JPH0267715A - Aligner and its exposure - Google Patents

Aligner and its exposure

Info

Publication number
JPH0267715A
JPH0267715A JP63218303A JP21830388A JPH0267715A JP H0267715 A JPH0267715 A JP H0267715A JP 63218303 A JP63218303 A JP 63218303A JP 21830388 A JP21830388 A JP 21830388A JP H0267715 A JPH0267715 A JP H0267715A
Authority
JP
Japan
Prior art keywords
sample
optical system
mask
light
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218303A
Other languages
Japanese (ja)
Inventor
Hiroshi Morioka
洋 森岡
Yukio Uto
幸雄 宇都
Yoshimasa Oshima
良正 大島
Mitsuyoshi Koizumi
小泉 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63218303A priority Critical patent/JPH0267715A/en
Publication of JPH0267715A publication Critical patent/JPH0267715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the pattern defect of a sample and to improve the yield of thick film and thin film circuits, a printed board and the like by a method wherein an aligner provided with a function to inspect foreign substances on the surface of the sample and the surface of a mask is installed in a clean chamber. CONSTITUTION:In a foreign substance inspection device of a falling irradiation illumination detection system, light emitted from a light source 31 is made to pass through a change-over device 32 for the quantity of light, a linear optical system 33 and a half mirror 36 and illuminates the upper part of a sample 37 in a linear form 38. A reflected light from the sample 37 is made to pass through the mirror 36 and an image is formed on a one-dimensional solid-state image sensing element 46 by a condenser 44. A signal from the element 46 is displayed on a foreign substance display part 49 via a binary circuit 47 and an arithmetic circuit 48. A cylindrical lens 34 it used as a linear optical element of the optical system 33 and a semiconductor laser is used as the light source 31. Moreover, a light-shielding optical system 45 is provided between the condenser 44 and the element 46 and its position is corresponded to the Fourier transform surface of the condenser 44.

Description

【発明の詳細な説明】 〔腫東上の利用分野〕 本発明は、シリコンウェハ、バブルウェハ、セラミック
基板、プリント基板などにマスクに設げた所定のパター
ンを焼きつける31−3’e、装置およびその方法に関
するものである。
[Detailed Description of the Invention] [Field of Application on Mado] The present invention relates to a 31-3'e, an apparatus, and a method for printing a predetermined pattern provided on a mask onto a silicon wafer, bubble wafer, ceramic substrate, printed circuit board, etc. It is something.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−17247 号に記載のよ
うに、露光位置で、ウェハ上にマスクのパターンを露光
焼付する露光方法において、ウニへ食形化位置で、ウェ
ハの表面の(1数箇所のウニへ尚さを測定し、かつ露光
位置において、移動可能なマスク高さ測定器により、マ
スク表面の複数置所のマスク高さを測定し、これらの結
果にもとづき、ウェハを吸着保持するチャックの複数箇
所で、各々独立して上下方向に微動させて、ウェハとマ
スクとのギャップを均一化するようにウェハを変形させ
た後、上記マスク高さ測定器を露光位置より待避させ、
上記露光位置へ、変形したウェハをチャックとともに露
光位置へ移動させて露光するようになっていた。
As described in JP-A-59-17247, the conventional apparatus uses an exposure method in which a mask pattern is exposed and printed on a wafer at an exposure position. Measure the thickness of the sea urchin at several locations, and at the exposure position, measure the mask height at multiple locations on the mask surface using a movable mask height measuring device.Based on these results, the wafer is held by suction. After deforming the wafer so as to equalize the gap between the wafer and the mask by slightly moving the chuck independently in the vertical direction at multiple locations, the mask height measuring device is retracted from the exposure position,
The deformed wafer is moved together with the chuck to the exposure position and exposed.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

上記従来技術は、露光直前におけるマスクの表裏両面及
びウェハ表面上の異物の存在に関して配慮されておらず
、以下の課題かあった。
The above-mentioned conventional technology does not take into account the presence of foreign matter on both the front and back surfaces of the mask and on the wafer surface immediately before exposure, and has the following problems.

1) レジスト表面に付層した異物によりマスクのパタ
ーン面が傷つけられる。
1) The pattern surface of the mask is damaged by foreign matter deposited on the resist surface.

2) マスクのパターン側に付層した異物によりレジス
ト表面が傷つげられる。
2) Foreign matter attached to the pattern side of the mask damages the resist surface.

5) 設定ギャップより大きい異物忙よりマスクとウニ
4間のギャップ不良を引き起こす。
5) Foreign matter larger than the set gap causes a gap failure between the mask and the sea urchin 4.

4)マスクの表面又は裏面上に付層した異物やウェハ上
の異物により転写不良を引き起こす。
4) Foreign matter deposited on the front or back surface of the mask or foreign matter on the wafer causes transfer defects.

本発明の目的は、上記の問題を解決し、半導体や8気バ
ブル、連層・薄膜回路やプリント基板などの歩留まりを
向上させるようにした露光装置およびその方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exposure apparatus and method that solves the above-mentioned problems and improves the yield of semiconductors, 8-air bubbles, multilayer/thin film circuits, printed circuit boards, and the like.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、試料表面およびマスク面を異物検査する機
能を備え付けた露光装置をクリーンチャンバ内に設置す
ることにより、達成される。
The above object is achieved by installing in a clean chamber an exposure device equipped with a function of inspecting the sample surface and the mask surface for foreign substances.

また、異物検査機能を備え付けるため、他の部分のコン
パクト化を図る必要がある。それは、試料高さとマスク
高さを1つの測定器で測定することにより達成される。
In addition, since it is equipped with a foreign object inspection function, it is necessary to make other parts more compact. It is achieved by measuring the sample height and mask height with one measuring instrument.

〔作用〕[Effect]

露光装置において、クリーンチャンバ内に設置すること
により、クリーンチャンバ内では異物が発生しない芥囲
気を作っている。また、異物検査a能で試料表面および
マスク面上の異物を検査する。異物が存在していれば、
露光焼付を行わず、異物を除去して再度露光工程を行う
。それによって、異物の無い状態でg元焼付を行うこと
かできるので、試料のパターン欠陥を生じなくなる。
By installing the exposure apparatus in a clean chamber, an atmosphere is created within the clean chamber in which no foreign matter is generated. In addition, foreign matter on the sample surface and mask surface is inspected using the foreign matter inspection function. If a foreign object is present,
The exposure process is performed again after removing foreign matter without performing exposure printing. As a result, g-base printing can be performed in the absence of foreign matter, thereby eliminating pattern defects in the sample.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。露光光学系1とアライメント光学系2とマスクチャ
ック6とパターンaを有−f;E:rマスク5とマスク
と基板の間隙測定器6と基板7を真空e、漕した基板変
形チャック8と異物検査器9とマスクアンローダ−10
と基板アンローダ−11とコントa−ラ12とクリーン
チャンバ15から構成されている。次に、本露光装置に
ついて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The exposure optical system 1, the alignment optical system 2, the mask chuck 6, and the pattern a are present. Inspection device 9 and mask unloader 10
, a substrate unloader 11 , a controller 12 , and a clean chamber 15 . Next, the present exposure apparatus will be explained.

まず、異物検査エリア21でマスク5の異物検査を行う
。この異物情報は、コン)a−ラ12に送られマスク5
に異物が無けれはアンロードエリア22を通過し、露光
エリア23にセクトされる(ar。マスク5に異物が有
れば、アンロードエリア22から洗浄工程に送られる(
hl。同様に、異物検査エリア21で基板7の異物検査
を行う。基板7に異物が無けれはアンロードエリア22
を通過し、露光エリア25にセットされる工α1゜基板
7に異物が有れば、アンロードエリア22から洗浄工程
に送られる(bl。ここで、異g:J検査におけるスキ
ャン方法は、異物検査器9は固定であるため、マスク5
と基板7をスキャンして異物検査を行う。露光エリア2
3にマスク5と基板7がセットされれば、間隙測定器6
を移動し、間隙が一定値になるように基板変形チャック
8を枢動して快く。基板変形チャック8は、溝により分
割されたチャック面と引張りバネと上下動台とチャック
面の左右ずれ止め(図示せず)からなり間隙測定値によ
りコントローラ12で、上下動台をIjAIXIJする
。間隙測定器6がマスク5・基板7の間を抜けると、間
隙12は一定(又は、Pfr望の僅〕罠なる。間隙測定
器6を戻す時に間隙を確認し、許容値内ならば、基板変
形チャツク8全体を上下駆動系により上昇させ、所望の
間麺で一時停止する。
First, the mask 5 is inspected for foreign substances in the foreign substance inspection area 21 . This foreign material information is sent to the controller 12 and the mask 5
If there is no foreign matter on the mask 5, it passes through the unload area 22 and is sected to the exposure area 23 (ar. If there is any foreign matter on the mask 5, it is sent from the unload area 22 to the cleaning process (ar).
hl. Similarly, the substrate 7 is inspected for foreign matter in the foreign matter inspection area 21. If there is no foreign matter on the board 7, unload area 22
If there is any foreign matter on the workpiece α1° substrate 7 that passes through and is set in the exposure area 25, it is sent to the cleaning process from the unload area 22 (bl. Here, the scanning method in the foreign Since the inspection device 9 is fixed, the mask 5
and scans the board 7 to perform a foreign matter inspection. Exposure area 2
3, the mask 5 and substrate 7 are set, the gap measuring device 6
, and pivot the substrate deformation chuck 8 so that the gap becomes a constant value. The substrate deforming chuck 8 is composed of a chuck surface divided by grooves, a tension spring, a vertically moving table, and a left-right shift stopper (not shown) for the chuck surface, and the vertically moving table is controlled by the controller 12 according to the gap measurement value. When the gap measuring device 6 passes between the mask 5 and the substrate 7, the gap 12 becomes constant (or slightly below the desired Pfr). When returning the gap measuring device 6, check the gap, and if it is within the allowable value, the substrate The entire deformed chuck 8 is raised by a vertical drive system and temporarily stopped at a desired length of noodles.

ここで、アライメント元学系2により基板7、マスク5
を7ライメントし、アライメント終了恢までに基板変形
チャック8を上昇し、P9r望の露光間隙にセットし、
アライメント元学系2を退避し露光する。
Here, according to alignment element system 2, substrate 7, mask 5
7 alignments, and by the end of the alignment, raise the substrate deformation chuck 8 and set it to the desired exposure gap P9r.
Evacuate alignment source system 2 and expose.

間@測定器6には、空気マイクロメータ、電磁気型測定
器、静電容量形測定器、超音技利用の測定器などが考え
られる。
Possible examples of the measuring device 6 include an air micrometer, an electromagnetic measuring device, a capacitive measuring device, and a measuring device using ultrasonic technology.

また、基′&父父上上下動素子しては、モータに連結さ
れたネジの他にピエゾ索子などがある。
In addition to the screw connected to the motor, the base and father vertically moving elements include piezo cables and the like.

次に、14物検査エリア21における異物検査法につい
て説明する。まず、マスク5を異物検査した後は、異物
検査器9を下降し、基板7の異物検査を行う。したがっ
て、1つの異物検査器で、マスク5と基板7を測定でき
る構成と成っている。ここで、この異物検査器9は、元
蓋切換えを有するものと成っている。マスク5と基板7
では1反射率が異なるため、それに対応するためである
。元意切換えの手段としては、AO変調器、PLZT(
を気光学結晶)などがある。
Next, a foreign object inspection method in the 14-object inspection area 21 will be explained. First, after inspecting the mask 5 for foreign matter, the foreign matter inspection device 9 is lowered and the substrate 7 is inspected for foreign matter. Therefore, the structure is such that the mask 5 and the substrate 7 can be measured with one foreign substance inspection device. Here, this foreign matter inspection device 9 has a main cover switch. Mask 5 and substrate 7
This is to accommodate the difference in reflectance. As means for switching the original purpose, AO modulator, PLZT (
There are also optical crystals).

以上の路光工程の流れを第3図に示している。The flow of the above path light process is shown in FIG.

次KX物検査器について説明する。まず、第4図にf8
射照明検出方式のみ備えた異物検査器を示す。光源31
から出た光は、光量切換え器62.腺状光学系33.ハ
ーフミラ−36を通って試料37上を嶽状58に照明す
る。試料57からの反射光は、ハーフミラ−36を通り
、集光レンズ44によって一次元固体撮像素子46上に
結像する。一次元固体撮像菓子46からの信号は、二値
化回路47.演算回路48を経て異物表示部49 K表
示される。なお、本実施例では、線状光学系53の線状
光学素子としてシリンドリカルレンズ54を、また、光
源31として半導体レーザを用いている。さらに、集光
レンズ44と一次元固体撮像素子46の間には還元光学
系45を設けてあり、その位置は集光レンズ44のフー
リエ入換面忙相当する。
Next, the KX object inspection device will be explained. First, in Figure 4, f8
This shows a foreign object inspection device equipped with only an irradiation detection method. light source 31
The light emitted from the light intensity switch 62. Glandular optical system 33. The sample 37 is illuminated in a concave shape 58 through a half mirror 36. The reflected light from the sample 57 passes through the half mirror 36 and is imaged onto the one-dimensional solid-state image sensor 46 by the condenser lens 44 . The signal from the one-dimensional solid-state imaging confectionery 46 is transmitted to the binarization circuit 47. After passing through the arithmetic circuit 48, it is displayed on the foreign object display section 49K. In this embodiment, a cylindrical lens 54 is used as the linear optical element of the linear optical system 53, and a semiconductor laser is used as the light source 31. Furthermore, a reduction optical system 45 is provided between the condenser lens 44 and the one-dimensional solid-state image sensor 46, and its position corresponds to the Fourier exchange plane of the condenser lens 44.

謁5図に試料37上の1貼パターンを示す。また。Figure 5 shows the pattern of one patch on sample 37. Also.

m 6 VQCi&元光学系45における遮光板の形状
を示す。記6図(α)の遮光板は、落射照明検出方式の
時のみ必要とし、試料37上に回路パターンが無い場合
に用い、試料37上からの正反射光を連光し、試料37
上の異物からの散乱光のみを通過させようとするもので
ある。藁6図(邊)の遮光板は、論4図に示す試料37
上の55および56のような回路パターンからの散乱光
を遮光し、異物からの散乱光のみを通過させるの忙用い
、また、講6図tc+の遮光板は、第5図に示す試料3
7上の57および58のような回路パターンからの散乱
光を遮光し、異物からの散乱光のみを通過させるのく用
いる。したがって、これらの遮光板は、試料上の回路パ
ターンの形状により任意に交換可能な構成になっている
m 6 VQCi & The shape of the light shielding plate in the original optical system 45 is shown. The light shielding plate shown in Figure 6 (α) is required only when using the epi-illumination detection method, and is used when there is no circuit pattern on the sample 37.
This is intended to allow only the scattered light from the foreign object above to pass through. The light shielding plate shown in Figure 6 (side) is the sample 37 shown in Figure 4.
The light-shielding plate shown in Figure 6 tc+ is used to block the scattered light from the circuit patterns 55 and 56 above and to pass only the scattered light from foreign objects.
It is used to block scattered light from circuit patterns such as 57 and 58 on 7, and to allow only scattered light from foreign objects to pass through. Therefore, these light shielding plates are configured to be replaceable as desired depending on the shape of the circuit pattern on the sample.

i@7図に落射照明検出方式異物検査器の部分構成図を
示す。落射照明検出方式では、帛7図(α1のようにハ
ーフミラ−36が集光レンズ44の上側にある場合が考
えられる。しかし、X方向から試料37を照明しB方向
に検出する場合も、C方向から試料37を照明しD方向
に検出する場合も、集光レンズ44からの反射光による
迷光な検出gaK伴ない、その光学ノイズによる異物検
出性能の低下をもたらす。そこで、照明による光学ノイ
ズを無くすために1本発明装置では、第7図[,61に
示すようにハーフミラ−36は集光レンズ54の下側に
配置している。
i@Figure 7 shows a partial configuration diagram of the epi-illumination detection type foreign object inspection device. In the epi-illumination detection method, there is a case where the half mirror 36 is located above the condenser lens 44 as shown in Figure 7 (α1).However, when the sample 37 is illuminated from the X direction and detected in the B direction, the C Even when the sample 37 is illuminated from the direction and detected in the D direction, stray light is detected due to the reflected light from the condenser lens 44, and the foreign object detection performance is degraded due to the optical noise.Therefore, the optical noise due to the illumination is In order to eliminate this problem, in the apparatus of the present invention, the half mirror 36 is disposed below the condenser lens 54, as shown in FIG. 7[, 61].

第8図に線状光走査方法の説明−を示す。試料57上に
照明された線状光38の長手方向(X方向)の幅αは、
X方向の検査範囲に相当する。したがって、試料37上
の検査領域の全てを検査するために、試料37を固定し
ているステージ50あるいは検査器自体をY方向に移動
する。ゆえに、従来用いられていた試料上全面スポット
走査方式に較べ大喝な検査時間の短縮を図ることができ
る。
FIG. 8 shows an explanation of the linear light scanning method. The width α in the longitudinal direction (X direction) of the linear light 38 illuminated on the sample 57 is:
This corresponds to the inspection range in the X direction. Therefore, in order to inspect the entire inspection area on the sample 37, the stage 50 fixing the sample 37 or the inspection device itself is moved in the Y direction. Therefore, the inspection time can be significantly reduced compared to the conventionally used spot scanning method for the entire surface of the sample.

次に、第9図に斜方照明検出方式のみ備えた異物検査器
を示す。光源39から出た光は、光路切換え器40.N
M状光学系41を経て、試料37上を線状38に照明す
る。試料37からの反射光は、集光レンズ44.遮光光
学系45.一次元固体燻像索子46の検出光学系に入る
。一次元固体撮像素子46からの信号は、二値化回路4
7.演算回路48を経て異物表示部49に表示される。
Next, FIG. 9 shows a foreign object inspection device equipped only with an oblique illumination detection method. The light emitted from the light source 39 passes through the optical path switch 40. N
The sample 37 is illuminated linearly 38 through an M-shaped optical system 41 . The reflected light from the sample 37 is collected by a condenser lens 44. Shading optical system 45. It enters the detection optical system of the one-dimensional solid-state smoked probe 46. The signal from the one-dimensional solid-state image sensor 46 is transmitted to the binarization circuit 4
7. It is displayed on the foreign object display section 49 via the arithmetic circuit 48.

なお、本実施例では、線状光学系40の線状光学素子と
してシリンドリカルレンズ42を、また、光源39とし
て半導体レーザな用いている。遮光光学系45における
還元板の形状は第6因に、また、線状光走査法は巣8図
に示したのと同様である。
In this embodiment, a cylindrical lens 42 is used as the linear optical element of the linear optical system 40, and a semiconductor laser is used as the light source 39. The shape of the reduction plate in the light-shielding optical system 45 is the same as that shown in the sixth factor, and the linear light scanning method is the same as that shown in Figure 8.

次忙、第10図に落射照明検出方式と斜方照明検出方式
を備えた異物検査器を示す。落射照明検出系にお輩ては
、光源31から出た光は、光量切換え器52 、 i状
光学系35.ハーフミラ−36を通って試料37上を線
状38 K照明する。試料37からの反射光は、ハーフ
ミラ−56を通り、集光レンズ44によって一次元固体
射像素子46上に結像する。集光レンズ44と一次元固
体撮像累子46の間には遮光光学系を設げている。一次
元固体撮像素子46からの信号は、二値化回路47.演
算回路48を経て異物表示部49に表示される。また、
斜方照明検出系においては、光源39から出た光は、光
量切換え器401s状光学系41を経て試料37上を線
状58に照明する。試料57からの反射光は、落射照明
検出系と同様、ハーフさチー5618光レンズ44.遮
光光学系45.一次元固体撮像素子46の検出光学系に
入り、一次元固体撮像素子46からの信号は、二値化回
路47.演算回路48を経て異物表示部49に表示され
る。なお、本実施例では、線状光学系55オよび41の
線状光学素子としてシリンドリカルレンズ34および4
2を、また、光源31および39として半導体レーザを
用いている。遮光光学系45における還元板の形状はa
t!6図に、また、線状光走査方法は第8図に示したの
と同様である。
Figure 10 shows a foreign object inspection device equipped with an epi-illumination detection method and an oblique illumination detection method. In the epi-illumination detection system, the light emitted from the light source 31 is passed through a light amount switch 52, an i-shaped optical system 35. A linear 38 K illumination is applied onto the sample 37 through the half mirror 36. The reflected light from the sample 37 passes through the half mirror 56 and forms an image on the one-dimensional solid-state imaging element 46 by the condenser lens 44 . A light shielding optical system is provided between the condenser lens 44 and the one-dimensional solid-state imaging element 46. The signal from the one-dimensional solid-state image sensor 46 is transmitted to a binarization circuit 47. It is displayed on the foreign object display section 49 via the arithmetic circuit 48. Also,
In the oblique illumination detection system, the light emitted from the light source 39 illuminates the sample 37 in a linear form 58 through the light intensity switch 401s-shaped optical system 41. Similar to the epi-illumination detection system, the reflected light from the sample 57 is transmitted through the half-sky 5618 light lens 44. Shading optical system 45. The signal from the one-dimensional solid-state image sensor 46 enters the detection optical system of the one-dimensional solid-state image sensor 46, and the signal from the one-dimensional solid-state image sensor 46 is input to the binarization circuit 47. It is displayed on the foreign object display section 49 via the arithmetic circuit 48. In addition, in this embodiment, the cylindrical lenses 34 and 4 are used as the linear optical elements of the linear optical systems 55 and 41.
In addition, semiconductor lasers are used as the light sources 31 and 39. The shape of the reduction plate in the light shielding optical system 45 is a
T! The linear light scanning method shown in FIG. 6 is the same as that shown in FIG.

第11因に落射照明検出方式と斜方照明検出方式を備え
た異物検査器の使用手順のフローチャートを示す。試料
37上の回路パターンの有無および試料37の平坦11
により照明検出系を選択し、試料37上の回路パターン
の形状により遮光板を選択するようになっている。
The eleventh factor is a flowchart of a procedure for using a foreign object inspection device equipped with an epi-illumination detection method and an oblique illumination detection method. Presence or absence of circuit pattern on sample 37 and flatness 11 of sample 37
The illumination detection system is selected according to the following, and the light shielding plate is selected according to the shape of the circuit pattern on the sample 37.

マスクは平坦度が高(、基板は平坦度が低いため、主に
マスク側の異物検査は斜方照明検出方式を用い、基板側
の異物検査は落射照明検出方式を用いる。
Since the mask has a high degree of flatness (and the substrate has a low degree of flatness), the oblique illumination detection method is mainly used to inspect for foreign particles on the mask side, and the epi-illumination detection method is used to inspect for foreign particles on the substrate side.

次に他の実施例について説明する。Next, other embodiments will be described.

第12図、第13図、第14図は異物検査器9とアライ
メント光学系2が一体化した例である。まず、基板異物
検査エリア24で異物検査器9を下降@し基板変形チャ
ック8に真空吸着された基板7の異物検査を行う。この
異物情報はコン)o−ラ12に送られる。基板7Vc異
物が有れば、その基板7は洗浄工程に送られ+01次の
基板7’fd+を異物検査する。
12, 13, and 14 are examples in which the foreign object inspection device 9 and the alignment optical system 2 are integrated. First, the foreign matter detector 9 is lowered in the substrate foreign matter inspection area 24, and the substrate 7 vacuum-adsorbed by the substrate deformation chuck 8 is inspected for foreign matter. This foreign object information is sent to controller 12. If there is any foreign matter on the substrate 7Vc, that substrate 7 is sent to a cleaning process and the +01-order board 7'fd+ is inspected for foreign matter.

基板7に異物が無けれは露光エリア23に移動する(g
l。基板7の異物検査が終了すると、異物検査器fi9
を上昇0させ、水平移動0し、A!lエリア25に移動
する。次に、マスクチャック5にセットされているマス
ク5の異物検査を行う。マスク5に異物が有ればアンミ
ードし、σ)、洗浄し再度マスクチャック3にセットし
くりマスク5の異物検査を行う。マスク5に異物が無げ
れば、あるいは無くなれば、マスク5の異物検査を終了
する。ここで、異物検査におけるスキャン方法は、基板
7の異物検査を行うときは、基板7をスキャンする。ま
た=マスク5の異物検査を行うときは、異物検査器9を
スキャンする。次に、マスク5と基板70間隙を一定値
に設定し、マスク5と基板7のアライメントを異物検査
器9内にあるアライメント光学系2で行い、マスク5と
基板7を露光間隙値に設定後、異物検査器9を退避し露
光する。
If there is no foreign matter on the substrate 7, move to the exposure area 23 (g
l. When the foreign matter inspection of the board 7 is completed, the foreign matter inspection device fi9
Raise to 0, horizontally move to 0, A! Move to area 25. Next, the mask 5 set on the mask chuck 5 is inspected for foreign substances. If there is any foreign matter on the mask 5, it is unmeaded (σ), cleaned, and set on the mask chuck 3 again, and the mask 5 is inspected for foreign matter. If there is no foreign matter on the mask 5, or if it disappears, the foreign matter inspection of the mask 5 is completed. Here, in the scanning method for foreign matter inspection, when inspecting the substrate 7 for foreign matter, the substrate 7 is scanned. Further, when inspecting the mask 5 for foreign substances, the foreign substance detector 9 is scanned. Next, the gap between the mask 5 and the substrate 70 is set to a constant value, and alignment of the mask 5 and the substrate 7 is performed using the alignment optical system 2 in the foreign object inspection device 9. After setting the mask 5 and the substrate 7 to the exposure gap value, , the foreign object detector 9 is retracted and exposed.

次に、本笑施例における異物検査器9について説明する
。第15図はアライメント光学系2が北10図の異物検
査器に組込まれた場合である。ライトガイド70に導入
された光は、ノ1−フミラー71α。
Next, the foreign object inspection device 9 in this embodiment will be explained. FIG. 15 shows a case where the alignment optical system 2 is incorporated into the foreign object inspection device shown in FIG. The light introduced into the light guide 70 passes through a nof mirror 71α.

71hにより反射され、マスク5上のアライメントマー
ク80α、80b及び、基板Z上のアライメントマーク
81α、81bを照明する。そのアライメントマークを
集光レンズ40α、40bを通して、−次冗固体撮像累
子73α、75bで検出する。その後、一次元固体撮像
素子駆動回路74.インターフェース回路75#計算a
76、コントa−ラフ7を介して、マスク5のアライメ
ントマーク80α、80bに基板7を駆動し″′C基板
7のアライメントマーク81α。
71h, and illuminates the alignment marks 80α, 80b on the mask 5 and the alignment marks 81α, 81b on the substrate Z. The alignment mark is detected by the redundant solid-state imaging elements 73α and 75b through the condenser lenses 40α and 40b. After that, the one-dimensional solid-state image sensor driving circuit 74. Interface circuit 75# calculation a
76. Drive the substrate 7 to the alignment marks 80α, 80b of the mask 5 via the contour 7.''C alignment mark 81α of the substrate 7.

81bを合わせ、アライメントを完了する。81b to complete the alignment.

【図面の簡単な説明】[Brief explanation of the drawing]

藁1図は本発明の露光装置の一実施例を示す正面図、纂
2図は帛1図に示す装置の勘きを示す平面図、巣3図は
本発明に係る露光工程のフローチャートを示す因、第4
図は本発明に係る異物検査器を説明するだめの図、第5
図は試料上の回路パターンを示す図、第6図は異物検査
器における連光板の形状を示す囚、第7図は本発明に係
る落射照明検出方式の異物検査器を示す部分構成図、第
8図は本発明に係る線状光°走査方法な説明するための
図、第9図及び第10−は各々本発明に係る他の異物検
査器を説明するための図、第11図は本発明に係る落射
照明検出方式と斜方照明検出方式を備えた異物検査器の
使用手順のフローチャートを示す図、第12図は本発明
の露光装置の他の一実施例を示す正面図、集16図及び
@14図は各々第12図に示す装置の動きを示す平面図
、第15図は本発明に係るアライメント光学系が一体化
された異物検出器を説明するだめの図である。 符号の説明 1・・・露光光学系 3・・・マスクチャック 5・・・マスク 7・・・基板 9・・・異物検出器 2・・・アライメント光学系 4・・・パターン 6・・・間隙測定器 8・・・基板変形チャック 12・・・コントa−ラ 〒2図 45図 〒4図 (α) m5図 ¥56図 (b) 48図 (C) 弼7図 〒a図 410図 412図 倦11図
Figure 1 is a front view showing an embodiment of the exposure apparatus of the present invention, Figure 2 is a plan view showing the concept of the apparatus shown in Figure 1, and Figure 3 is a flowchart of the exposure process according to the present invention. Cause, 4th
The figure is a fifth diagram for explaining the foreign object inspection device according to the present invention.
The figure shows a circuit pattern on a sample, FIG. 6 shows the shape of a continuous light plate in a foreign object detector, and FIG. 7 shows a partial configuration of a foreign object detector using epi-illumination detection method according to the present invention. Figure 8 is a diagram for explaining the linear light scanning method according to the present invention, Figures 9 and 10 are diagrams for explaining other foreign object inspection devices according to the present invention, and Figure 11 is a diagram for explaining the present invention. FIG. 12 is a diagram showing a flowchart of the procedure for using a foreign object inspection device equipped with an epi-illumination detection method and an oblique illumination detection method according to the invention, and FIG. 12 is a front view showing another embodiment of the exposure apparatus of the invention, Collection 16 14 and 14 are plan views showing the movement of the apparatus shown in FIG. 12, respectively, and FIG. 15 is a diagram for explaining a foreign object detector integrated with an alignment optical system according to the present invention. Explanation of symbols 1...Exposure optical system 3...Mask chuck 5...Mask 7...Substrate 9...Foreign object detector 2...Alignment optical system 4...Pattern 6...Gap Measuring instrument 8...Substrate deformation chuck 12...Controller 2 Figure 45 Figure 4 (α) Figure m5 ¥56 Figure (b) Figure 48 (C) Figure 27 Figure 410 Figure 412 Figure 11

Claims (1)

【特許請求の範囲】 1、試料上にマスクパターンを露光焼付する露光装置に
おいて、異物の発生しない雰囲気の中にある露光装置内
部に、試料及びマスク上を異物検査する機能を備え付け
たことを特徴とする露光装置。 2、上記異物検査機能は、光源、線状光学系から成る落
射照明光学系と、一次元固体撮像素子、マスクあるいは
試料からの反射光を該一次元固体撮像素子上に結像する
集光レンズと遮光光学系から成る検出光学系と、該一次
元固体撮像素子の出力信号の二値化回路と、該二値化回
路の出力信号の演算回路と、異物表示部を有することを
特徴とする請求項1記載の露光装置。 3、上記異物検査機能は、光源、線状光学系から成る斜
方照明光学系と、一次元固体撮像素子、マスクあるいは
試料からの反射光を該一次元固体撮像素子上に結像する
集光レンズと遮光光学系から成る検出光学系と、該一次
元固体撮像素子の出力信号の二値化回路と、該二値化回
路の出力信号の演算回路と、異物表示部を有することを
特徴とする請求項1記載の露光装置。 4、上記異物検査機能は、光源、線状光学系から成る落
射照明光学系と、光源、線状光学系から成る斜方照明光
学系と、一次元固体撮像素子、マスクあるいは試料から
の反射光を該一次元固体撮像素子上に結像する集光レン
ズと遮光光学系から成る検出光学系と、該一次元固体撮
像素子の出力信号の二値化回路と、該二値化回路の出力
信号の演算回路と、異物表示部を有することを特徴とす
る請求項1記載の露光装置。 5、上記異物検査機能の落射照明光学系は、集光レンズ
とマスクあるいは試料との間に位置することを特徴とす
る請求項1記載の露光装置。 6、上記異物検査機能の遮光光学系は、落射照明光学系
によつて生じるマスクあるいは試料面からの正反射光を
遮光する遮光板、また、マスクあるいは試料上の様々な
パターンからの散乱光をパターンに応じて遮光する遮光
板を有し、任意に変えられることを特徴とする請求項1
記載の露光装置。 7、上記異物検査機能の落射照明光学系と斜方照明光学
系の光源として、半導体レーザを用いることを特徴とす
る請求項1記載の露光装置。 8、上記露光装置において、マスクと試料間のギャップ
を均一化するように試料を変形させることを特徴とする
請求項1記載の露光装置。 9、表面の複数箇所の試料高さとマスク表面の複数箇所
のマスク高さを、移動可能な試料及びマスク高さ測定器
により測定し、これらの結果にもとづき、試料を吸着保
持するチヤツクの複数箇所で、各々独立して上下方向に
微動させて、試料とマスクとのギャップを均一化するよ
うに試料を変形させた後、上記試料及びマスク高さ測定
器を待避させて露光することを特徴とする請求項1記載
の露光装置。  10、試料上にマスクパターンを露光焼付する露光方法
において、露光焼付する直前に、試料表面及びマスクの
表裏両面を異物検査することを特徴とする露光方法。 11、上記異物検査は、試料とマスクを光量切換えによ
り1つの異物検査器で検査することを特徴とする請求項
10記載の露光方法。
[Scope of Claims] 1. An exposure apparatus that exposes and prints a mask pattern on a sample, characterized in that the exposure apparatus is equipped with a function for inspecting the sample and the mask for foreign substances in an atmosphere where no foreign substances are generated. Exposure equipment. 2. The above foreign object inspection function includes a light source, an epi-illumination optical system consisting of a linear optical system, a one-dimensional solid-state image sensor, and a condenser lens that focuses reflected light from a mask or sample onto the one-dimensional solid-state image sensor. and a detection optical system consisting of a light-shielding optical system, a binarization circuit for the output signal of the one-dimensional solid-state image sensor, an arithmetic circuit for the output signal of the binarization circuit, and a foreign object display section. An exposure apparatus according to claim 1. 3. The above foreign matter inspection function consists of a light source, an oblique illumination optical system consisting of a linear optical system, a one-dimensional solid-state image sensor, and a condenser that focuses reflected light from a mask or sample onto the one-dimensional solid-state image sensor. It is characterized by having a detection optical system consisting of a lens and a light-shielding optical system, a binarization circuit for the output signal of the one-dimensional solid-state image sensor, an arithmetic circuit for the output signal of the binarization circuit, and a foreign object display section. The exposure apparatus according to claim 1. 4. The above foreign object inspection function uses an epi-illumination optical system consisting of a light source and a linear optical system, an oblique illumination optical system consisting of a light source and a linear optical system, and reflected light from a one-dimensional solid-state image sensor, mask, or sample. a detection optical system consisting of a condensing lens and a light shielding optical system for forming an image on the one-dimensional solid-state image sensor, a binarization circuit for the output signal of the one-dimensional solid-state image sensor, and an output signal of the binarization circuit. 2. The exposure apparatus according to claim 1, further comprising: an arithmetic circuit; and a foreign matter display section. 5. The exposure apparatus according to claim 1, wherein the epi-illumination optical system for the foreign matter inspection function is located between a condenser lens and a mask or a sample. 6. The light-shielding optical system for the above-mentioned foreign object inspection function is a light-shielding plate that blocks specularly reflected light from the mask or sample surface generated by the epi-illumination optical system, and also blocks scattered light from various patterns on the mask or sample. Claim 1 characterized in that it has a light shielding plate that blocks light according to a pattern and can be changed arbitrarily.
The exposure apparatus described. 7. The exposure apparatus according to claim 1, wherein a semiconductor laser is used as a light source for an epi-illumination optical system and an oblique illumination optical system for the foreign matter inspection function. 8. The exposure apparatus according to claim 1, wherein the exposure apparatus deforms the sample so as to equalize the gap between the mask and the sample. 9. Measure the sample height at multiple locations on the surface and the mask height at multiple locations on the mask surface using a movable sample and mask height measuring device, and based on these results, measure the sample height at multiple locations on the chuck that holds the sample by suction. The method is characterized in that the sample is deformed so as to equalize the gap between the sample and the mask by slightly moving each of them in the vertical direction independently, and then the sample and mask height measuring device are retracted and exposed. The exposure apparatus according to claim 1. 10. An exposure method in which a mask pattern is exposed and printed on a sample, and the exposure method is characterized by inspecting the sample surface and both the front and back surfaces of the mask for foreign substances immediately before exposure and printing. 11. The exposure method according to claim 10, wherein the foreign matter inspection is performed by inspecting the sample and the mask using a single foreign matter inspection device by changing the amount of light.
JP63218303A 1988-09-02 1988-09-02 Aligner and its exposure Pending JPH0267715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218303A JPH0267715A (en) 1988-09-02 1988-09-02 Aligner and its exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218303A JPH0267715A (en) 1988-09-02 1988-09-02 Aligner and its exposure

Publications (1)

Publication Number Publication Date
JPH0267715A true JPH0267715A (en) 1990-03-07

Family

ID=16717726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218303A Pending JPH0267715A (en) 1988-09-02 1988-09-02 Aligner and its exposure

Country Status (1)

Country Link
JP (1) JPH0267715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513984A (en) * 2005-10-31 2009-04-02 ザ・ボーイング・カンパニー Apparatus and method for inspecting a composite structure for defects
JP2010223964A (en) * 2010-04-26 2010-10-07 Hitachi Ltd Apparatus and method for defect inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513984A (en) * 2005-10-31 2009-04-02 ザ・ボーイング・カンパニー Apparatus and method for inspecting a composite structure for defects
JP2010223964A (en) * 2010-04-26 2010-10-07 Hitachi Ltd Apparatus and method for defect inspection

Similar Documents

Publication Publication Date Title
TWI449900B (en) System for inspection, lithography system, method of device manufacturing and in-situ contaminant detection system
US8134701B2 (en) Defect inspecting method and apparatus
US7518717B2 (en) Exposure apparatus and a device manufacturing method using the same
US6313913B1 (en) Surface inspection apparatus and method
JPH02114154A (en) Reticle inspection and apparatus therefor
KR20030096400A (en) Arrangement and method for detecting defects on a substrate in a processing tool
EP0065411B1 (en) On-machine reticle inspection device
JP4588010B2 (en) Lithographic apparatus
JPH0267715A (en) Aligner and its exposure
US6208747B1 (en) Determination of scanning error in scanner by reticle rotation
JPH06258237A (en) Defect inspection device
JPH0682381A (en) Foreign matter inspection device
JP3410013B2 (en) Defect or foreign matter inspection method and apparatus
US6178256B1 (en) Removal of reticle effect on critical dimension by reticle rotation
CN220773415U (en) Photomask inspection apparatus
CN109696798B (en) Photomask and maintenance method of photomask bearing platform
JPH1183752A (en) Method and apparatus for inspecting surface state
KR101886685B1 (en) Pattern inspection apparatus, pattern imaging apparatus and pattern imaging method
JPS5999426A (en) Printing and exposing device provided with dustproof mechanism
JPH0561187A (en) Method and device for inspecting photomask with pellicle
JPH0743311A (en) Surface inspection device and aligner with the device
JP2022191012A (en) Adjustment method of foreign matter inspection device, exposure device and article manufacturing method
JP2012013707A (en) Defect inspection device
JPS63122908A (en) Surface inspection apparatus
JPH042950A (en) Apparatus for inspecting foreign material