要である。
These fractions undergo reforming and purification reactions, hydrogenation reactions of aromatic rings, cracking reactions accompanied by cleavage of aromatic rings, and hydrogen treatment reactions to obtain light fractions such as gasoline. It is necessary to use

このためにアルミナ、ゼオライトなど酸性を有する固体
酸触媒の使用が有効であると考えられている。しかしな
がら、固体酸触媒をこれら留分の改質反応に直接利用し
た場合、これらの留分は多環芳香族および窒素含有化合
物に富むため、触媒反応が阻害されること、さらには、
触媒上への炭素質が急激に析出し、触媒活性が急速に低
下することが明らかにされている。そこで、水素化活性
の高い触媒を用い、芳香環の水素化および脱窒素等の水
素化精製反応を行ったり、さらには分解活性の高いゼオ
ライト系触媒を用いて水素化分解反応を行い、芳香環を
開裂させ、軽質化を行う2段水素化処理反応を用いるこ
とが有効と考えられる。
For this purpose, it is considered effective to use a solid acid catalyst having acidity such as alumina or zeolite. However, when a solid acid catalyst is directly used for the reforming reaction of these fractions, the catalytic reaction is inhibited because these fractions are rich in polycyclic aromatics and nitrogen-containing compounds.
It has been revealed that carbonaceous substances rapidly precipitate on the catalyst and the catalyst activity rapidly decreases. Therefore, a catalyst with high hydrogenation activity is used to perform hydrorefining reactions such as hydrogenation and denitrification of aromatic rings, and a zeolite-based catalyst with high decomposition activity is used to perform a hydrogenolysis reaction. It is considered effective to use a two-stage hydrotreating reaction in which cleavage and lightening are performed.

一方、本発明者らの研究によれば、比較的重質な留分は
二段水素化処理によっても軽質化が困難であることがわ
かった。
On the other hand, according to the research conducted by the present inventors, it has been found that it is difficult to lighten relatively heavy fractions even by two-stage hydrogenation treatment.

〔発明の課題〕 そこで1本発明は1重質炭化水素類を水素化処理により
、効率よく改質あるいは軽質化する方法を提供すること
をその課題とする。
[Problems of the Invention] Therefore, an object of the present invention is to provide a method for efficiently reforming or lightening heavy hydrocarbons by hydrotreating them.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するために、種々研究を
重ねた結果1重質炭化水素類の水素化処理による効率的
な軽質化を妨げている原因としては、水素化反応過程お
よび第2段の水素化分解反応において、塩基性窒素含有
化合物などのへテロ化合物により触媒が容易に被毒され
ることにあると着想した。そこで1本発明者らは、あら
かじめ脱ヘテロ化合物処理を行った重質炭化水素を常法
により水素化精製処理した結果、効率よく水素化、脱窒
素反応が進むことがわかった。さらに、水素化処理後、
水素化活性金属を担持させた固体酸触媒の存在下で水素
化分解処理を行ったところ、重質炭化水素は効率よく軽
質化されることを見出し、本発明を完成するに至った。
In order to solve the above-mentioned problems, the present inventors have conducted various studies and found that the reasons for preventing efficient lightening of heavy hydrocarbons by hydrotreating are the hydrogenation reaction process and the The idea was that the catalyst is easily poisoned by hetero compounds such as basic nitrogen-containing compounds in the two-stage hydrogenolysis reaction. Therefore, the present inventors have found that when heavy hydrocarbons that have been previously subjected to a deheterocompound treatment are hydrorefined using a conventional method, hydrogenation and denitrification reactions proceed efficiently. Furthermore, after hydrogenation treatment,
When hydrogenolysis treatment was carried out in the presence of a solid acid catalyst supporting a hydrogenation-active metal, it was discovered that heavy hydrocarbons were efficiently lightened, leading to the completion of the present invention.

即ち、本発明によれば、あらかじめ脱へテロ化合物処理
した重質炭化水素を水素化処理する軽質化方法及びあら
かじめ脱へテロ化合物処理した重質炭化水素を水素化精
製処理した後、水素化活性金属を担持した固体酸触媒の
存在下で水素化分解処理することを特徴とする重質炭化
水素の軽質化方法が提供される。
That is, according to the present invention, there is provided a lightening method in which heavy hydrocarbons that have been previously treated to remove heterogeneous compounds are hydrotreated, and after the heavy hydrocarbons that have been previously treated to remove heterogeneous compounds are hydrorefined, the hydrogenation activity is A method for lightening heavy hydrocarbons is provided, which is characterized by carrying out a hydrocracking treatment in the presence of a solid acid catalyst supporting a metal.

本発明における重質炭化水素としては、沸点250℃以
上の成分を20重量x以上含むものが用いられる。この
ようなものとしては、石炭液化油、石油系重質油、オイ
ルサンド油、オイルシェール油等から得られた重質及び
軽質留分等がある。
As the heavy hydrocarbon in the present invention, one containing 20 weight x or more of components having a boiling point of 250° C. or higher is used. These include heavy and light fractions obtained from coal liquefied oil, petroleum heavy oil, oil sand oil, oil shale oil, and the like.

本発明においては、先ず、重質炭化水素を脱ヘテロ化合
物処理する。この処理は、酸洗浄によって、あるいは酸
洗浄と塩基洗浄によって達成することができる。酸洗浄
は、硫酸や塩酸等の鉱酸を用いて行うことができる。ま
た、塩基洗浄は、水酸化ナトリウム、水酸化カリウム等
のアルカリを用いて行うことができる。これら酸洗浄や
塩基洗浄後には、水洗及び脱水を行って、水素化処理原
料としての重質炭化水素を得る。本発明では、脱へテロ
化合物処理により、重質炭化水素中の塩基性あるいは酸
性へテロ原子(窒素および酸素)の含量を重質換算で錦
以上、好ましくは20%以上除去する。
In the present invention, first, heavy hydrocarbons are subjected to a dehetero compound treatment. This treatment can be accomplished by acid washing or by acid washing and base washing. Acid cleaning can be performed using a mineral acid such as sulfuric acid or hydrochloric acid. Moreover, base washing can be performed using an alkali such as sodium hydroxide or potassium hydroxide. After these acid washings and base washings, water washing and dehydration are performed to obtain heavy hydrocarbons as raw materials for hydrogenation treatment. In the present invention, the content of basic or acidic heteroatoms (nitrogen and oxygen) in heavy hydrocarbons is removed by more than 20%, preferably 20% or more, in terms of weight, by the deheterocompound treatment.

本発明の第1段の水素化処理は、常法によって行うこと
ができる。例えば、アルミナ担体に、ニッケルとモリブ
デンあるいはコバルトとモリブデンを担持した触媒を用
い、反応温度:350〜400℃、水素圧力=15〜2
0MPa、反応時間:1〜2hの条件下で水素化処理を
行う0本発明では、MMRにより測定された水素化精製
反応前後での芳香族炭素分率(fa)を0.1以上、好
ましくは0.2以上減少させるように行う。
The first stage hydrogenation treatment of the present invention can be carried out by a conventional method. For example, using a catalyst with nickel and molybdenum or cobalt and molybdenum supported on an alumina carrier, reaction temperature: 350-400°C, hydrogen pressure = 15-2
In the present invention, the aromatic carbon fraction (fa) before and after the hydrorefining reaction measured by MMR is 0.1 or more, preferably 0.1 or more. Do this to reduce the amount by 0.2 or more.

本発明の第2段の水素化分解処理は、水素化活性金属を
担持した固体酸触媒を用いて行う。固体酸としては、ゼ
オライトや、ゼオライトとアルミナとの混合物等が用い
られる。この場合、ゼオライトとしては、Y型、モルデ
ナイト型、ZSM型等のものが用いられる。また、この
固体酸に担持させる金属としては、コバルト、モリブデ
ン、ニッケル、タングステン等があり、好ましくは、ニ
ッケルとモリブデンの組合せ、あるいはコバルトとモリ
ブデンの組合せが用いられる0反応条件としては、反応
温度:300〜440℃、好ましくは400〜425℃
、水素圧:3−23−2O、好ましくは5=15MPa
、反応時間:20〜240分、好ましくは60〜120
分の条件が用いられる。
The second-stage hydrocracking treatment of the present invention is carried out using a solid acid catalyst supporting a hydrogenation-active metal. As the solid acid, zeolite, a mixture of zeolite and alumina, etc. are used. In this case, the zeolite used is Y type, mordenite type, ZSM type, etc. The metal supported on this solid acid includes cobalt, molybdenum, nickel, tungsten, etc., and preferably a combination of nickel and molybdenum or a combination of cobalt and molybdenum is used.Reaction conditions include reaction temperature: 300-440°C, preferably 400-425°C
, hydrogen pressure: 3-23-2O, preferably 5=15MPa
, reaction time: 20-240 minutes, preferably 60-120 minutes
Conditions for minutes are used.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

原料油として、石炭液化油からの重質留分(548℃以
上の成分:21重量対、窒素成分:0.67重景気、酸
素成分=2.3重量X)を用いた。
As the raw material oil, a heavy fraction from coal liquefied oil (components at 548° C. or higher: 21 weight vs. nitrogen component: 0.67 heavy economy, oxygen component = 2.3 weight X) was used.

また、原料油として石炭液化油からの軽質留分(沸点2
00−350℃、窒素成分:0.36重量2.酸素成分
:1.2重量%)を用いた。
In addition, light distillates from coal liquefied oil (boiling point 2
00-350℃, nitrogen component: 0.36 weight 2. Oxygen component: 1.2% by weight) was used.

これらの原料油を用いて以下の処理を行った。The following treatments were performed using these raw material oils.

(脱ヘテロ化合物処理) 原料油100gを、0.IN塩酸、0.IN水酸化ナト
リウム及び蒸留水の各々200mQ入った分液漏斗のそ
れぞれに入れ、10分間激しく振とうした後、放置し、
水層と油層が分離するのを待ち、油層を分液゛した。
(Dehetero compound treatment) 100g of raw oil was treated with 0. IN hydrochloric acid, 0. Pour into separate funnels containing 200 mQ each of IN sodium hydroxide and distilled water, shake vigorously for 10 minutes, and leave to stand.
After waiting for the water and oil layers to separate, the oil layer was separated.

この操作をいずれも3回繰返した。また、別に、原料油
を、前記の塩酸処理と水酸化ナトリウム処理とを組合せ
て処理した。このようにして処理された原料油をロータ
リーエバポレーター及び無水硫酸ナトリウムを用いて油
層中の水分を除去した。
This operation was repeated three times. Separately, the raw material oil was treated by a combination of the above-mentioned hydrochloric acid treatment and sodium hydroxide treatment. The water in the oil layer of the raw oil thus treated was removed using a rotary evaporator and anhydrous sodium sulfate.

前記のようにして処理された原料油中の窒素含量を次表
に示す。
The nitrogen content in the raw material oil treated as described above is shown in the following table.

表−1 (水素化処理) 前記のようにして得られた各試料油を、オートクレーブ
を用いて第1段の水素化精製処理を行った後、得られた
生成油を、オートクレーブを用いて第2段の水素化分解
処理を行った。これらの水素化処理の条件は次の通りで
あった。
Table 1 (Hydrotreatment) After each sample oil obtained as described above was subjected to the first stage hydrorefining treatment using an autoclave, the obtained product oil was subjected to the first stage hydrorefining treatment using an autoclave. A two-stage hydrocracking treatment was performed. The conditions for these hydrogenation treatments were as follows.

(1)第1段水素化処理 〔触媒〕 アルミナ担体にNi:2.3重量%及びMo:12重量
2を担持させた触媒 〔反応条件〕 反応温度:375℃ 水素圧:14.7MPa 反応時間:2時間 次に、第1段の水素化精製反応によって得られた生成油
の性状を表−2に示す。faはNMR測定によって得ら
れた芳香族炭素分率を示しており1重質酸分および軽質
成分の出発原料のfa値はそれぞれ0.79および0.
61である。
(1) First stage hydrogenation treatment [Catalyst] Catalyst in which Ni: 2.3% by weight and Mo: 12% by weight 2 are supported on an alumina carrier [Reaction conditions] Reaction temperature: 375°C Hydrogen pressure: 14.7MPa Reaction time : 2 hours Next, the properties of the produced oil obtained by the first stage hydrorefining reaction are shown in Table 2. fa indicates the aromatic carbon fraction obtained by NMR measurement, and the fa values of the starting materials for 1 heavy acid and light components are 0.79 and 0.79, respectively.
It is 61.

表−2 (2)第2段水素化処理 〔触媒〕 アルミナ担体にNi:1.7重量%及びMo:8.0重
量%を担持した触媒 〔反応条件〕 反応温度=425℃ 水素圧:14.7MPa 反応時間:2時間 次に、前記第1段及び第2段の各水素化処理によって得
られたそれぞれの生成油の性状を次表に示す。
Table 2 (2) Second stage hydrogenation treatment [Catalyst] Catalyst with Ni: 1.7% by weight and Mo: 8.0% by weight supported on an alumina carrier [Reaction conditions] Reaction temperature = 425°C Hydrogen pressure: 14 .7 MPa Reaction time: 2 hours Next, the properties of each product oil obtained by the first and second stage hydrogenation treatments are shown in the following table.

なお、軽質留分(試料油Nα1〜NQ4)についての軽
質化率(L)は次式で表おされる。
Note that the lightening rate (L) for the light fraction (sample oils Nα1 to NQ4) is expressed by the following formula.

A:試料油中の沸点200℃以上の成分の容−i%8:
生成油中の沸点200℃以上の成分の容i%また1重質
留分(試料油Nα5〜Nα8)についての軽質化率(H
)は次式で表わされる。
A: Volume of components with a boiling point of 200°C or higher in sample oil -i%8:
Volume i% of components with a boiling point of 200°C or higher in the produced oil and the lightening rate (H
) is expressed by the following formula.

C:試料油中の沸点548℃以上の成分の容量算り:生
成油中の沸点548℃以上の成分の容量Z表−3 前記と同様に酸洗浄してペテロ化合物を除去し、次いで
、実施例1と同様にして、第1段及び第2段の水素化処
理を行った。その結果を表−4に示す。
C: Calculation of the volume of components with a boiling point of 548 °C or higher in the sample oil: Volume of components with a boiling point of 548 °C or higher in the produced oil Z Table-3 The petro compound was removed by acid washing in the same manner as above, and then the The first and second stage hydrogenation treatments were carried out in the same manner as in Example 1. The results are shown in Table 4.

また、比較のために酸洗浄を施さないでそのまま2段の
水素化処理を行った結果もあわせて示す。
For comparison, the results of two-stage hydrogenation treatment without acid washing are also shown.

表−4 実施例2 M科油としてオイルサンド油からの重質留分(窒素含量
:0.38tetぶ)、オイルシェール油からの重質留
分(窒素含量:0.99wt%)及び石油からの重質留
分(窒素含量:0.18wt%)をそれぞれ用いて、こ
れを〔発明の効果〕 以上から明らかな通り、本発明によれば、芳香族性に富
み、窒素化合物などのへテロ原子を多く含む重質炭化水
素類から、付加価値の高い芳香環が水素化された炭化水
素および軽質な炭化水素類を効率よく製造することがで
きる。
Table 4 Example 2 Heavy fraction from oil sand oil (nitrogen content: 0.38 wt%), heavy fraction from oil shale oil (nitrogen content: 0.99 wt%) and petroleum oil as M family oil [Effects of the Invention] As is clear from the above, according to the present invention, the heavy fraction (nitrogen content: 0.18 wt%) of Hydrocarbons with hydrogenated aromatic rings and light hydrocarbons with high added value can be efficiently produced from heavy hydrocarbons containing many atoms.

即ち、本発明では脱へテロ化合物処理により触媒被毒成
分である塩基性化合物を除去することにより、水素化精
製反応で芳香環の水素化反応および脱窒素反応が進行し
、生成物の性状が改質される。また、脱ヘテロ化合物処
理、水素化反応に引続いて第2段の水素化分解反応を行
なえば軽質化反応を効率よく進行させることができる。
That is, in the present invention, by removing basic compounds that are catalyst poisoning components through the dehetero compound treatment, the hydrogenation reaction and denitrification reaction of aromatic rings proceed in the hydrorefining reaction, and the properties of the product change. modified. Moreover, if the second stage hydrogenolysis reaction is performed subsequent to the deheterocompound treatment and the hydrogenation reaction, the lightening reaction can proceed efficiently.

特許出願人 工業技術院長 飯 塚 幸 三11〜1削Patent applicant: Director of the Agency of Industrial Science and Technology Yuki Iizuka 311-1 cut

Claims (2)

【特許請求の範囲】[Claims] (1)あらかじめ脱ヘテロ化合物処理した重質炭化水素
を水素化処理することを特徴とする重質炭化水素の軽質
化方法。
(1) A method for lightening heavy hydrocarbons, which comprises hydrotreating heavy hydrocarbons that have been previously treated to remove hetero compounds.
(2)あらかじめ脱ヘテロ化合物処理した重質炭化水素
を水素化精製処理した後、水素化活性金属を担持した固
体酸触媒の存在下で水素化分解処理することを特徴とす
る重質炭化水素の軽質化方法。
(2) A method for producing heavy hydrocarbons characterized by subjecting heavy hydrocarbons that have been previously treated to remove heterocompounds to hydrorefining treatment, and then subjecting them to hydrocracking treatment in the presence of a solid acid catalyst supporting a hydrogenation-active metal. Lightening method.
JP22079688A 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component Granted JPH0269594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22079688A JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22079688A JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Publications (2)

Publication Number Publication Date
JPH0269594A true JPH0269594A (en) 1990-03-08
JPH0587111B2 JPH0587111B2 (en) 1993-12-15

Family

ID=16756702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22079688A Granted JPH0269594A (en) 1988-09-03 1988-09-03 Method for forming heavy hydrocarbon into more volatile component

Country Status (1)

Country Link
JP (1) JPH0269594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067798B2 (en) * 2009-08-07 2015-06-30 Tokuyama Dental Corporation Method for producing silica-zirconia composite particles each coated with silica layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849801A (en) * 1971-10-27 1973-07-13
JPS4938081A (en) * 1972-08-25 1974-04-09
JPS56122890A (en) * 1980-02-01 1981-09-26 Suntech Method of raising quality of liquefied coal
JPS5759987A (en) * 1980-09-29 1982-04-10 Kobe Steel Ltd Hydrogenation and liquefaction of brown coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849801A (en) * 1971-10-27 1973-07-13
JPS4938081A (en) * 1972-08-25 1974-04-09
JPS56122890A (en) * 1980-02-01 1981-09-26 Suntech Method of raising quality of liquefied coal
JPS5759987A (en) * 1980-09-29 1982-04-10 Kobe Steel Ltd Hydrogenation and liquefaction of brown coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067798B2 (en) * 2009-08-07 2015-06-30 Tokuyama Dental Corporation Method for producing silica-zirconia composite particles each coated with silica layer

Also Published As

Publication number Publication date
JPH0587111B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
US4035285A (en) Hydrocarbon conversion process
CN112143522B (en) Hydrogenation method and system for production chemical material
KR100577134B1 (en) Integrated Hydrotreating and Hydrocracking Process
KR0136264B1 (en) Method of treatment of heavy hydrocarbon oil
KR100309488B1 (en) How to manufacture high viscosity oils and intermediate distillates with high viscosity index from heavy petroleum fractions
US4411767A (en) Integrated process for the solvent refining of coal
WO2005085395A1 (en) Use of field gas for pre-refining conventional crude oil into a pre-refined asphaltenes-free oil refinery feedstock pa and a liquid residual oil refinery feedstock pb
EP0317028B1 (en) Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking
JP2006510746A (en) Multistage hydrocracking by kerosene recirculation
CA1037892A (en) Conversion process of hydrocarbons
GB1560148A (en) Process for the conversion of hydrocarbons
JP2002511516A (en) How to improve the cetane number of gas oil fractions
US20020008051A1 (en) Method of producing middle distillate products by two-stage hydrocracking and hydrocracking apparatus
JP2890060B2 (en) Manufacturing method of lubricating base oil
JP2003027071A (en) Method for simultaneous hydrotreatment of two stock oils
JPS60219295A (en) Hydrogenation of heavy hydrocarbon oil
US3974063A (en) Denitrogenating and upgrading of high nitrogen containing hydrocarbon stocks with low molecular weight carbon-hydrogen fragment contributors
US8318006B2 (en) “Once through” process for hydrocracking hydrocarbon-containing feeds with high nitrogen contents
JP5491912B2 (en) Method for producing kerosene oil base and alkylbenzenes
EP0099141B1 (en) Process for the production of low-asphaltenes hydrocarbon mixtures
JPH0269594A (en) Method for forming heavy hydrocarbon into more volatile component
JP2020513401A (en) Method for producing hexadecahydropyrene
CN113817496A (en) Crude oil or heavy oil pretreatment method
EP0125709B1 (en) A process for the production of low-asphaltenes hydrocarbon mixtures
JP2002523611A (en) Hydrocracking method and hydrocracking catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term