JPH0267741A - Capillary for wire bonding - Google Patents

Capillary for wire bonding

Info

Publication number
JPH0267741A
JPH0267741A JP63219888A JP21988888A JPH0267741A JP H0267741 A JPH0267741 A JP H0267741A JP 63219888 A JP63219888 A JP 63219888A JP 21988888 A JP21988888 A JP 21988888A JP H0267741 A JPH0267741 A JP H0267741A
Authority
JP
Japan
Prior art keywords
capillary
alumina
tip
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63219888A
Other languages
Japanese (ja)
Inventor
Toshiaki Sakaida
敏昭 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63219888A priority Critical patent/JPH0267741A/en
Publication of JPH0267741A publication Critical patent/JPH0267741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Abstract

PURPOSE:To provide a capillary having improved strength and wear resistance by forming at least the tip of the capillary of alumina polycrystalline ceramics having an average crystal grain size smaller than a specific value and a density larger than a specific percentage to a theoretical value. CONSTITUTION:A capillary is formed of an alumina polycrystalline sintered material while an average crystal grain size thereof is 1mum or less and a density of the sintered body is 99% or more to a theoretical value. The capillary consists of a body 1 having a bore 11 and a tip section 2 having a small- diameter bore 21. According to an embodiment, Bayer's alumina is pulverized preferably to a particle size of 1mum or less. An alumina crystal growth inhibitor such as MgO. NiO, Cr2O3, TiO2, MuO2 or the like is added thereto and, further, a primary bonding material such as wax, polyethylene, polypropyrene or the like is added thereto. They are kneaded and the mixture is molded into a capillary having a mandrel at the center by an injection molding machine or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はLSI、ICなどの半導体装置のワイヤボンデ
ィングに使用する高強度のキャピラリーに関するもめで
ある 従来の技術 ICの製造工程において、半導体チップの電極とパリゲ
ージのリードフレームのリード電極とを、直径0015
〜0.1mm程度の金又はアルミニウムのml線でボン
ディングする工程がある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a conventional technology that is related to high-strength capillaries used for wire bonding of semiconductor devices such as LSIs and ICs. The lead electrode of the lead frame of the pari gauge has a diameter of 0015 mm.
There is a process of bonding with gold or aluminum ml wire of about 0.1 mm.

このワイヤボンデインク工程はml線を直径0015〜
0.1m−程度の細孔を先端に有するキャピラリーの中
に挿通し、このキャピラリーを半導体チップの電極とパ
リゲージのリード電極間に交互に移動させながらそれぞ
れの所定位置にワイヤを溶接する工程である。
This wire bonding process uses ml wire with a diameter of 0015~
This is a process in which the wire is inserted into a capillary that has a pore of about 0.1 m at its tip, and the capillary is moved alternately between the electrode of the semiconductor chip and the lead electrode of the pari gauge, and the wire is welded to each predetermined position. .

この工程時にキャピラリーの先端部分は半導体チップや
リードフレームと極めて高速で衝突するし、又ワイヤー
の先端を溶融してボール状物を形成する時に瞬時110
0°Cの高温と対向する。従って、キャピラリーの材質
の要求される特性は耐磨耗性、耐衝撃性、耐熱衝撃性等
である。
During this process, the tip of the capillary collides with the semiconductor chip or lead frame at extremely high speed, and when the tip of the wire is melted to form a ball-shaped object, the tip of the capillary collides with the semiconductor chip or lead frame at an extremely high speed.
Facing high temperatures of 0°C. Therefore, the characteristics required of the capillary material include abrasion resistance, impact resistance, thermal shock resistance, and the like.

特に最近では半導体チップの小型化に伴い高密度のワイ
ヤボンディング、すなわち多ピン化か要請され、キャピ
ラリーの先端部を細くし、ワイヤボンディング時にキャ
ピラリーが隣のワイヤに接触しないようにしつつあるボ
1−ルネック型、サイドカット型と称するもので外径5
0μ−程度のものまで求められている。
In particular, recently, with the miniaturization of semiconductor chips, there has been a demand for high-density wire bonding, that is, a large number of pins. These are called run neck type and side cut type, and the outer diameter is 5.
A value of about 0 μ- is required.

ボI・ルネック型のキャピラリーを使え4よ100μm
ピッチのボンディング・パッドを接続できるが、耐久性
が低く、量産に向いてない。
4 to 100 μm using a BoI-Lunec type capillary
Pitch bonding pads can be connected, but the durability is low and it is not suitable for mass production.

ギヤピラリ−とししてはアルミナ多結晶焼結体又はルビ
ー、サファイアなどのアルミナ単結晶で形成したものが
広く用いられている。
Gear pillars made of polycrystalline sintered alumina or alumina single crystals such as ruby and sapphire are widely used.

発明が解決しようとする課題 l、テ来のアルミナ多結晶セラミックス製ギヤピラリ−
の場合、結晶サイスが1μm以上あり、機械的強度が充
分高いとはいえず使用時に先端部分にクラ・・lり等の
欠陥か多々生ずる。
The problem to be solved by the invention is a gear pillar made of technical alumina polycrystalline ceramics.
In the case of , the crystal size is 1 μm or more, and the mechanical strength is not sufficiently high, resulting in many defects such as cracks and cracks at the tip during use.

特に高密度のワ・イヤーボンイデングの必要性から先端
部外径が細くなるにしながい、通常のアルミナ多結晶焼
結体では強度不足か否めず先端クラックか多発せざるを
得ない。
In particular, as the outer diameter of the tip becomes thinner due to the need for high-density wire bonding, ordinary alumina polycrystalline sintered bodies are inevitably insufficient in strength and often crack at the tip.

また、ルビー、サファイア等のアルミナ単結晶で形成し
たキャピラリーの場合はキャピラリー自体を製造する加
工工程中に発生したマイクロ・クラックに基づき、キャ
ピラリーをボンディング装置に取り付ける際などの取汲
い中に欠けや折れが発生することが多く、ボンディング
により寿命を全うするものに対し、途中で使用不能とな
るものが約50%あった。
In addition, in the case of capillaries made of alumina single crystals such as ruby and sapphire, micro-cracks occur during the manufacturing process of the capillary itself, and chipping and chipping may occur during the handling process such as when attaching the capillary to a bonding device. Brokenness often occurs, and while those that can complete their lifespan by bonding, about 50% of them become unusable midway through.

更にルビーやサファイヤはアルミナ多結晶焼結体に比べ
てコスI・か高いという問題かある。
Furthermore, ruby and sapphire have a problem of higher cost I than polycrystalline sintered alumina.

本発明の目的は耐磨耗性、熟及び機械的強度を向上させ
たワイヤーホンディング用キャピラリーを提f共するこ
とにある2 課題を解決するための手段 本発明は前記目的のためキャピラリーをアルミナ多結晶
焼結体で構成すると共に、その平均結晶粒子径を1μm
以下とし、かつ焼結体の密度を理論値の99%以上とし
たものである。
An object of the present invention is to provide a capillary for wire bonding with improved wear resistance, durability, and mechanical strength. Constructed of polycrystalline sintered body, with an average crystal grain size of 1 μm
and the density of the sintered body is 99% or more of the theoretical value.

結晶粒子径か1μmを越えると機械的特性すなわち曲は
強度か低下し、また密度が理論値の99%未満ではボア
ーかあり、衝撃に対して弱い。
If the crystal grain size exceeds 1 μm, the mechanical properties, ie, bending strength, will decrease, and if the density is less than 99% of the theoretical value, there will be bores and it will be weak against impact.

。特にTlしいのは殆ど全部の結晶粒子径が1μm以下
である。
. What is particularly interesting about Tl is that almost all the crystal grain sizes are 1 μm or less.

キャピラリーは図1に示すように中空孔11を有する本
体1及び細孔21を有する先端部2がら成っている。通
常本体1の外径は15〜3III11、中空孔11の径
は約0.81111前後であり、先端部の細孔は001
5〜0.1m−である。全体の長さは通常09〜13■
−て゛ある。
As shown in FIG. 1, the capillary consists of a main body 1 having a hollow hole 11 and a tip 2 having a pore 21. Normally, the outer diameter of the main body 1 is 15 to 3III11, the diameter of the hollow hole 11 is around 0.81111, and the pore at the tip is 0.011111.
5 to 0.1 m. The overall length is usually 09~13cm
-There is.

本発明の焼結体はその先端部だけでもよい。その場合は
通常池のキャピラリーと接続して使用される。
The sintered body of the present invention may be used only at its tip. In that case, it is usually used in connection with a pond capillary.

本発明のワイヤボンディング用キャピラリーの製造法は
例えばバイヤーアルミナを微粉砕し、望ましくは1μI
以下に粉砕し、これにM(10、Ni05CI−203
、Tie□、MnO,、等のアルミナの結晶成長抑制材
を添加し、更にワックス、ポリエチレン、ポリプロピレ
ン等の一次結合材を加えて混練し、これを中心にマンド
レルを有する射出成形機等によりキャピラリーに成形す
る。成形は焼結時の収縮を考慮して最終目標の20 %
程度大きくする。
The method for manufacturing the capillary for wire bonding of the present invention is, for example, by finely pulverizing Bayer alumina and desirably 1 μI
Milled into the following, M (10, Ni05CI-203
, Tie□, MnO, etc. are added, and a primary binder such as wax, polyethylene, polypropylene, etc. is added and kneaded, and this is molded into a capillary using an injection molding machine with a mandrel in the center. Shape. The molding is 20% of the final target considering shrinkage during sintering.
Increase the degree.

製造法は上記の他ツルゲル法を利用した例えばベーマイ
トを酸で溶解してゾルとし、これにαアルミナの超微粉
を種子として加えた原料を用いることも出来る(特開昭
6O−231462)。
In addition to the above-mentioned manufacturing method, for example, boehmite can be dissolved with acid to form a sol, and ultrafine α-alumina powder can be added as seeds to the raw material (Japanese Patent Laid-Open No. 6O-231462).

焼成は1200〜1300℃で行え平均結晶粒子径が1
μ園を越えないようにする。
Calcination can be performed at 1200-1300℃ and the average crystal grain size is 1
Try not to go beyond μ-en.

実施例 平均結晶粒子が1μm以下とIJin+以上の多結晶ア
ルミナ焼結体を以下の如く作成し、その特性比較を第1
表に、ワイヤーボンディングの評価試験結果を第2表に
示す。
Example A polycrystalline alumina sintered body with an average crystal grain of 1 μm or less and IJin+ or more was prepared as follows, and its characteristics were compared in the first example.
Table 2 shows the wire bonding evaluation test results.

(イ)平均粒子径0.17in+、純度9999%の高
純度アルミナ粉に同粒子径及び純度の酸化マグネシウム
粉を0.0G%(重量%、以下同じ)添加し、ボールミ
ルで湿式混合する。この混合物を80℃で24時間乾燥
する。
(a) Add 0.0 G% (wt%, same hereinafter) of magnesium oxide powder with the same particle size and purity to high-purity alumina powder with an average particle size of 0.17 inches + and a purity of 9999%, and wet mix in a ball mill. This mixture is dried at 80° C. for 24 hours.

この乾燥粉100重量部に分子量的1000のワ・ソク
スを20重量部添加し、ニーダで30分間混練りし、更
に押出機で120°Cの条件下で5回押出し、混練りし
た。
To 100 parts by weight of this dry powder, 20 parts by weight of Wa Sox having a molecular weight of 1000 was added, kneaded for 30 minutes in a kneader, and further extruded and kneaded 5 times at 120°C in an extruder.

この混練物を焼結後寸法より20%大きいキャピラリー
形状のマンドレル挿入射出成形金型に、140°C14
0kg/’cJの射出圧条件で射出成形しな。成形体は
本体の外径2.6 m、内径09−1長さ125個であ
り、テーパー状をなす先端部は長さ200μ譜で、細孔
は径30μm、長さ100μ■である。
This kneaded material was placed in a capillary-shaped mandrel insertion injection mold that was 20% larger than the sintered size at 140°C.
Injection molding is performed at an injection pressure of 0 kg/'cJ. The molded body has an outer diameter of 2.6 m, an inner diameter of 09-1, and a length of 125 pieces, the tapered tip has a length of 200 μm, and the pores have a diameter of 30 μm and a length of 100 μm.

この成形体を空気中で室温から1000’C迄焼成した
。ついで加湿水素雰囲気中で1300°Cで2 h r
 (”i持し、焼結した。
This molded body was fired in air from room temperature to 1000'C. Then, for 2 hours at 1300°C in a humidified hydrogen atmosphere.
(It was held and sintered.

(ロ)ベーマイl−<At20.  ・H2O)20g
、表面積50m2/gのu−A12o、の微粉を02g
を100ccの水中に投入し攪拌し、HNO,でPH2
前後に調整し、ツルrヒする。
(b) Behmai l-<At20.・H2O) 20g
02g of fine powder of u-A12o with a surface area of 50m2/g
Pour into 100cc of water, stir, and adjust the pH to 2 with HNO.
Adjust it back and forth and slide it around.

このゾル化物を60°□X121−z−1120°C’
<241+rゲル化、乾燥し、ブロック状に成形後、6
00°C〉、2hrでγA l 20v (ヒした・ これより図1で示すような丸棒を旋盤で切り出し、それ
を昇温速度100 ’C,/’ h rで1300°C
に加熱し、1時間保持し、焼結した9 焼結後ダイヤモンドドリルで図1に示すような中空孔及
び細孔をあけた。
This sol was heated at 60°□X121-z-1120°C'
<241+r After gelation, drying, and molding into blocks, 6
00°C>, 2 hr, γA l 20v (Hit) From this, a round bar as shown in Figure 1 was cut out using a lathe, and heated to 1300°C at a heating rate of 100'C, /' hr.
After sintering, hollow holes and pores as shown in FIG. 1 were drilled using a diamond drill.

比較例 平均粒子径04μl、純度9999%の高純度アルミナ
粉と前記の酸化マグネシウム粉を上記(イ)と同様に混
合、成形、焼成した。
Comparative Example High-purity alumina powder with an average particle size of 04 μl and a purity of 9999% and the magnesium oxide powder described above were mixed, molded, and fired in the same manner as in (a) above.

更に加湿水素雰囲気で1500°Cl2t+r保持し、
焼結してキャピラリーを得な。
Furthermore, 1500°Cl2t+r was maintained in a humidified hydrogen atmosphere.
Get a capillary by sintering.

第  1 表 第1表から明らかなように、本発明実施例である(イ)
、(ロ)のキャピラリーは、比較例のキャピラリーに比
べ、平均粒子径がlpmより小さく、曲げ強度が大きい
Table 1 As is clear from Table 1, this is an example of the present invention (a)
The capillary of (b) has an average particle diameter smaller than lpm and a higher bending strength than the capillary of the comparative example.

次に、これらのキャピラリー及びルビーより形成したキ
ャピラリーを用いてワイヤポンディング試験を行なった
Next, a wire bonding test was conducted using these capillaries and a capillary made of ruby.

それぞれのキャピラリーを5個用意し、同一条件のもと
に金線でポンディングを行ない、ポンディング回数と導
線の接続状態の関係を調べた結果、それぞれの平均値は
第2表の通りであった。
Five capillaries of each type were prepared and bonded with gold wire under the same conditions, and the relationship between the number of bonding cycles and the connection state of the conductor wires was investigated, and the average values for each were as shown in Table 2. Ta.

第2表 0:異常なし、Δ:ワイヤーの接続不良が若干発生×:
ワイヤーの接続不良が多発し、使用不能〔発明の効果〕 ワイヤポンディング用キャピラリーの少なくとも先端部
を平均結晶粒子径がIpm以下、密度が理論密度の39
%以上のアルミナ多結晶セラミックスにより形成したこ
とによって1強度、耐摩耗性が大きく、欠けや寿命が長
くなり、従来の粒径の大きいアルミナ多結晶セラミック
ス或はアルミナ単結晶より優れている。
Table 2 0: No abnormality, Δ: Slight wire connection failure ×:
Wire connection failures frequently occur, making it unusable. [Effect of the invention] At least the tip of the wire bonding capillary has an average crystal grain size of Ipm or less and a density of 39% of the theoretical density.
% or more of alumina polycrystalline ceramic, it has high strength, wear resistance, and long life against chipping, and is superior to conventional alumina polycrystalline ceramics with large grain size or alumina single crystal.

アルミナ単結晶の場合は、いったんクラックが発生する
と、!iml、熱衝撃を受けて、すぐ伝播する。又平均
結晶粒子径の大きいアルミナ多結晶セラミックスは強度
があまり大きくないこと、ポアーが存在することで、ク
ラックはアルミナ単結晶に比して、発生しやすいが、伝
播しにくいと推定される。
In the case of alumina single crystal, once a crack occurs,! iml, which propagates quickly after receiving a thermal shock. Furthermore, since alumina polycrystalline ceramics having a large average crystal grain size do not have very high strength and have pores, cracks are more likely to occur than alumina single crystals, but it is presumed that they are less likely to propagate.

これらに比べて、結晶の平均粒子径がlpmより小さい
緻密なアルミナ多結晶セラミックスは、強度が大きく、
クラックも発生しに〈〈、又ボアーも少ない為クラック
の伝播も少ない為と考えられる。
Compared to these, dense alumina polycrystalline ceramics with an average grain size of less than lpm have greater strength and
This is thought to be because cracks do not occur, and since there are few bores, crack propagation is also small.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のワイヤポンディング用キャピラリーの正
面図である。 l・・・・・・本体、2・・・・・・先端部、11・・
・・・・中空孔21・・・・・・細孔
FIG. 1 is a front view of a capillary for wire bonding according to the present invention. l...Main body, 2...Tip, 11...
...Hollow hole 21...Small pore

Claims (1)

【特許請求の範囲】[Claims] 少なくとも先端部が平均結晶粒子径1μm以下、密度が
理論密度の99%以上のアルミナ多結晶焼結体からなる
ワイヤボンディング用キャピラリー
A capillary for wire bonding that is made of an alumina polycrystalline sintered body with at least the tip portion having an average crystal grain size of 1 μm or less and a density of 99% or more of the theoretical density.
JP63219888A 1988-09-01 1988-09-01 Capillary for wire bonding Pending JPH0267741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219888A JPH0267741A (en) 1988-09-01 1988-09-01 Capillary for wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219888A JPH0267741A (en) 1988-09-01 1988-09-01 Capillary for wire bonding

Publications (1)

Publication Number Publication Date
JPH0267741A true JPH0267741A (en) 1990-03-07

Family

ID=16742619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219888A Pending JPH0267741A (en) 1988-09-01 1988-09-01 Capillary for wire bonding

Country Status (1)

Country Link
JP (1) JPH0267741A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349512B1 (en) * 1999-08-28 2002-08-21 주식회사 페코 Antistatic capillary or wedge
US6651864B2 (en) * 1999-02-25 2003-11-25 Steven Frederick Reiber Dissipative ceramic bonding tool tip
KR100413033B1 (en) * 2001-07-04 2003-12-31 주식회사 코스마 Sintered material for polycrystalline ruby capillary used in wire bonding and method for manufacturing the same
KR100413034B1 (en) * 2001-07-04 2003-12-31 주식회사 코스마 Sintered material for multi color capillary used in wire bonding and method for manufacturing the same
US7032802B2 (en) 1999-02-25 2006-04-25 Reiber Steven F Bonding tool with resistance
US7124927B2 (en) 1999-02-25 2006-10-24 Reiber Steven F Flip chip bonding tool and ball placement capillary
US7389905B2 (en) 1999-02-25 2008-06-24 Reiber Steven F Flip chip bonding tool tip
JP2009540624A (en) * 2006-07-03 2009-11-19 クリック アンド ソッファ インダストリーズ、インク. Bonding tool with improved finish
CN102304806A (en) * 2011-09-01 2012-01-04 吴江市隆泰喷织厂 Shock absorbing device of water-jet loom
JP5376413B1 (en) * 2013-01-25 2013-12-25 Toto株式会社 Bonding capillary
JP5614603B1 (en) * 2013-12-03 2014-10-29 Toto株式会社 Bonding capillary

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6651864B2 (en) * 1999-02-25 2003-11-25 Steven Frederick Reiber Dissipative ceramic bonding tool tip
US6935548B2 (en) 1999-02-25 2005-08-30 Steven-Frederick Reiber Dissipative ceramic bonding tool tip
US7032802B2 (en) 1999-02-25 2006-04-25 Reiber Steven F Bonding tool with resistance
US7124927B2 (en) 1999-02-25 2006-10-24 Reiber Steven F Flip chip bonding tool and ball placement capillary
US7389905B2 (en) 1999-02-25 2008-06-24 Reiber Steven F Flip chip bonding tool tip
KR100349512B1 (en) * 1999-08-28 2002-08-21 주식회사 페코 Antistatic capillary or wedge
KR100413033B1 (en) * 2001-07-04 2003-12-31 주식회사 코스마 Sintered material for polycrystalline ruby capillary used in wire bonding and method for manufacturing the same
KR100413034B1 (en) * 2001-07-04 2003-12-31 주식회사 코스마 Sintered material for multi color capillary used in wire bonding and method for manufacturing the same
JP2009540624A (en) * 2006-07-03 2009-11-19 クリック アンド ソッファ インダストリーズ、インク. Bonding tool with improved finish
CN102304806A (en) * 2011-09-01 2012-01-04 吴江市隆泰喷织厂 Shock absorbing device of water-jet loom
JP5376413B1 (en) * 2013-01-25 2013-12-25 Toto株式会社 Bonding capillary
CN103962713A (en) * 2013-01-25 2014-08-06 Toto株式会社 Welding chopper
TWI466751B (en) * 2013-01-25 2015-01-01 Toto Ltd Welding needle
CN108436251A (en) * 2013-01-25 2018-08-24 Toto株式会社 Weld chopper
KR20180134806A (en) * 2013-01-25 2018-12-19 토토 가부시키가이샤 Bonding capillary
JP5614603B1 (en) * 2013-12-03 2014-10-29 Toto株式会社 Bonding capillary

Similar Documents

Publication Publication Date Title
JPH0267741A (en) Capillary for wire bonding
US4552852A (en) Alumina ceramic comprising a siliceous binder and at least one of zirconia and hafnia
US8012897B2 (en) Alumina ceramic products
US2136096A (en) Cellular insulating refractory
US6123743A (en) Glass-ceramic bonded abrasive tools
CN110590341B (en) Sagger for sintering sol-combined lithium battery positive electrode material and preparation method thereof
US8992808B2 (en) Method of manufacturing pre-sintered Si-mixture granule for porous sintered reaction-bonded silicon nitride, porous pre-sintered granule manufactured by the method, and method of manufacturing porous sintered reaction-bonded silicon nitride
US20090036291A1 (en) Grinding beads and method of producing the same
US5185215A (en) Zirconia toughening of glass-ceramic materials
JP2003128473A (en) Ceramic bonded body and its manufacturing method
ES2685711T3 (en) Composite material with an aluminosilicate matrix, specifically barium aluminosilicate &#34;BAS&#34;, reinforced with metal oxide reinforcements and its manufacturing process
JP3566678B2 (en) Capillary for wire bonding
JPH04149065A (en) High strength precision parts
JP2527744B2 (en) Structure included in electronic circuit packaging and manufacturing method
JP2008100892A (en) Member for vacuum chuck composed of porous alumina sintered compact, and its production method
KR101896031B1 (en) Method for mamufacturing a high-strength capillary for semiconductor wire bonding and capillary mamufactured thereby
CN106278308B (en) A method of addition magnesium-rich spinel micro mist prepares zirconium oxide metering nozzle
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
JPH10310467A (en) Alumina-silicon carbide nanocomposite for ball bonding capillary for wire bonding device and its production
WO2010023813A1 (en) Method for manufacturing silicon nitride-bonded sic refractory material
JP2005159070A (en) Bonding capillary
JPH01192761A (en) Ingot azs refractory composition
KR100696414B1 (en) Sintered material for capillary used in wire bonding and method for manufacturing the same
JPH0471336B2 (en)
JP2748381B2 (en) High strength colored zirconia sintered body