JPH0269305A - Nitriding furnace and production of metal nitride - Google Patents

Nitriding furnace and production of metal nitride

Info

Publication number
JPH0269305A
JPH0269305A JP63220363A JP22036388A JPH0269305A JP H0269305 A JPH0269305 A JP H0269305A JP 63220363 A JP63220363 A JP 63220363A JP 22036388 A JP22036388 A JP 22036388A JP H0269305 A JPH0269305 A JP H0269305A
Authority
JP
Japan
Prior art keywords
furnace
nitriding
heat
reaction
heat element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63220363A
Other languages
Japanese (ja)
Other versions
JPH0718652B2 (en
Inventor
Yoshiyuki Nakamura
中村 美幸
Masahiko Nakajima
征彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63220363A priority Critical patent/JPH0718652B2/en
Publication of JPH0269305A publication Critical patent/JPH0269305A/en
Publication of JPH0718652B2 publication Critical patent/JPH0718652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

PURPOSE:To perform control of heat of reaction in the production of a metal nitride and to prevent contamination due to a heat element of a nitriding furnace by constituting a lining heat-insulating material of the furnace of an inorganic fibrous material having a specified bulk density and the heat element of Mo. CONSTITUTION:The inside surface of a nitriding furnace is lined with an inorganic fibrous heat insulating material having <=0.5 bulk density and an Mo heat element is provided to the furnace. Metal powder is charged to the furnace and nitrided by heating in N2 or atmosphere contg. NH3. If the bulk density of the heat insulating material of the furnace is >0.5, cutting-off of an electric power source becomes very difficult if an exothermic reaction once begins, and the control of the reaction becomes very difficult even if inert gas is introduced. Even if the control is attained, production of Si3N4 powder having high alpha-fraction may be hardly possible after starting the reaction anew, resulting enormous consumption of energy, causing in some case and frequently, uncontrollable reactions due to small thermal susceptibility of the furnace material. By the use of an Mo heat element, degradation of the quality of the product is avoided even if generation of CH4 occurs by the reaction of C with NH3 or H2 in the nitriding atmosphere which is caused when conventional heat element comprising C or SiC is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化の際の多大な発熱量によって溶融するお
それのある金属の窒化反応炉及びその窒化反応炉を用い
てなる金属窒化物の製造法に関する。このような金属の
具体例としては、ケイ素、アルミニウム、チタン、クロ
ム等があげられるが、以下、ケイ素を例にとって説明す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a nitriding reactor for metals that may be melted due to a large amount of heat generated during nitriding, and a method for producing metal nitrides using the nitriding reactor. Regarding manufacturing methods. Specific examples of such metals include silicon, aluminum, titanium, chromium, etc., and the following description will be made by taking silicon as an example.

〔従来の技術〕[Conventional technology]

窒化ケイ素焼結体は、機械的強度が高く耐スポール性も
あるのでセラミック構造体として今日各方面で注目され
ている。そのため、これらの製造原料である窒化ケイ素
粉末の製造についても種々研究され、特に工業的に有利
なケイ素(Sl)の直接窒化法の研究は数多くなされて
いる。
Silicon nitride sintered bodies have high mechanical strength and spall resistance, so they are currently attracting attention in various fields as ceramic structures. Therefore, various studies have been conducted on the production of silicon nitride powder, which is a raw material for these productions, and in particular, many studies have been conducted on the industrially advantageous direct nitriding method of silicon (Sl).

このSiの直接窒化法の最大の焦点は経済性をいかに持
たせるかであり、従来より81の反応抑制即ちSlの直
接窒化に伴う大きな発熱のコントロールと高品位の維持
に研究が注がれている。例えば、特開昭48−1021
00号公報、特開昭57−95819号公報′、特開昭
60−186406号公報、特開昭61−68310号
公報等である。
The main focus of this method of direct nitriding of Si is how to make it economical, and research has traditionally focused on suppressing 81 reactions, that is, controlling the large amount of heat generated by direct nitriding of Sl, and maintaining high quality. There is. For example, JP-A-48-1021
00, JP-A-57-95819', JP-A-60-186406, JP-A-61-68310, and the like.

しかしながら、何れも理論的な発熱量の回避例えば昇温
速度の微調節、Ar、He等の不活性ガスの導入に限ら
れ、炉の構造についてはまったく触れられていない。従
来は、炉内面がシリカ、マグネシア、アルミナキャスタ
デル等のレンガで構成されてなる炉を用いて窒化を行っ
ていたが、このような炉では単位面積当りの蓄熱量が大
きいので、−旦反応の暴走が起こると炉材の熱的感受性
が遅いので反応を制御することは難しく原料S1が溶融
してしまう欠点があった。そのためα分率の高い窒化ケ
イ素を得るには相当な熟練が必要であるか又は製造する
ことはできなかった。さらには炉の発熱体についても大
部分はカーボン電極が用いられており、そこからの汚染
即ちH2又はNH5との反応で生じるCH4ガスと原料
金属S1との反応によるSiCの生成による汚染につい
ても考慮されていない。
However, all of these are limited to theoretical avoidance of calorific value, such as fine adjustment of the heating rate, and introduction of inert gases such as Ar and He, and do not mention the structure of the furnace at all. Conventionally, nitriding was carried out using a furnace whose inner surface was made of bricks made of silica, magnesia, alumina castadel, etc., but since such furnaces store a large amount of heat per unit area, the reaction was When runaway occurs, it is difficult to control the reaction because the thermal sensitivity of the furnace material is slow, and the raw material S1 has the disadvantage of melting. Therefore, considerable skill is required to obtain silicon nitride with a high alpha fraction, or it has not been possible to produce silicon nitride. Furthermore, carbon electrodes are used for most of the heating elements in furnaces, and contamination from them, that is, contamination due to the formation of SiC due to the reaction between CH4 gas generated by reaction with H2 or NH5 and raw metal S1, is also considered. It has not been.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者は、Si等の金属の直接窒化法における反応熱
の制御を円滑に行うのに不可欠な炉の構成及びカービン
電極に代替できる発熱体につき種種検討した結果、本発
明を完成したものである。
The present inventor has completed the present invention as a result of examining various types of furnace configurations that are essential for smoothly controlling the reaction heat in the direct nitriding method of metals such as Si, and heating elements that can be substituted for carbine electrodes. be.

〔課題を解決するだめの手段〕 すなわち、本発明は、炉内面がカサ比重0.5以下の無
機繊維質断熱材で内張りされてなりしかもモリブデン発
熱体を備えてなることを特徴とする窒化反応炉、及び該
窒化反応炉に金属粉末を装入しそれを窒素及び/又はア
ンモニアを含む雰囲気下で加熱窒化することを特徴とす
る金属窒化物の製造法である。
[Means for Solving the Problems] That is, the present invention provides a nitriding reaction characterized in that the inner surface of the furnace is lined with an inorganic fibrous heat insulating material having a bulk specific gravity of 0.5 or less and is equipped with a molybdenum heating element. This method of producing metal nitrides is characterized by charging metal powder into a furnace and the nitriding reactor, and heating and nitriding it in an atmosphere containing nitrogen and/or ammonia.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明で使用する炉の断熱材は、カサ比重が0.5以下
のアルミナファイバー セラミックファイバー ロック
ウール、シリカファイバー等の蓄熱量の小さい結晶質又
はガラス質の無機繊維である。カサ比重が0.5よりも
大きい例えばアルミナ、シリカ、マグネシア等のレンガ
で施工された炉においては一旦発熱反応が始まれば電源
のカットは勿論のこと、Ar、He等の不活性ガスを導
入しても反応を抑制させることは非常に難しい。たとえ
抑制できたとしてもその後の復帰に際し、炉材の熱的感
受性が遅く、エネルギーも多く消費するとともに再暴走
を起こさせることが多く、α分率の高い窒化ケイ素粉末
を得ることは困難となる。
The heat insulating material of the furnace used in the present invention is a crystalline or glassy inorganic fiber with a small amount of heat storage, such as alumina fiber, ceramic fiber, rock wool, or silica fiber, which has a bulk specific gravity of 0.5 or less. For example, in a furnace made of bricks made of alumina, silica, magnesia, etc. with a bulk specific gravity greater than 0.5, once an exothermic reaction begins, the power supply must be cut off and an inert gas such as Ar or He must be introduced. However, it is extremely difficult to suppress the reaction. Even if it can be suppressed, the thermal sensitivity of the furnace material is slow and energy is consumed during subsequent recovery, and runaway often occurs again, making it difficult to obtain silicon nitride powder with a high α fraction. .

炉内面の断熱構造は使用温度や負荷等を考慮して適切に
決定する。高温炉の場合は、通常、鉄皮等のケーシング
にガラスファイバーと結晶質ファイバーを順次内張りし
たものが用いられるが、低温炉の場合には、結晶質ファ
イバーを省略することもできる。また、ケーシングは鉄
皮に限らす上記したレンガの場合もあり、さらには、と
くに炉床等のように負荷がかかるところでは、ガラスフ
ァイバーに変えて又はガラスファイバーの施工に先行し
て上記レンガを使用することもできる。なお、負荷のか
かるところでは、カサ比重0.65〜0.45程度のボ
ードを使用することが望ましい。
The insulation structure of the inner surface of the furnace should be determined appropriately, taking into account the operating temperature, load, etc. In the case of a high-temperature furnace, a casing such as an iron shell is normally lined with glass fiber and crystalline fiber in sequence, but in the case of a low-temperature furnace, the crystalline fiber can be omitted. In addition, the casing may be made of the above-mentioned bricks, which are limited to iron shells.Furthermore, the above-mentioned bricks may be used instead of glass fibers or in advance of the installation of glass fibers, especially in places where loads are applied, such as hearths. You can also use Note that it is desirable to use a board with a bulk specific gravity of about 0.65 to 0.45 in places where loads are applied.

ここで、ガラスファイバーとは、5lo2系、5i02
− At203− MgO系等のガラスファイバーで低
温用無機繊維質断熱材であり、結晶質ファイバーとは、
At203系、At 203− S i O2系、ゐラ
イト系、Si3N4系、AtN系等のファイバーで高温
用無機繊維質断熱材である。
Here, glass fiber refers to 5lo2 series, 5i02 series
- At203 - A low-temperature inorganic fiber insulation material made of MgO-based glass fiber, etc., and crystalline fiber is
It is an inorganic fiber heat insulating material for high temperature use made of At203-based, At203-S i O2-based, wilite-based, Si3N4-based, and AtN-based fibers.

本発明で使用する発熱体はモリブデン(MO)であり、
従来のMo5iz系やMoSi□−8iC系と異なる。
The heating element used in the present invention is molybdenum (MO),
This is different from the conventional Mo5iz series and MoSi□-8iC series.

MO線純度しては、99%以上好ましくは99.8%以
上である。従来のモリブデン系の発熱体であっては、N
H3、H2の還元雰囲気では非常に寿命が短かい。また
、従来のようなカーボン(C)発熱体やSiC発熱体に
あっては、カーボンは窒化雰囲気に用いるNH3、H2
と反応してCH,ガスを発生し、さらにそのCH4ガス
が原料Siと反応してSiCを生じα−窒化ケイ素粉末
の品位を下げる。
The MO line purity is 99% or more, preferably 99.8% or more. In conventional molybdenum-based heating elements, N
In a reducing atmosphere of H3 or H2, the life is very short. In addition, in conventional carbon (C) heating elements and SiC heating elements, carbon is used in the nitriding atmosphere, such as NH3 and H2.
The CH4 gas reacts with the raw material Si to generate SiC and lower the quality of the α-silicon nitride powder.

SiCはNH3、H2により還元されSiC発熱体の寿
綿が短かくなるとともに、還元時にCH4ガスが発生し
同様にα−窒化ケイ素粉末の品位を下げる。本発明で用
いるMO発熱体の仕様は棒状、撚線、ワイヤー状等何れ
であってもよい。MO以外にWも施工及び価格に若干の
問題を残すが発熱体としては使用可能である。発熱体は
、通常、炉内面に露出して設置される。窒化反応炉は、
パッチ式、連続式例えばコンベアー炉、プッシャー炉、
竪型炉等のいずれであってもよい。
SiC is reduced by NH3 and H2, shortening the lifetime of the SiC heating element, and CH4 gas is generated during reduction, which also lowers the quality of the α-silicon nitride powder. The MO heating element used in the present invention may have any shape such as a rod shape, a stranded wire, or a wire shape. In addition to MO, W can also be used as a heating element, although there are some problems with construction and cost. The heating element is usually installed exposed on the inner surface of the furnace. The nitriding reactor is
Patch type, continuous type e.g. conveyor furnace, pusher furnace,
Any type of furnace such as a vertical furnace may be used.

以上のような窒化反応炉を81の直接窒化法に用い、窒
素の吸収量を考慮した反応熱制御を行えば、α分率90
%以上のα−窒化ケイ素粉末が経済的に製造できる。す
l譚わち、微細化されたS〕粉末をセラミック質の匣鉢
に入れ、それを窒素及び/又はアンモニアを含む雰囲気
中で1450°C程度の温度まで昇温焼成する。
If the above-mentioned nitriding reactor is used in the direct nitriding method of 81 and the reaction heat is controlled in consideration of the amount of nitrogen absorbed, the α fraction can be reduced to 90.
% or more of α-silicon nitride powder can be economically produced. The finely divided S] powder is placed in a ceramic pot and fired at a temperature of about 1450° C. in an atmosphere containing nitrogen and/or ammonia.

本発明は、上記したS1以外に反応の暴走によって溶融
するおそれのあるAt、 Ti、Cr等の金属にも適用
される。
The present invention is also applicable to metals other than the above-mentioned S1, such as At, Ti, and Cr, which may melt due to runaway reaction.

〔実施例〕〔Example〕

以下、実施例と比較例をあげてさらに具体的に本発明を
説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 鉄皮より順にカサ比重が0.13のロックウール、0.
16のセラミックファイバーフェルト、0.16のアル
ミナファイバーボードで内張シされてなり、市販の棒状
MO発熱体(純度99.8 % )を炉内面に露出させ
てなる内容積が0−5 m3の窒化反応炉に、44μm
下の81粉末100gを入れたAtz03製匣鉢1ヶを
挿入し、N2/ NH3= 2/1のモル比で11so
’cから5°Q/Hrの速度で1450°Cまで昇温し
ながら窒化させた。その後、冷却し得られた窒化ケイ素
のα分率を測定したところ93チであった。
Example 1 Rock wool with a bulk specific gravity of 0.13, 0.13 in order from iron shell,
It is lined with 0.16 ceramic fiber felt and 0.16 alumina fiber board, and a commercially available rod-shaped MO heating element (purity 99.8%) is exposed on the inside of the furnace, with an internal volume of 0-5 m3. 44 μm in the nitriding reactor
Insert one Atz03 sagger containing 100g of 81 powder shown below, and make 11so at a molar ratio of N2/NH3=2/1.
Nitriding was carried out while increasing the temperature from 'c to 1450°C at a rate of 5°Q/Hr. Thereafter, the alpha fraction of the silicon nitride obtained after cooling was measured and found to be 93.

実施例2 カサ比重が0.16のアルミナファイバーボードのかわ
りにカサ比重0.10の813N4フアイバーボー1を
用いたこと以外は実施例1と全く同様にして窒化ケイ素
を製造したところ、そのα分率は95%であった。
Example 2 Silicon nitride was produced in the same manner as in Example 1 except that 813N4 fiberboard 1 with a bulk specific gravity of 0.10 was used instead of alumina fiberboard with a bulk specific gravity of 0.16. The rate was 95%.

実施例6 炉壁及び天井は鉄皮よシ順にカサ比重が0.16のロッ
クウール、0.16のセラミックファイバーフェル1−
10.16のアルミナファイバーボードで内張すされて
なシ、シかも炉床は下部鉄皮面にカサ比重が0.96の
多孔゛質しンガと0.16のセラミックファイバーフェ
ルトとの組合せ層を設けさらにその上面にカサ比重0.
25のアルミナファイバーボードで覆、ってな、シ(炉
床全体のカサ比重は0.35)、市販の棒状MO発熱体
(粋度99.8% )が炉内面に露出してなる内容積が
2.3の窒化反応炉内に、44 μm下の81粉末50
0gを入れたAt203製匣鉢50ケを挿入し、N2 
/ NH3= 2/ 、のモル比で1150℃から5°
Q / Hrの速度で1450℃まで昇温しながら窒化
させた。得られた窒化ケイ素のα分率は93%であった
Example 6 The furnace walls and ceiling were made of rock wool with a bulk specific gravity of 0.16 and ceramic fiber felt 1- with a bulk specific gravity of 0.16 in order from the iron shell to the iron shell.
The hearth may not be lined with 10.16 alumina fiberboard, but the hearth has a combination layer of porous material with a bulk specific gravity of 0.96 and ceramic fiber felt with a bulk density of 0.16 on the lower steel surface. Furthermore, a bulk specific gravity of 0.
Covered with 25mm alumina fiberboard (the bulk specific gravity of the whole hearth is 0.35), the internal volume is created by exposing a commercially available rod-shaped MO heating element (99.8% pureness) to the inside of the furnace. 81 powder 50 μm below 44 μm was placed in a nitriding reactor with
Insert 50 At203 saggers containing 0g of N2
/ NH3 = 2/, molar ratio from 1150℃ to 5°
Nitriding was carried out while increasing the temperature to 1450°C at a rate of Q/Hr. The α fraction of the obtained silicon nitride was 93%.

比較例1 鉄皮より順にカサ比重が0.96の多孔質レンガ、1.
56のアルミナレンガで被覆されてなり、発熱体がカー
ボンである内容積が0.2 m’の窒化炉に、44 μ
m下の81粉末4DIを入れたAt203製匣鉢1ケを
挿入し、N2 / NH3== 2/ 1のモル比で1
150℃から5℃/Hrの速度で1450℃まで昇温し
ながら窒化させた。その結果、得られた窒化ケイ素には
β−8iCが同定されるとともに、そのα分率は65チ
であった。
Comparative Example 1 Porous brick with a bulk specific gravity of 0.96 in order from the iron shell, 1.
A nitriding furnace with an inner volume of 0.2 m' was coated with 56 alumina bricks and the heating element was carbon.
Insert one At203 sagger containing 4 DI of 81 powder under m, and add 1 at a molar ratio of N2/NH3==2/1.
Nitriding was carried out while increasing the temperature from 150°C to 1450°C at a rate of 5°C/Hr. As a result, β-8iC was identified in the obtained silicon nitride, and its α fraction was 65.

比較例2 MO発熱体のかわりに市販のSiC発熱体を用いたこと
以外は実施例1と全く同様にして窒化ケイ素を製造した
ところ、α分率は89チであったが表層部には多くのβ
−8iCが認められた。
Comparative Example 2 Silicon nitride was produced in exactly the same manner as in Example 1 except that a commercially available SiC heating element was used instead of the MO heating element. β of
-8iC was observed.

なお、実施例及び比較例で用いたα分率の測定と鉱物の
同定は理学電気(株)のガイガー7ラツクスRAD −
n BのX@回折によった。
The measurement of α fraction and the identification of minerals used in the Examples and Comparative Examples were performed using Geiger 7 Lux RAD- manufactured by Rigaku Denki Co., Ltd.
By X@ diffraction of nB.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属の直接窒化法により、高品位の金
属窒化物を経済的に製造することができる。
According to the present invention, high-grade metal nitrides can be economically produced by direct metal nitridation.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、炉内面がカサ比重0.5以下の無機繊維質断熱材で
内張りされてなりしかもモリブデン発熱体を備えてなる
ことを特徴とする窒化反応炉。 2、請求項1記載の窒化反応炉に金属粉末を装入しそれ
を窒素及び/又はアンモニアを含む雰囲気下で加熱窒化
することを特徴とする金属窒化物の製造法。
[Scope of Claims] 1. A nitriding reactor characterized in that the inner surface of the reactor is lined with an inorganic fibrous heat insulating material having a bulk specific gravity of 0.5 or less and is equipped with a molybdenum heating element. 2. A method for producing metal nitrides, which comprises charging metal powder into the nitriding reactor according to claim 1 and heating and nitriding it in an atmosphere containing nitrogen and/or ammonia.
JP63220363A 1988-09-05 1988-09-05 Nitriding reactor and method for producing metal nitride Expired - Lifetime JPH0718652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220363A JPH0718652B2 (en) 1988-09-05 1988-09-05 Nitriding reactor and method for producing metal nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220363A JPH0718652B2 (en) 1988-09-05 1988-09-05 Nitriding reactor and method for producing metal nitride

Publications (2)

Publication Number Publication Date
JPH0269305A true JPH0269305A (en) 1990-03-08
JPH0718652B2 JPH0718652B2 (en) 1995-03-06

Family

ID=16749963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220363A Expired - Lifetime JPH0718652B2 (en) 1988-09-05 1988-09-05 Nitriding reactor and method for producing metal nitride

Country Status (1)

Country Link
JP (1) JPH0718652B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CERAMIC BULLETIN=1952 *

Also Published As

Publication number Publication date
JPH0718652B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4161512A (en) Process for preparing titanium carbide
JPH0665624B2 (en) Novel refractory having high alumina content and method for producing the same
Mukasyan Combustion synthesis of silicon carbide
BR0306607A (en) Processes for producing ferronickel and for producing raw material for ferronickel production
US4619905A (en) Process for the synthesis of silicon nitride
US3758672A (en) Manufacture of silicon carbide
Yu et al. Synthesis of hexagonal plate-like Al4Si2C5 and the effect of Al4Si2C5 addition to Al2O3–C refractory
US5686028A (en) Process for forming a coherent refractory mass on a surface
CN100516262C (en) Method for preparing magnesium and magnesium alloy composite grain refiner
CA1195096A (en) Sintering process for refractory articles using direct-heated gases
GB2257136A (en) Forming coherent refractory masses
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US4206190A (en) Plasma arc production of silicon nitride
US4676940A (en) Plasma arc sintering of silicon carbide
JPH0269305A (en) Nitriding furnace and production of metal nitride
US3194635A (en) Method for the production of aluminum refractory material
JPH028964B2 (en)
US3362787A (en) Preparation of molybdenum silicides
US4698481A (en) Method for preventing decomposition of silicon carbide articles during high temperature plasma furnace sintering
US3141737A (en) Method for the preparation of aluminum nitride refractory material
JPH03117882A (en) Open arc furnace for thermally reducing carbon in metal oxide
JPH04314834A (en) Method and equipment for extracting metal from raw material containing it
Ault Raw materials for refractories: SiC and Si3N4
JPS6256310A (en) Production of aluminum nitride