JPH0265094A - Thin film el element and manufacture thereof - Google Patents

Thin film el element and manufacture thereof

Info

Publication number
JPH0265094A
JPH0265094A JP63215521A JP21552188A JPH0265094A JP H0265094 A JPH0265094 A JP H0265094A JP 63215521 A JP63215521 A JP 63215521A JP 21552188 A JP21552188 A JP 21552188A JP H0265094 A JPH0265094 A JP H0265094A
Authority
JP
Japan
Prior art keywords
thin film
emitting layer
light
light emitting
cas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63215521A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshioka
俊博 吉岡
Keiji Nunomura
布村 惠史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63215521A priority Critical patent/JPH0265094A/en
Publication of JPH0265094A publication Critical patent/JPH0265094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a thin film El element with high luminous efficiency while maintaining the color tone as a red light emitting element by using thin film phosphors activated with Eu on a base material made of a mixed crystal of CaS and CaSe for a light emitting layer. CONSTITUTION:A transparent electrode 2 and the first insulator layer 3 made of Al2O3 are formed on a glass base 1 by the vacuum deposition method or the like. A light emitting layer 4 is formed by the electron beam heating deposition method with a pellet containing Eu in a mixed crystal of CaS and CaSe of an evaporation source so that the light emitting layer 4 having a base material with the preset Se concentration is formed on this base. The second insulator layer 5 of Al2O3 is formed on the light emitting layer 4 without breaking the vacuum state, and an upper Al electrode 6 is finally formed on the second insulator layer 6. A light emitting layer material of a thin film EL element with good red luminescence and high intensity and efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示デバイスなどに用いる薄膜EL素子及びそ
の製造方法に関するものである。更に詳しくは、良好な
発光特性を有する赤色発光薄膜EL素子の発光層材料及
び発光層薄膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film EL element used in display devices and the like, and a method for manufacturing the same. More specifically, the present invention relates to a light emitting layer material and a method for forming a light emitting layer thin film of a red light emitting thin film EL device having good light emitting characteristics.

〔従来の技術〕[Conventional technology]

従来より薄膜EL素子の発光層材料にはMnや希土類元
素で付活されたZnSが主に用いられており、赤色発光
材料としてはZnS:Smが知られている。近年、新し
い赤色発光材料としてCab:Euなとアルカリ土類硫
化物を母体とし、Euで付活された発光層材料が検討さ
れている。
Conventionally, ZnS activated with Mn or a rare earth element has been mainly used as a material for a light emitting layer of a thin film EL element, and ZnS:Sm is known as a red light emitting material. In recent years, as a new red light emitting material, a light emitting layer material made of Cab:Eu and an alkaline earth sulfide as a matrix and activated with Eu has been studied.

アルカリ土類硫化物を母体とする発光層を有する薄膜E
L素子は、第3図に示すようにガラス基板1上に透明電
極2、第一絶縁体層3、アルカリ土類硫化物を母体とす
る発光層7、第二絶縁体層5゜上部AQ電極6を順次形
成して製造され、このようなアルカリ土類硫化物を母体
とし発光層薄膜は。
Thin film E having a light-emitting layer based on alkaline earth sulfide
As shown in FIG. 3, the L element has a transparent electrode 2, a first insulating layer 3, a light emitting layer 7 based on alkaline earth sulfide, a second insulating layer 5, and an AQ electrode on top of a glass substrate 1, as shown in FIG. The light-emitting layer thin film is manufactured by sequentially forming 6 and 6, and uses such an alkaline earth sulfide as a matrix.

第4図(a)に示すように電子ビームガン10を備えた
真空槽14内に基板8を設置し、該基板8をヒータ9で
加熱しつつ発光中心不純物を含むアルカリ土類硫化物か
らなる原料ペレット11を電子ビームにより加熱し基板
8に成膜する真空蒸着法や、発光中心不純物を含むアル
カリ土類硫化物をターゲットとして用いたスパッタ法に
よって成膜されている。更に真空蒸着法においては、第
4図(b)のようにS蒸気雰囲気15中で蒸着する方法
が検討されている。
As shown in FIG. 4(a), a substrate 8 is placed in a vacuum chamber 14 equipped with an electron beam gun 10, and while heating the substrate 8 with a heater 9, a raw material made of alkaline earth sulfide containing luminescent center impurities The film is formed by a vacuum evaporation method in which the pellet 11 is heated with an electron beam to form a film on the substrate 8, or by a sputtering method using an alkaline earth sulfide containing a luminescent center impurity as a target. Furthermore, in the vacuum evaporation method, a method of evaporating in an S vapor atmosphere 15 as shown in FIG. 4(b) is being considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、ZnS:Smを発光層として有する赤色EL
素子は、カラーEL素子として色純度が充分でなく、発
光効率が悪い。
However, red EL having ZnS:Sm as a light emitting layer
The element does not have sufficient color purity as a color EL element and has poor luminous efficiency.

一方、Euで付活されたアルカリ土類硫化物CaS :
Euを発光層として有するEL素子は色純度の高い発光
色を示すが、発光輝度及び発光効率が実用レベルに比べ
て不十分である。
On the other hand, alkaline earth sulfide CaS activated with Eu:
An EL element having Eu as a light emitting layer emits light with high color purity, but its luminance and luminous efficiency are insufficient compared to practical levels.

赤色発光を示すEuで付活されたCaSなどアルカリ土
類硫化物からなる発光層を成膜する際、アルカリ土類硫
化物を蒸着源にして真空蒸着すると、形成膜にS抜けに
よる化学量論比組成のずれや、それに起因する結晶性の
著しい低下が発生する。
When forming a light-emitting layer made of an alkaline earth sulfide such as CaS activated with Eu that emits red light, if the alkaline earth sulfide is used as a vapor deposition source for vacuum evaporation, the formed film will have a stoichiometric effect due to S omission. A shift in specific composition and a significant decrease in crystallinity occur due to the shift.

Sの雰囲気中でアルカリ土類硫化物を真空蒸着すると、
上記形成膜質の低下をある程度防止することは可能であ
る。しかし、膜質の低下を防止するにはSの分圧によっ
て蒸着中の真空度を10″″4〜10−” torrと
しなければならず、成膜装置の維持も含めて真空蒸着法
としてのアルカリ土類硫化物の成膜技術として本質的解
決に到っていない。
When alkaline earth sulfides are vacuum-deposited in an atmosphere of S,
It is possible to prevent the above-mentioned deterioration in the quality of the formed film to some extent. However, in order to prevent deterioration of film quality, the degree of vacuum during deposition must be set to 10''4 to 10-'' torr depending on the partial pressure of S, and the use of alkali as a vacuum evaporation method, including maintenance of the film forming equipment, is required. No fundamental solution has been reached as a film forming technology for earth sulfides.

本発明の目的は良好な赤色発光を示し、輝度・効率の高
い薄膜EL素子の発光層材料を提供すること、及び上記
赤色発光を示す高品位な発光層薄膜を容易に形成するこ
とが可能な薄膜EL素子の製造方法を提供することにあ
る。
An object of the present invention is to provide a material for a light emitting layer of a thin film EL element that exhibits good red light emission and has high brightness and efficiency, and that enables easy formation of a high quality light emitting layer thin film that exhibits red light emission. An object of the present invention is to provide a method for manufacturing a thin film EL element.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の薄膜EL素子による
ときにはCaSとCa5eとの混晶からなる母体にEu
を付活した薄膜蛍光体を発光層としたものである。
In order to achieve the above object, when using the thin film EL device of the present invention, Eu is added to the matrix consisting of a mixed crystal of CaS and Ca5e.
The light-emitting layer is a thin film phosphor activated with .

また、本発明の薄膜EL素子の発光層母体をなすCa 
5l−xS e xのSe濃度Xは0.05≦X≦0.
65の範囲内に設定されている。
Furthermore, Ca, which forms the matrix of the light-emitting layer of the thin-film EL device of the present invention,
The Se concentration X of 5l-xS e x is 0.05≦X≦0.
It is set within the range of 65.

本発明の薄膜EL素子はCaSとCa5eの混晶からな
る母体にEuを付活した薄膜蛍光体を発光層とし、真空
蒸着法で該発光層を形成するに際し、発光層材料からな
る蒸発源とSeからなる発光層材料とは別の蒸発源から
、同時に基板上に蒸発物質を供給して該発光層を基板上
に形成することによって得られる。
The thin film EL device of the present invention has a light emitting layer made of a thin film phosphor made of a mixed crystal of CaS and Ca5e activated with Eu. The light-emitting layer is formed on the substrate by simultaneously supplying an evaporation substance onto the substrate from an evaporation source different from that of the light-emitting layer material made of Se.

〔作用〕 CaS : Euの発光はピーク波長的650nmのほ
ぼ対称なスペクトルを示す。この発光は色純度が非常に
高い深い赤色である反面、視感度が小さいため原理的に
高効率化に限界がある。母体がCaSとCa5eとの混
晶とすることでEuからの発光スペクトルを短波長側に
移動させ、赤色発光素子としての実用的な色純度を保っ
たまま視感度の高い領域での発光を得ることができる。
[Operation] CaS:Eu light emission exhibits a nearly symmetrical spectrum with a peak wavelength of 650 nm. Although this luminescence has a deep red color with very high color purity, the visibility is low, so there is a limit to how high efficiency can be achieved in principle. By making the matrix a mixed crystal of CaS and Ca5e, the emission spectrum from Eu is shifted to the shorter wavelength side, and light emission in a region with high visibility is obtained while maintaining practical color purity as a red light emitting element. be able to.

また、Ca2+とEu” ”のイオン半径はほぼ同じで
あり、陽イオンを他のアルカリ土類元素に置換した混晶
よりも発光中心であるEu2 *イオンの周りの結晶の
歪を小さくすることができるため、混晶化による発光効
率の低下がない。
In addition, the ionic radius of Ca2+ and Eu"" is almost the same, and it is possible to reduce the distortion of the crystal around the Eu2* ion, which is the luminescent center, than in a mixed crystal in which cations are replaced with other alkaline earth elements. Therefore, there is no reduction in luminous efficiency due to mixed crystal formation.

Euを含むCaS、又はCaSとCaSe、又はCaS
とCaSeとの混晶からなる蒸着源を加熱して真空蒸着
する際、薄膜成長面に、基板に到達する化学量論比の蒸
気成分より過剰のSeが供給されると、形成薄膜からの
S又はSe抜けが減少し、蒸着雰囲気からの酸素の取り
込みによる薄膜中の酸化物の量も低下するため、形成薄
膜の結晶性が良好になり、ひいてはこの薄膜を発光層と
するEL素子の発光特性が良好となる。また、S雰囲気
での蒸着法に比べ、SsはSより蒸気圧が低いため、基
板への付着率が高く、より少量で上記効果があり、さら
にSの雰囲気蒸着法ではS源の室温〜200°Cの間で
の微妙な温度コントロールが要求されるのに対し、Ss
の同時供給によればSe源の温度コントロールによる供
給量の制御が容易となる。よって通常の蒸着法の真空度
を保ったまま、Seの薄膜成長面への供給量の変動の少
ない過剰供給を行うことが可能である。ひいては薄膜の
結晶性やE!L素子の特性を良好にすることが可能とな
り、また成膜装置の汚染が成膜や成膜装置の材質に及ぼ
す影響を少なくすることが可能であり、成膜装置の維持
も容易になる。
CaS containing Eu, or CaS and CaSe, or CaS
When vacuum evaporation is performed by heating a deposition source consisting of a mixed crystal of Alternatively, the amount of Se missing and the amount of oxide in the thin film due to the incorporation of oxygen from the deposition atmosphere is also reduced, which improves the crystallinity of the formed thin film, which in turn improves the light emitting characteristics of an EL device using this thin film as a light emitting layer. becomes good. In addition, compared to the evaporation method in an S atmosphere, since Ss has a lower vapor pressure than S, the adhesion rate to the substrate is higher, and the above effect can be achieved with a smaller amount. While delicate temperature control is required between °C, Ss
By simultaneously supplying Se, the supply amount can be easily controlled by controlling the temperature of the Se source. Therefore, it is possible to perform excessive supply of Se to the thin film growth surface with little variation in the amount of Se supplied to the thin film growth surface while maintaining the degree of vacuum in the normal vapor deposition method. Furthermore, the crystallinity of thin films and E! It becomes possible to improve the characteristics of the L element, and it is possible to reduce the influence of contamination of the film forming apparatus on film forming and the material of the film forming apparatus, and maintenance of the film forming apparatus becomes easy.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す薄膜EL素子の断面図
である。以下、Ca514S e tを母体とし、0.
1mo1%のEuで付活された発光層を有する薄膜EL
素子を例にとって詳細を説明する。第1図に示すように
、まず真空蒸着法又はスパッタ法などによりガラス基板
1上に透明電極2及び2500人のAl1.O,からな
る第一絶縁体層3を成膜する。次に、この基板上に表1
に示すようなSe濃度の母体を持つ発光層を形成するよ
うに、蒸発源のCaSとCa5eとの混合比を変化させ
たEuを含むペレットを用い500°Cの基板温度で、
電子ビーム加熱蒸着法で発光層4を10000人形成す
る。さらに、この真空状態を破らずにこれらの発光層4
の上からAQ20.の第二絶縁体層5を3000人形成
した。最後に、この第二絶縁体層5の上に上部AQ電極
6を成膜してEL素子を作製した。
FIG. 1 is a sectional view of a thin film EL device showing one embodiment of the present invention. Hereinafter, Ca514S e t will be used as a matrix, and 0.
Thin film EL with a light emitting layer activated with 1mo1% Eu
The details will be explained by taking the element as an example. As shown in FIG. 1, first, a transparent electrode 2 and 2,500 Al1. A first insulating layer 3 made of O, is formed. Next, place Table 1 on this board.
At a substrate temperature of 500 °C, pellets containing Eu were used with varying mixing ratios of CaS and Ca5e as evaporation sources so as to form a light-emitting layer with a matrix having a Se concentration as shown in
10,000 light emitting layers 4 are formed by electron beam heating evaporation. Furthermore, these light-emitting layers 4 can be removed without breaking this vacuum state.
AQ20 from above. The second insulator layer 5 was formed by 3,000 people. Finally, an upper AQ electrode 6 was formed on this second insulator layer 5 to produce an EL element.

表  1 第5図に表1に示した各素子の発光ピーク波長及び発光
効率を示す。各素子の発光色は表1に示しである。表1
及び第5図に明らかなとおり、発光層母体が混晶化し、
Se濃度が増加するにしたがって発光ピーク波長が短波
長側に移動し色調が変化している。また、これにより発
光効率が5el1度の増加とともに大きくなっている。
Table 1 FIG. 5 shows the emission peak wavelength and luminous efficiency of each element shown in Table 1. The emitted light color of each element is shown in Table 1. Table 1
As is clear from FIG. 5, the light-emitting layer matrix becomes a mixed crystal,
As the Se concentration increases, the emission peak wavelength shifts to the shorter wavelength side and the color tone changes. Moreover, as a result, the luminous efficiency increases with an increase of 5el1 degree.

Seのmol濃度が0.60以上では、赤色発光素子と
しての色純度が通常のカラーCRTに用いられるものよ
り劣ってくる。また、0.05以下では発光効率の改善
効果が小さい。Seがlllola度で0.30含まれ
るCaS、 、 70 Se、 、 3 。:Euを発
光層として有する素子Cはカラー素子としての良好な色
純度と素子Aに比べ約3倍の効率改善がなされた。この
ように、本発明によるEuで付活されたC a 5l−
XS eXを発光層とするEL素子は赤色発光素子とし
ての色純度を保ったまま、輝度・効率を、従来のCaS
を母体とするものより改善することができ、総合的にみ
て従来素子より発光特性の優れたものを得ることができ
る。
If the molar concentration of Se is 0.60 or more, the color purity of the red light emitting element will be inferior to that used in ordinary color CRTs. Moreover, if it is 0.05 or less, the effect of improving luminous efficiency is small. CaS containing 0.30 llola degrees of Se, , 70 Se, , 3. :Device C having Eu as a light-emitting layer had good color purity as a color device and improved efficiency by about 3 times compared to Device A. Thus, Eu-activated C a 5l- according to the present invention
An EL device using XS eX as a light-emitting layer maintains the color purity of a red light-emitting device, while improving brightness and efficiency compared to conventional CaS
It is possible to obtain an element with better light emitting characteristics than the conventional element overall.

次に、0.1mo1%のEuで付活されたCabl、、
7゜Se、 、、。
Next, Cabl activated with 0.1 mo1% Eu,
7°Se, ,,.

薄膜成膜時にSeを同時供給した発光層を有する薄膜E
L素子を例にとって、この発光層形成技術の詳細を説明
する。まず、第1図に示す構造の薄膜EL素子を上述の
手順で作製した。但し発光層は、形成された薄膜のSe
濃度が0.30となるように蒸発源ペレットのCaSと
Ca5eとの混合比を調整し、第2図に示す成膜装置を
用いて成膜している。第2図は電子ビームガン10を備
えた真空槽14内に基板8を設置し、蒸発源としてCa
S1−xs8x : Eu発光層材料ペレット11と、
5e12とを別個にセットしたものである。上記ペレッ
ト11を電子ビーム加熱で蒸発させ、別蒸着源より種々
の供給速度で5e12を抵抗加熱器13により加熱して
同時に蒸発させ、10000人の膜厚で形成した。この
ときSsの供給量の変動は±5%以下であった。また、
成膜時の真空度はI X 10−’torr以下である
。作製した素子のSeの相対的供給量と素子名を表2に
示す。
Thin film E having a light-emitting layer to which Se was simultaneously supplied during thin film formation
The details of this light emitting layer forming technique will be explained by taking an L element as an example. First, a thin film EL device having the structure shown in FIG. 1 was fabricated by the above-described procedure. However, the light-emitting layer is a thin film formed of Se.
The mixing ratio of CaS and Ca5e in the evaporation source pellets was adjusted so that the concentration was 0.30, and the film was formed using the film forming apparatus shown in FIG. In FIG. 2, a substrate 8 is installed in a vacuum chamber 14 equipped with an electron beam gun 10, and Ca is used as an evaporation source.
S1-xs8x: Eu luminescent layer material pellet 11,
5e12 are set separately. The above pellets 11 were evaporated by electron beam heating, and 5e12 was heated and evaporated at the same time by a resistance heater 13 at various supply rates from a separate evaporation source to form a film with a thickness of 10,000. At this time, the variation in the amount of Ss supplied was ±5% or less. Also,
The degree of vacuum during film formation is I x 10-'torr or less. Table 2 shows the relative supply amount of Se and the device name of the fabricated devices.

表  2 F−G各素子のX線回折によるNaCQ構造(200)
ピークの半値幅Δ2θを測定したところ、第6図に示す
ように供給Seの量が増加するにしたがってΔ2θは単
調に減少し、結晶性の改善効果が認められた。素子■及
びJではSeの供給のない場合(素子F)に比べ215
に減少した。また、第5図に示すように発光効率も供給
Seの量が増加するにつれて増加し、Ssの供給がない
場合(素子F)に比べ、素子Jで約2倍に改善された。
Table 2 NaCQ structure (200) by X-ray diffraction of each FG element
When the half-value width Δ2θ of the peak was measured, as shown in FIG. 6, Δ2θ monotonically decreased as the amount of supplied Se increased, and an effect of improving crystallinity was observed. 215 for elements ■ and J compared to the case without Se supply (element F)
decreased to Further, as shown in FIG. 5, the luminous efficiency also increased as the amount of supplied Se increased, and was improved by about twice in element J compared to the case where Ss was not supplied (element F).

比較のためにSの同時供給を行ったところ、成膜真空度
10−’ torr付近で供給量を制御することは困難
であり、成膜の再現性や雰囲気真空度の劣化、更には成
膜装置のCu部品の腐食、ポンプオイルの急激な劣化と
いう症状が発生した。Seの同時供給ではこのような顕
著な症状は発生しなかった。
For comparison, when we simultaneously supplied S, we found that it was difficult to control the supply amount at a film-forming vacuum level of around 10-' torr, resulting in deterioration of film-forming reproducibility, atmospheric vacuum level, and even film-forming problems. Symptoms were corrosion of the Cu parts of the equipment and rapid deterioration of the pump oil. Such remarkable symptoms did not occur when Se was supplied simultaneously.

蒸発源にEuを含むCaSのみを用いたものも、発光層
母体を混晶化することが可能であり、上記改善効果が認
められた。
Even when only CaS containing Eu was used as the evaporation source, it was possible to mix the light-emitting layer matrix, and the above-mentioned improvement effect was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の薄膜EL素子はEuで付
活された発光層材料として、Ca5l−1se)(: 
Euを用いることにより、赤色発光素子としての色調を
保ったまま高い発光効率を有する薄膜EL素子を得るこ
とができる。更に、上記発光層形成時にSeを同時供給
する製造工程により、発光層薄膜の結晶性が改善され、
ひいては薄膜EL素子の発光特性を改善することができ
た。また、この工程による成膜条件や成膜装置の急激な
劣化はない。
As explained above, the thin film EL device of the present invention uses Ca5l-1se)(:
By using Eu, it is possible to obtain a thin film EL device that has high luminous efficiency while maintaining the color tone of a red light emitting device. Furthermore, the manufacturing process in which Se is simultaneously supplied during the formation of the light emitting layer improves the crystallinity of the light emitting layer thin film,
As a result, the light emitting characteristics of the thin film EL device could be improved. Furthermore, there is no rapid deterioration of the film forming conditions or film forming equipment due to this step.

本発明は、上述の発光層や製造工程を用いることにより
、良好な発光特性を有する赤色発光薄膜EL素子を得る
ことを可能にしたものである。
The present invention makes it possible to obtain a red light-emitting thin film EL element having good light-emitting characteristics by using the above-described light-emitting layer and manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す薄膜EL素子の断面図
、第2図は本発明の薄膜EL素子の発光層形成工程可能
な成膜装置の略示図、第3図は従来の薄膜EL素子の断
面図、第4図(a)、 (b)はそれぞれ従来の発光層
形成工程に用いる成膜装置の略示図、第5図はEuで付
活したCaSとCaSeの混晶母体におけるSe濃度に
対する発光ピーク波長と発光効率を示す図、第6図は発
光層形成時のSe供給量に対するΔ2θく2゜。)と発
光効率を示す図である。 1・・・ガラス基板     2・・・透明電極3・・
・第−絶縁体層   4・・・Ca5l−ISez :
 Eu発光層5・・・第二絶縁体層    6・・・上
部AQ電極10・・・電子ビームガン 11r・・Ca5l−ISez : Eu発光層材料ペ
レット12・・・Se        13・・・抵抗
加熱器14・・・真空槽
FIG. 1 is a sectional view of a thin film EL device showing an embodiment of the present invention, FIG. 2 is a schematic diagram of a film forming apparatus capable of forming a light emitting layer of the thin film EL device of the present invention, and FIG. 3 is a conventional A cross-sectional view of a thin film EL element, FIGS. 4(a) and 4(b) are schematic diagrams of a film forming apparatus used in a conventional light emitting layer forming process, and FIG. 5 is a cross-sectional view of a mixed crystal of CaS and CaSe activated with Eu. FIG. 6 is a diagram showing the luminescence peak wavelength and luminous efficiency with respect to the Se concentration in the matrix, and FIG. ) and luminous efficiency. 1...Glass substrate 2...Transparent electrode 3...
・Nth insulator layer 4...Ca5l-ISez:
Eu luminescent layer 5...Second insulator layer 6...Upper AQ electrode 10...Electron beam gun 11r...Ca5l-ISez: Eu luminescent layer material pellet 12...Se 13...Resistance heater 14 ...vacuum chamber

Claims (3)

【特許請求の範囲】[Claims] (1)CaSとCaSeとの混晶からなる母体にEuを
付活した薄膜蛍光体を発光層としたことを特徴とする薄
膜EL素子。
(1) A thin film EL device characterized in that the light emitting layer is a thin film phosphor made of a mixed crystal of CaS and CaSe and activated with Eu.
(2)CaSとCaSeの混晶からなる母体にEuを付
活した薄膜蛍光体を発光層として有し、該発光層母体を
なすCaS_1_−_xSe_xの濃度xの値を0.0
5≦X≦0.65の範囲内に設定したことを特徴とする
請求項第1項に記載の薄膜EL素子.
(2) A thin film phosphor made of a mixed crystal of CaS and CaSe activated with Eu is used as a light-emitting layer, and the value of the concentration x of CaS_1_-_xSe_x forming the light-emitting layer base is 0.0.
The thin film EL element according to claim 1, wherein the thin film EL element is set within a range of 5≦X≦0.65.
(3)CaSとCaSeの混晶からなる母体にEuを付
活した薄膜蛍光体を発光層とし、真空蒸着法で該発光層
を形成するに際し、発光層材料からなる蒸発源とSeか
らなる発光層材料とは別の蒸発源から、同時に基板上に
蒸発物質を供給して該発光層を基板上に形成することを
特徴とする薄膜EL素子の製造方法. 〔産業上の利用分野〕 本発明は表示デバイスなどに用いる薄膜EL素子及びそ
の製造方法に関するものである.更に詳しくは、良好な
発光特性を有する赤色発光薄膜EL素子の発光層材料及
び発光層薄膜形成方怯に関するものである. 〔従来の技術〕 従来より薄膜EL素子の発光層材料にはMnや希土類元
素で付活されたZnSが主に用いられており、赤色発光
材料としてはZnS:Smが知られている.近年、新し
い赤色発光材料としてCaS:Euなどアルカリ土類硫
化物を母体とし、Euで付活された発光層材料が検討さ
れている. アルカリ土類硫化物を母体とする発光層を有する薄膜E
L素子は、第3図に示すようにガラス基板1上に透明電
極2、第一絶縁体層3、アルカリ土類硫化物を母体とす
る発光層7、第二絶縁体層5、上部Al電極6を順次形
成して製造され、このようなアルカリ土類硫化物を母体
とし発光層薄膜は、
(3) A thin film phosphor made of a mixed crystal of CaS and CaSe activated with Eu is used as a light-emitting layer, and when forming the light-emitting layer by a vacuum evaporation method, an evaporation source made of the light-emitting layer material and a light emission made of Se are used. A method for manufacturing a thin film EL device, characterized in that the light-emitting layer is formed on the substrate by simultaneously supplying an evaporation substance onto the substrate from an evaporation source different from that of the layer material. [Industrial Field of Application] The present invention relates to a thin film EL element used in display devices, etc., and a method for manufacturing the same. More specifically, the present invention relates to a material for a light emitting layer and a method for forming a thin film of the light emitting layer of a red light emitting thin film EL device having good light emitting characteristics. [Prior Art] Conventionally, ZnS activated with Mn or rare earth elements has been mainly used as a material for the light emitting layer of thin film EL devices, and ZnS:Sm is known as a red light emitting material. In recent years, a light-emitting layer material activated with Eu and made of an alkaline earth sulfide such as CaS:Eu has been studied as a new red light-emitting material. Thin film E having a light-emitting layer based on alkaline earth sulfide
As shown in FIG. 3, the L element has a transparent electrode 2, a first insulating layer 3, a light-emitting layer 7 based on alkaline earth sulfide, a second insulating layer 5, and an upper Al electrode on a glass substrate 1. 6, and the light-emitting layer thin film using such an alkaline earth sulfide as a matrix is
JP63215521A 1988-08-29 1988-08-29 Thin film el element and manufacture thereof Pending JPH0265094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215521A JPH0265094A (en) 1988-08-29 1988-08-29 Thin film el element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215521A JPH0265094A (en) 1988-08-29 1988-08-29 Thin film el element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0265094A true JPH0265094A (en) 1990-03-05

Family

ID=16673794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215521A Pending JPH0265094A (en) 1988-08-29 1988-08-29 Thin film el element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0265094A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
WO1996025020A1 (en) * 1995-02-06 1996-08-15 Idemitsu Kosan Co., Ltd. Multi-color light emission apparatus and method for production thereof
JP2016033202A (en) * 2014-07-29 2016-03-10 デクセリアルズ株式会社 Fluorophor and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
US5773085A (en) * 1994-07-04 1998-06-30 Nippon Hoso Kyokai Method of manufacturing ternary compound thin films
WO1996025020A1 (en) * 1995-02-06 1996-08-15 Idemitsu Kosan Co., Ltd. Multi-color light emission apparatus and method for production thereof
JP2016033202A (en) * 2014-07-29 2016-03-10 デクセリアルズ株式会社 Fluorophor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5073148B2 (en) Magnesium barium thioaluminate and similar phosphor materials
JP2840185B2 (en) Phosphor thin film and thin film EL panel using the same
US6090434A (en) Method for fabricating electroluminescent device
GB2319777A (en) Thin film electroluminescent phosphors
JPS6346117B2 (en)
JPH06163157A (en) Manufacture of thin film el element
US6793782B2 (en) Sputter deposition process for electroluminescent phosphors
JPH0265094A (en) Thin film el element and manufacture thereof
JPH02148595A (en) Thin film el device and manufacture thereof
JPS63230869A (en) Production of thin film el device
JP3976892B2 (en) Thin film EL device
JP2532506B2 (en) Color EL display device
JP2003003159A (en) Epitaxial phosphor thin film and method for producing the same
JPH0395893A (en) Manufacture of phosphor thin film and thin film electroluminescent element
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPH01241793A (en) Thin film el element
JPH05211092A (en) Manufacture of thin film electroluminescence element
JPH0265092A (en) Manufacture of thin film el element
JP4928329B2 (en) Thin film inorganic EL element
JP2622390B2 (en) Thin film EL element
JPH0869881A (en) Manufacture of thin film el element
JPS636774A (en) Manufacture of thin film el device
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH07282978A (en) Thin film electroluminescence(el) element
JPH0367490A (en) Manufacture of sulfide phosphor thin film and thin film el element